replicant-frameworks_native/libs/gui/tests/SurfaceTexture_test.cpp

2816 lines
96 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "SurfaceTexture_test"
//#define LOG_NDEBUG 0
#include <gtest/gtest.h>
#include <gui/GLConsumer.h>
#include <ui/GraphicBuffer.h>
#include <utils/String8.h>
#include <utils/threads.h>
#include <gui/ISurfaceComposer.h>
#include <gui/Surface.h>
#include <gui/SurfaceComposerClient.h>
#include <EGL/egl.h>
#include <EGL/eglext.h>
#include <GLES/gl.h>
#include <GLES/glext.h>
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#include <ui/FramebufferNativeWindow.h>
#include <utils/UniquePtr.h>
#include <android/native_window.h>
namespace android {
class GLTest : public ::testing::Test {
protected:
GLTest():
mEglDisplay(EGL_NO_DISPLAY),
mEglSurface(EGL_NO_SURFACE),
mEglContext(EGL_NO_CONTEXT) {
}
virtual void SetUp() {
const ::testing::TestInfo* const testInfo =
::testing::UnitTest::GetInstance()->current_test_info();
ALOGV("Begin test: %s.%s", testInfo->test_case_name(),
testInfo->name());
mEglDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
ASSERT_EQ(EGL_SUCCESS, eglGetError());
ASSERT_NE(EGL_NO_DISPLAY, mEglDisplay);
EGLint majorVersion;
EGLint minorVersion;
EXPECT_TRUE(eglInitialize(mEglDisplay, &majorVersion, &minorVersion));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
RecordProperty("EglVersionMajor", majorVersion);
RecordProperty("EglVersionMajor", minorVersion);
EGLint numConfigs = 0;
EXPECT_TRUE(eglChooseConfig(mEglDisplay, getConfigAttribs(), &mGlConfig,
1, &numConfigs));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
char* displaySecsEnv = getenv("GLTEST_DISPLAY_SECS");
if (displaySecsEnv != NULL) {
mDisplaySecs = atoi(displaySecsEnv);
if (mDisplaySecs < 0) {
mDisplaySecs = 0;
}
} else {
mDisplaySecs = 0;
}
if (mDisplaySecs > 0) {
mComposerClient = new SurfaceComposerClient;
ASSERT_EQ(NO_ERROR, mComposerClient->initCheck());
mSurfaceControl = mComposerClient->createSurface(
String8("Test Surface"),
getSurfaceWidth(), getSurfaceHeight(),
PIXEL_FORMAT_RGB_888, 0);
ASSERT_TRUE(mSurfaceControl != NULL);
ASSERT_TRUE(mSurfaceControl->isValid());
SurfaceComposerClient::openGlobalTransaction();
ASSERT_EQ(NO_ERROR, mSurfaceControl->setLayer(0x7FFFFFFF));
ASSERT_EQ(NO_ERROR, mSurfaceControl->show());
SurfaceComposerClient::closeGlobalTransaction();
sp<ANativeWindow> window = mSurfaceControl->getSurface();
mEglSurface = eglCreateWindowSurface(mEglDisplay, mGlConfig,
window.get(), NULL);
} else {
EGLint pbufferAttribs[] = {
EGL_WIDTH, getSurfaceWidth(),
EGL_HEIGHT, getSurfaceHeight(),
EGL_NONE };
mEglSurface = eglCreatePbufferSurface(mEglDisplay, mGlConfig,
pbufferAttribs);
}
ASSERT_EQ(EGL_SUCCESS, eglGetError());
ASSERT_NE(EGL_NO_SURFACE, mEglSurface);
mEglContext = eglCreateContext(mEglDisplay, mGlConfig, EGL_NO_CONTEXT,
getContextAttribs());
ASSERT_EQ(EGL_SUCCESS, eglGetError());
ASSERT_NE(EGL_NO_CONTEXT, mEglContext);
EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
mEglContext));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
EGLint w, h;
EXPECT_TRUE(eglQuerySurface(mEglDisplay, mEglSurface, EGL_WIDTH, &w));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
EXPECT_TRUE(eglQuerySurface(mEglDisplay, mEglSurface, EGL_HEIGHT, &h));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
RecordProperty("EglSurfaceWidth", w);
RecordProperty("EglSurfaceHeight", h);
glViewport(0, 0, w, h);
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
}
virtual void TearDown() {
// Display the result
if (mDisplaySecs > 0 && mEglSurface != EGL_NO_SURFACE) {
eglSwapBuffers(mEglDisplay, mEglSurface);
sleep(mDisplaySecs);
}
if (mComposerClient != NULL) {
mComposerClient->dispose();
}
if (mEglContext != EGL_NO_CONTEXT) {
eglDestroyContext(mEglDisplay, mEglContext);
}
if (mEglSurface != EGL_NO_SURFACE) {
eglDestroySurface(mEglDisplay, mEglSurface);
}
if (mEglDisplay != EGL_NO_DISPLAY) {
eglMakeCurrent(mEglDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE,
EGL_NO_CONTEXT);
eglTerminate(mEglDisplay);
}
ASSERT_EQ(EGL_SUCCESS, eglGetError());
const ::testing::TestInfo* const testInfo =
::testing::UnitTest::GetInstance()->current_test_info();
ALOGV("End test: %s.%s", testInfo->test_case_name(),
testInfo->name());
}
virtual EGLint const* getConfigAttribs() {
static EGLint sDefaultConfigAttribs[] = {
EGL_SURFACE_TYPE, EGL_PBUFFER_BIT,
EGL_RENDERABLE_TYPE, EGL_OPENGL_ES2_BIT,
EGL_RED_SIZE, 8,
EGL_GREEN_SIZE, 8,
EGL_BLUE_SIZE, 8,
EGL_ALPHA_SIZE, 8,
EGL_DEPTH_SIZE, 16,
EGL_STENCIL_SIZE, 8,
EGL_NONE };
return sDefaultConfigAttribs;
}
virtual EGLint const* getContextAttribs() {
static EGLint sDefaultContextAttribs[] = {
EGL_CONTEXT_CLIENT_VERSION, 2,
EGL_NONE };
return sDefaultContextAttribs;
}
virtual EGLint getSurfaceWidth() {
return 512;
}
virtual EGLint getSurfaceHeight() {
return 512;
}
::testing::AssertionResult checkPixel(int x, int y, int r,
int g, int b, int a, int tolerance=2) {
GLubyte pixel[4];
String8 msg;
glReadPixels(x, y, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, pixel);
GLenum err = glGetError();
if (err != GL_NO_ERROR) {
msg += String8::format("error reading pixel: %#x", err);
while ((err = glGetError()) != GL_NO_ERROR) {
msg += String8::format(", %#x", err);
}
return ::testing::AssertionFailure(
::testing::Message(msg.string()));
}
if (r >= 0 && abs(r - int(pixel[0])) > tolerance) {
msg += String8::format("r(%d isn't %d)", pixel[0], r);
}
if (g >= 0 && abs(g - int(pixel[1])) > tolerance) {
if (!msg.isEmpty()) {
msg += " ";
}
msg += String8::format("g(%d isn't %d)", pixel[1], g);
}
if (b >= 0 && abs(b - int(pixel[2])) > tolerance) {
if (!msg.isEmpty()) {
msg += " ";
}
msg += String8::format("b(%d isn't %d)", pixel[2], b);
}
if (a >= 0 && abs(a - int(pixel[3])) > tolerance) {
if (!msg.isEmpty()) {
msg += " ";
}
msg += String8::format("a(%d isn't %d)", pixel[3], a);
}
if (!msg.isEmpty()) {
return ::testing::AssertionFailure(
::testing::Message(msg.string()));
} else {
return ::testing::AssertionSuccess();
}
}
::testing::AssertionResult assertRectEq(const Rect &r1,
const Rect &r2, int tolerance=1) {
String8 msg;
if (abs(r1.left - r2.left) > tolerance) {
msg += String8::format("left(%d isn't %d)", r1.left, r2.left);
}
if (abs(r1.top - r2.top) > tolerance) {
if (!msg.isEmpty()) {
msg += " ";
}
msg += String8::format("top(%d isn't %d)", r1.top, r2.top);
}
if (abs(r1.right - r2.right) > tolerance) {
if (!msg.isEmpty()) {
msg += " ";
}
msg += String8::format("right(%d isn't %d)", r1.right, r2.right);
}
if (abs(r1.bottom - r2.bottom) > tolerance) {
if (!msg.isEmpty()) {
msg += " ";
}
msg += String8::format("bottom(%d isn't %d)", r1.bottom, r2.bottom);
}
if (!msg.isEmpty()) {
msg += String8::format(" R1: [%d %d %d %d] R2: [%d %d %d %d]",
r1.left, r1.top, r1.right, r1.bottom,
r2.left, r2.top, r2.right, r2.bottom);
fprintf(stderr, "assertRectEq: %s\n", msg.string());
return ::testing::AssertionFailure(
::testing::Message(msg.string()));
} else {
return ::testing::AssertionSuccess();
}
}
int mDisplaySecs;
sp<SurfaceComposerClient> mComposerClient;
sp<SurfaceControl> mSurfaceControl;
EGLDisplay mEglDisplay;
EGLSurface mEglSurface;
EGLContext mEglContext;
EGLConfig mGlConfig;
};
static void loadShader(GLenum shaderType, const char* pSource,
GLuint* outShader) {
GLuint shader = glCreateShader(shaderType);
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
if (shader) {
glShaderSource(shader, 1, &pSource, NULL);
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
glCompileShader(shader);
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
GLint compiled = 0;
glGetShaderiv(shader, GL_COMPILE_STATUS, &compiled);
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
if (!compiled) {
GLint infoLen = 0;
glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &infoLen);
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
if (infoLen) {
char* buf = (char*) malloc(infoLen);
if (buf) {
glGetShaderInfoLog(shader, infoLen, NULL, buf);
printf("Shader compile log:\n%s\n", buf);
free(buf);
FAIL();
}
} else {
char* buf = (char*) malloc(0x1000);
if (buf) {
glGetShaderInfoLog(shader, 0x1000, NULL, buf);
printf("Shader compile log:\n%s\n", buf);
free(buf);
FAIL();
}
}
glDeleteShader(shader);
shader = 0;
}
}
ASSERT_TRUE(shader != 0);
*outShader = shader;
}
static void createProgram(const char* pVertexSource,
const char* pFragmentSource, GLuint* outPgm) {
GLuint vertexShader, fragmentShader;
{
SCOPED_TRACE("compiling vertex shader");
ASSERT_NO_FATAL_FAILURE(loadShader(GL_VERTEX_SHADER, pVertexSource,
&vertexShader));
}
{
SCOPED_TRACE("compiling fragment shader");
ASSERT_NO_FATAL_FAILURE(loadShader(GL_FRAGMENT_SHADER, pFragmentSource,
&fragmentShader));
}
GLuint program = glCreateProgram();
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
if (program) {
glAttachShader(program, vertexShader);
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
glAttachShader(program, fragmentShader);
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
glLinkProgram(program);
GLint linkStatus = GL_FALSE;
glGetProgramiv(program, GL_LINK_STATUS, &linkStatus);
if (linkStatus != GL_TRUE) {
GLint bufLength = 0;
glGetProgramiv(program, GL_INFO_LOG_LENGTH, &bufLength);
if (bufLength) {
char* buf = (char*) malloc(bufLength);
if (buf) {
glGetProgramInfoLog(program, bufLength, NULL, buf);
printf("Program link log:\n%s\n", buf);
free(buf);
FAIL();
}
}
glDeleteProgram(program);
program = 0;
}
}
glDeleteShader(vertexShader);
glDeleteShader(fragmentShader);
ASSERT_TRUE(program != 0);
*outPgm = program;
}
static int abs(int value) {
return value > 0 ? value : -value;
}
// XXX: Code above this point should live elsewhere
class MultiTextureConsumerTest : public GLTest {
protected:
enum { TEX_ID = 123 };
virtual void SetUp() {
GLTest::SetUp();
sp<BufferQueue> bq = new BufferQueue();
mGlConsumer = new GLConsumer(bq, TEX_ID);
mSurface = new Surface(mGlConsumer->getBufferQueue());
mANW = mSurface.get();
}
virtual void TearDown() {
GLTest::TearDown();
}
virtual EGLint const* getContextAttribs() {
return NULL;
}
virtual EGLint const* getConfigAttribs() {
static EGLint sDefaultConfigAttribs[] = {
EGL_SURFACE_TYPE, EGL_PBUFFER_BIT,
EGL_RED_SIZE, 8,
EGL_GREEN_SIZE, 8,
EGL_BLUE_SIZE, 8,
EGL_ALPHA_SIZE, 8,
EGL_NONE };
return sDefaultConfigAttribs;
}
sp<GLConsumer> mGlConsumer;
sp<Surface> mSurface;
ANativeWindow* mANW;
};
TEST_F(MultiTextureConsumerTest, EGLImageTargetWorks) {
ANativeWindow_Buffer buffer;
ASSERT_EQ(native_window_set_usage(mANW, GRALLOC_USAGE_SW_WRITE_OFTEN), NO_ERROR);
ASSERT_EQ(native_window_set_buffers_format(mANW, HAL_PIXEL_FORMAT_RGBA_8888), NO_ERROR);
glShadeModel(GL_FLAT);
glDisable(GL_DITHER);
glDisable(GL_CULL_FACE);
glViewport(0, 0, getSurfaceWidth(), getSurfaceHeight());
glOrthof(0, getSurfaceWidth(), 0, getSurfaceHeight(), 0, 1);
glEnableClientState(GL_VERTEX_ARRAY);
glColor4f(1, 1, 1, 1);
glBindTexture(GL_TEXTURE_EXTERNAL_OES, TEX_ID);
glTexParameterx(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterx(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameterx(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterx(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
uint32_t texel = 0x80808080;
glBindTexture(GL_TEXTURE_2D, TEX_ID+1);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 1, 1, 0, GL_RGBA, GL_UNSIGNED_BYTE, &texel);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, TEX_ID+1);
glEnable(GL_TEXTURE_2D);
glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_EXTERNAL_OES, TEX_ID);
glEnable(GL_TEXTURE_EXTERNAL_OES);
glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glClear(GL_COLOR_BUFFER_BIT);
for (int i=0 ; i<8 ; i++) {
mSurface->lock(&buffer, NULL);
memset(buffer.bits, (i&7) * 0x20, buffer.stride * buffer.height * 4);
mSurface->unlockAndPost();
mGlConsumer->updateTexImage();
GLfloat vertices[][2] = { {i*16.0f, 0}, {(i+1)*16.0f, 0}, {(i+1)*16.0f, 16.0f}, {i*16.0f, 16.0f} };
glVertexPointer(2, GL_FLOAT, 0, vertices);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
}
for (int i=0 ; i<8 ; i++) {
EXPECT_TRUE(checkPixel(i*16 + 8, 8, i*16, i*16, i*16, i*16, 0));
}
}
class SurfaceTextureGLTest : public GLTest {
protected:
enum { TEX_ID = 123 };
virtual void SetUp() {
GLTest::SetUp();
sp<BufferQueue> bq = new BufferQueue();
mST = new GLConsumer(bq, TEX_ID);
mSTC = new Surface(mST->getBufferQueue());
mANW = mSTC;
mTextureRenderer = new TextureRenderer(TEX_ID, mST);
ASSERT_NO_FATAL_FAILURE(mTextureRenderer->SetUp());
mFW = new FrameWaiter;
mST->setFrameAvailableListener(mFW);
}
virtual void TearDown() {
mANW.clear();
mSTC.clear();
mST.clear();
GLTest::TearDown();
}
void drawTexture() {
mTextureRenderer->drawTexture();
}
class TextureRenderer: public RefBase {
public:
TextureRenderer(GLuint texName, const sp<GLConsumer>& st):
mTexName(texName),
mST(st) {
}
void SetUp() {
const char vsrc[] =
"attribute vec4 vPosition;\n"
"varying vec2 texCoords;\n"
"uniform mat4 texMatrix;\n"
"void main() {\n"
" vec2 vTexCoords = 0.5 * (vPosition.xy + vec2(1.0, 1.0));\n"
" texCoords = (texMatrix * vec4(vTexCoords, 0.0, 1.0)).xy;\n"
" gl_Position = vPosition;\n"
"}\n";
const char fsrc[] =
"#extension GL_OES_EGL_image_external : require\n"
"precision mediump float;\n"
"uniform samplerExternalOES texSampler;\n"
"varying vec2 texCoords;\n"
"void main() {\n"
" gl_FragColor = texture2D(texSampler, texCoords);\n"
"}\n";
{
SCOPED_TRACE("creating shader program");
ASSERT_NO_FATAL_FAILURE(createProgram(vsrc, fsrc, &mPgm));
}
mPositionHandle = glGetAttribLocation(mPgm, "vPosition");
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
ASSERT_NE(-1, mPositionHandle);
mTexSamplerHandle = glGetUniformLocation(mPgm, "texSampler");
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
ASSERT_NE(-1, mTexSamplerHandle);
mTexMatrixHandle = glGetUniformLocation(mPgm, "texMatrix");
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
ASSERT_NE(-1, mTexMatrixHandle);
}
// drawTexture draws the GLConsumer over the entire GL viewport.
void drawTexture() {
static const GLfloat triangleVertices[] = {
-1.0f, 1.0f,
-1.0f, -1.0f,
1.0f, -1.0f,
1.0f, 1.0f,
};
glVertexAttribPointer(mPositionHandle, 2, GL_FLOAT, GL_FALSE, 0,
triangleVertices);
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
glEnableVertexAttribArray(mPositionHandle);
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
glUseProgram(mPgm);
glUniform1i(mTexSamplerHandle, 0);
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
glBindTexture(GL_TEXTURE_EXTERNAL_OES, mTexName);
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
// XXX: These calls are not needed for GL_TEXTURE_EXTERNAL_OES as
// they're setting the defautls for that target, but when hacking
// things to use GL_TEXTURE_2D they are needed to achieve the same
// behavior.
glTexParameteri(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_MIN_FILTER,
GL_LINEAR);
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
glTexParameteri(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_MAG_FILTER,
GL_LINEAR);
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
glTexParameteri(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_WRAP_S,
GL_CLAMP_TO_EDGE);
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
glTexParameteri(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_WRAP_T,
GL_CLAMP_TO_EDGE);
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
GLfloat texMatrix[16];
mST->getTransformMatrix(texMatrix);
glUniformMatrix4fv(mTexMatrixHandle, 1, GL_FALSE, texMatrix);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
}
GLuint mTexName;
sp<GLConsumer> mST;
GLuint mPgm;
GLint mPositionHandle;
GLint mTexSamplerHandle;
GLint mTexMatrixHandle;
};
class FrameWaiter : public GLConsumer::FrameAvailableListener {
public:
FrameWaiter():
mPendingFrames(0) {
}
void waitForFrame() {
Mutex::Autolock lock(mMutex);
while (mPendingFrames == 0) {
mCondition.wait(mMutex);
}
mPendingFrames--;
}
virtual void onFrameAvailable() {
Mutex::Autolock lock(mMutex);
mPendingFrames++;
mCondition.signal();
}
int mPendingFrames;
Mutex mMutex;
Condition mCondition;
};
// Note that GLConsumer will lose the notifications
// onBuffersReleased and onFrameAvailable as there is currently
// no way to forward the events. This DisconnectWaiter will not let the
// disconnect finish until finishDisconnect() is called. It will
// also block until a disconnect is called
class DisconnectWaiter : public BufferQueue::ConsumerListener {
public:
DisconnectWaiter () :
mWaitForDisconnect(false),
mPendingFrames(0) {
}
void waitForFrame() {
Mutex::Autolock lock(mMutex);
while (mPendingFrames == 0) {
mFrameCondition.wait(mMutex);
}
mPendingFrames--;
}
virtual void onFrameAvailable() {
Mutex::Autolock lock(mMutex);
mPendingFrames++;
mFrameCondition.signal();
}
virtual void onBuffersReleased() {
Mutex::Autolock lock(mMutex);
while (!mWaitForDisconnect) {
mDisconnectCondition.wait(mMutex);
}
}
void finishDisconnect() {
Mutex::Autolock lock(mMutex);
mWaitForDisconnect = true;
mDisconnectCondition.signal();
}
private:
Mutex mMutex;
bool mWaitForDisconnect;
Condition mDisconnectCondition;
int mPendingFrames;
Condition mFrameCondition;
};
sp<GLConsumer> mST;
sp<Surface> mSTC;
sp<ANativeWindow> mANW;
sp<TextureRenderer> mTextureRenderer;
sp<FrameWaiter> mFW;
};
// Fill a YV12 buffer with a multi-colored checkerboard pattern
void fillYV12Buffer(uint8_t* buf, int w, int h, int stride) {
const int blockWidth = w > 16 ? w / 16 : 1;
const int blockHeight = h > 16 ? h / 16 : 1;
const int yuvTexOffsetY = 0;
int yuvTexStrideY = stride;
int yuvTexOffsetV = yuvTexStrideY * h;
int yuvTexStrideV = (yuvTexStrideY/2 + 0xf) & ~0xf;
int yuvTexOffsetU = yuvTexOffsetV + yuvTexStrideV * h/2;
int yuvTexStrideU = yuvTexStrideV;
for (int x = 0; x < w; x++) {
for (int y = 0; y < h; y++) {
int parityX = (x / blockWidth) & 1;
int parityY = (y / blockHeight) & 1;
unsigned char intensity = (parityX ^ parityY) ? 63 : 191;
buf[yuvTexOffsetY + (y * yuvTexStrideY) + x] = intensity;
if (x < w / 2 && y < h / 2) {
buf[yuvTexOffsetU + (y * yuvTexStrideU) + x] = intensity;
if (x * 2 < w / 2 && y * 2 < h / 2) {
buf[yuvTexOffsetV + (y*2 * yuvTexStrideV) + x*2 + 0] =
buf[yuvTexOffsetV + (y*2 * yuvTexStrideV) + x*2 + 1] =
buf[yuvTexOffsetV + ((y*2+1) * yuvTexStrideV) + x*2 + 0] =
buf[yuvTexOffsetV + ((y*2+1) * yuvTexStrideV) + x*2 + 1] =
intensity;
}
}
}
}
}
// Fill a YV12 buffer with red outside a given rectangle and green inside it.
void fillYV12BufferRect(uint8_t* buf, int w, int h, int stride,
const android_native_rect_t& rect) {
const int yuvTexOffsetY = 0;
int yuvTexStrideY = stride;
int yuvTexOffsetV = yuvTexStrideY * h;
int yuvTexStrideV = (yuvTexStrideY/2 + 0xf) & ~0xf;
int yuvTexOffsetU = yuvTexOffsetV + yuvTexStrideV * h/2;
int yuvTexStrideU = yuvTexStrideV;
for (int x = 0; x < w; x++) {
for (int y = 0; y < h; y++) {
bool inside = rect.left <= x && x < rect.right &&
rect.top <= y && y < rect.bottom;
buf[yuvTexOffsetY + (y * yuvTexStrideY) + x] = inside ? 240 : 64;
if (x < w / 2 && y < h / 2) {
bool inside = rect.left <= 2*x && 2*x < rect.right &&
rect.top <= 2*y && 2*y < rect.bottom;
buf[yuvTexOffsetU + (y * yuvTexStrideU) + x] = 16;
buf[yuvTexOffsetV + (y * yuvTexStrideV) + x] =
inside ? 16 : 255;
}
}
}
}
void fillRGBA8Buffer(uint8_t* buf, int w, int h, int stride) {
const size_t PIXEL_SIZE = 4;
for (int x = 0; x < w; x++) {
for (int y = 0; y < h; y++) {
off_t offset = (y * stride + x) * PIXEL_SIZE;
for (int c = 0; c < 4; c++) {
int parityX = (x / (1 << (c+2))) & 1;
int parityY = (y / (1 << (c+2))) & 1;
buf[offset + c] = (parityX ^ parityY) ? 231 : 35;
}
}
}
}
void fillRGBA8BufferSolid(uint8_t* buf, int w, int h, int stride, uint8_t r,
uint8_t g, uint8_t b, uint8_t a) {
const size_t PIXEL_SIZE = 4;
for (int y = 0; y < h; y++) {
for (int x = 0; x < h; x++) {
off_t offset = (y * stride + x) * PIXEL_SIZE;
buf[offset + 0] = r;
buf[offset + 1] = g;
buf[offset + 2] = b;
buf[offset + 3] = a;
}
}
}
// Produce a single RGBA8 frame by filling a buffer with a checkerboard pattern
// using the CPU. This assumes that the ANativeWindow is already configured to
// allow this to be done (e.g. the format is set to RGBA8).
//
// Calls to this function should be wrapped in an ASSERT_NO_FATAL_FAILURE().
void produceOneRGBA8Frame(const sp<ANativeWindow>& anw) {
android_native_buffer_t* anb;
ASSERT_EQ(NO_ERROR, native_window_dequeue_buffer_and_wait(anw.get(),
&anb));
ASSERT_TRUE(anb != NULL);
sp<GraphicBuffer> buf(new GraphicBuffer(anb, false));
uint8_t* img = NULL;
ASSERT_EQ(NO_ERROR, buf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN,
(void**)(&img)));
fillRGBA8Buffer(img, buf->getWidth(), buf->getHeight(), buf->getStride());
ASSERT_EQ(NO_ERROR, buf->unlock());
ASSERT_EQ(NO_ERROR, anw->queueBuffer(anw.get(), buf->getNativeBuffer(),
-1));
}
TEST_F(SurfaceTextureGLTest, TexturingFromCpuFilledYV12BufferNpot) {
const int texWidth = 64;
const int texHeight = 66;
ASSERT_EQ(NO_ERROR, native_window_set_buffers_geometry(mANW.get(),
texWidth, texHeight, HAL_PIXEL_FORMAT_YV12));
ASSERT_EQ(NO_ERROR, native_window_set_usage(mANW.get(),
GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN));
ANativeWindowBuffer* anb;
ASSERT_EQ(NO_ERROR, native_window_dequeue_buffer_and_wait(mANW.get(),
&anb));
ASSERT_TRUE(anb != NULL);
sp<GraphicBuffer> buf(new GraphicBuffer(anb, false));
// Fill the buffer with the a checkerboard pattern
uint8_t* img = NULL;
buf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&img));
fillYV12Buffer(img, texWidth, texHeight, buf->getStride());
buf->unlock();
ASSERT_EQ(NO_ERROR, mANW->queueBuffer(mANW.get(), buf->getNativeBuffer(),
-1));
ASSERT_EQ(NO_ERROR, mST->updateTexImage());
glClearColor(0.2, 0.2, 0.2, 0.2);
glClear(GL_COLOR_BUFFER_BIT);
glViewport(0, 0, texWidth, texHeight);
drawTexture();
EXPECT_TRUE(checkPixel( 0, 0, 255, 127, 255, 255, 3));
EXPECT_TRUE(checkPixel(63, 0, 0, 133, 0, 255, 3));
EXPECT_TRUE(checkPixel(63, 65, 0, 133, 0, 255, 3));
EXPECT_TRUE(checkPixel( 0, 65, 255, 127, 255, 255, 3));
EXPECT_TRUE(checkPixel(22, 44, 255, 127, 255, 255, 3));
EXPECT_TRUE(checkPixel(45, 52, 255, 127, 255, 255, 3));
EXPECT_TRUE(checkPixel(52, 51, 98, 255, 73, 255, 3));
EXPECT_TRUE(checkPixel( 7, 31, 155, 0, 118, 255, 3));
EXPECT_TRUE(checkPixel(31, 9, 107, 24, 87, 255, 3));
EXPECT_TRUE(checkPixel(29, 35, 255, 127, 255, 255, 3));
EXPECT_TRUE(checkPixel(36, 22, 155, 29, 0, 255, 3));
}
TEST_F(SurfaceTextureGLTest, TexturingFromCpuFilledYV12BufferPow2) {
const int texWidth = 64;
const int texHeight = 64;
ASSERT_EQ(NO_ERROR, native_window_set_buffers_geometry(mANW.get(),
texWidth, texHeight, HAL_PIXEL_FORMAT_YV12));
ASSERT_EQ(NO_ERROR, native_window_set_usage(mANW.get(),
GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN));
ANativeWindowBuffer* anb;
ASSERT_EQ(NO_ERROR, native_window_dequeue_buffer_and_wait(mANW.get(),
&anb));
ASSERT_TRUE(anb != NULL);
sp<GraphicBuffer> buf(new GraphicBuffer(anb, false));
// Fill the buffer with the a checkerboard pattern
uint8_t* img = NULL;
buf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&img));
fillYV12Buffer(img, texWidth, texHeight, buf->getStride());
buf->unlock();
ASSERT_EQ(NO_ERROR, mANW->queueBuffer(mANW.get(), buf->getNativeBuffer(),
-1));
ASSERT_EQ(NO_ERROR, mST->updateTexImage());
glClearColor(0.2, 0.2, 0.2, 0.2);
glClear(GL_COLOR_BUFFER_BIT);
glViewport(0, 0, texWidth, texHeight);
drawTexture();
EXPECT_TRUE(checkPixel( 0, 0, 0, 133, 0, 255));
EXPECT_TRUE(checkPixel(63, 0, 255, 127, 255, 255));
EXPECT_TRUE(checkPixel(63, 63, 0, 133, 0, 255));
EXPECT_TRUE(checkPixel( 0, 63, 255, 127, 255, 255));
EXPECT_TRUE(checkPixel(22, 19, 100, 255, 74, 255));
EXPECT_TRUE(checkPixel(45, 11, 100, 255, 74, 255));
EXPECT_TRUE(checkPixel(52, 12, 155, 0, 181, 255));
EXPECT_TRUE(checkPixel( 7, 32, 150, 237, 170, 255));
EXPECT_TRUE(checkPixel(31, 54, 0, 71, 117, 255));
EXPECT_TRUE(checkPixel(29, 28, 0, 133, 0, 255));
EXPECT_TRUE(checkPixel(36, 41, 100, 232, 255, 255));
}
TEST_F(SurfaceTextureGLTest, TexturingFromCpuFilledYV12BufferWithCrop) {
const int texWidth = 64;
const int texHeight = 66;
ASSERT_EQ(NO_ERROR, native_window_set_buffers_geometry(mANW.get(),
texWidth, texHeight, HAL_PIXEL_FORMAT_YV12));
ASSERT_EQ(NO_ERROR, native_window_set_usage(mANW.get(),
GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN));
android_native_rect_t crops[] = {
{4, 6, 22, 36},
{0, 6, 22, 36},
{4, 0, 22, 36},
{4, 6, texWidth, 36},
{4, 6, 22, texHeight},
};
for (int i = 0; i < 5; i++) {
const android_native_rect_t& crop(crops[i]);
SCOPED_TRACE(String8::format("rect{ l: %d t: %d r: %d b: %d }",
crop.left, crop.top, crop.right, crop.bottom).string());
ASSERT_EQ(NO_ERROR, native_window_set_crop(mANW.get(), &crop));
ANativeWindowBuffer* anb;
ASSERT_EQ(NO_ERROR, native_window_dequeue_buffer_and_wait(mANW.get(),
&anb));
ASSERT_TRUE(anb != NULL);
sp<GraphicBuffer> buf(new GraphicBuffer(anb, false));
uint8_t* img = NULL;
buf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&img));
fillYV12BufferRect(img, texWidth, texHeight, buf->getStride(), crop);
buf->unlock();
ASSERT_EQ(NO_ERROR, mANW->queueBuffer(mANW.get(),
buf->getNativeBuffer(), -1));
ASSERT_EQ(NO_ERROR, mST->updateTexImage());
glClearColor(0.2, 0.2, 0.2, 0.2);
glClear(GL_COLOR_BUFFER_BIT);
glViewport(0, 0, 64, 64);
drawTexture();
EXPECT_TRUE(checkPixel( 0, 0, 82, 255, 35, 255));
EXPECT_TRUE(checkPixel(63, 0, 82, 255, 35, 255));
EXPECT_TRUE(checkPixel(63, 63, 82, 255, 35, 255));
EXPECT_TRUE(checkPixel( 0, 63, 82, 255, 35, 255));
EXPECT_TRUE(checkPixel(25, 14, 82, 255, 35, 255));
EXPECT_TRUE(checkPixel(35, 31, 82, 255, 35, 255));
EXPECT_TRUE(checkPixel(57, 6, 82, 255, 35, 255));
EXPECT_TRUE(checkPixel( 5, 42, 82, 255, 35, 255));
EXPECT_TRUE(checkPixel(32, 33, 82, 255, 35, 255));
EXPECT_TRUE(checkPixel(16, 26, 82, 255, 35, 255));
EXPECT_TRUE(checkPixel(46, 51, 82, 255, 35, 255));
}
}
// This test is intended to catch synchronization bugs between the CPU-written
// and GPU-read buffers.
TEST_F(SurfaceTextureGLTest, TexturingFromCpuFilledYV12BuffersRepeatedly) {
enum { texWidth = 16 };
enum { texHeight = 16 };
enum { numFrames = 1024 };
ASSERT_EQ(NO_ERROR, mST->setDefaultMaxBufferCount(2));
ASSERT_EQ(NO_ERROR, native_window_set_buffers_geometry(mANW.get(),
texWidth, texHeight, HAL_PIXEL_FORMAT_YV12));
ASSERT_EQ(NO_ERROR, native_window_set_usage(mANW.get(),
GRALLOC_USAGE_SW_WRITE_OFTEN));
struct TestPixel {
int x;
int y;
};
const TestPixel testPixels[] = {
{ 4, 11 },
{ 12, 14 },
{ 7, 2 },
};
enum {numTestPixels = sizeof(testPixels) / sizeof(testPixels[0])};
class ProducerThread : public Thread {
public:
ProducerThread(const sp<ANativeWindow>& anw,
const TestPixel* testPixels):
mANW(anw),
mTestPixels(testPixels) {
}
virtual ~ProducerThread() {
}
virtual bool threadLoop() {
for (int i = 0; i < numFrames; i++) {
ANativeWindowBuffer* anb;
if (native_window_dequeue_buffer_and_wait(mANW.get(),
&anb) != NO_ERROR) {
return false;
}
if (anb == NULL) {
return false;
}
sp<GraphicBuffer> buf(new GraphicBuffer(anb, false));
const int yuvTexOffsetY = 0;
int stride = buf->getStride();
int yuvTexStrideY = stride;
int yuvTexOffsetV = yuvTexStrideY * texHeight;
int yuvTexStrideV = (yuvTexStrideY/2 + 0xf) & ~0xf;
int yuvTexOffsetU = yuvTexOffsetV + yuvTexStrideV * texHeight/2;
int yuvTexStrideU = yuvTexStrideV;
uint8_t* img = NULL;
buf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&img));
// Gray out all the test pixels first, so we're more likely to
// see a failure if GL is still texturing from the buffer we
// just dequeued.
for (int j = 0; j < numTestPixels; j++) {
int x = mTestPixels[j].x;
int y = mTestPixels[j].y;
uint8_t value = 128;
img[y*stride + x] = value;
}
// Fill the buffer with gray.
for (int y = 0; y < texHeight; y++) {
for (int x = 0; x < texWidth; x++) {
img[yuvTexOffsetY + y*yuvTexStrideY + x] = 128;
img[yuvTexOffsetU + (y/2)*yuvTexStrideU + x/2] = 128;
img[yuvTexOffsetV + (y/2)*yuvTexStrideV + x/2] = 128;
}
}
// Set the test pixels to either white or black.
for (int j = 0; j < numTestPixels; j++) {
int x = mTestPixels[j].x;
int y = mTestPixels[j].y;
uint8_t value = 0;
if (j == (i % numTestPixels)) {
value = 255;
}
img[y*stride + x] = value;
}
buf->unlock();
if (mANW->queueBuffer(mANW.get(), buf->getNativeBuffer(), -1)
!= NO_ERROR) {
return false;
}
}
return false;
}
sp<ANativeWindow> mANW;
const TestPixel* mTestPixels;
};
sp<Thread> pt(new ProducerThread(mANW, testPixels));
pt->run();
glViewport(0, 0, texWidth, texHeight);
glClearColor(0.2, 0.2, 0.2, 0.2);
glClear(GL_COLOR_BUFFER_BIT);
// We wait for the first two frames up front so that the producer will be
// likely to dequeue the buffer that's currently being textured from.
mFW->waitForFrame();
mFW->waitForFrame();
for (int i = 0; i < numFrames; i++) {
SCOPED_TRACE(String8::format("frame %d", i).string());
// We must wait for each frame to come in because if we ever do an
// updateTexImage call that doesn't consume a newly available buffer
// then the producer and consumer will get out of sync, which will cause
// a deadlock.
if (i > 1) {
mFW->waitForFrame();
}
ASSERT_EQ(NO_ERROR, mST->updateTexImage());
drawTexture();
for (int j = 0; j < numTestPixels; j++) {
int x = testPixels[j].x;
int y = testPixels[j].y;
uint8_t value = 0;
if (j == (i % numTestPixels)) {
// We must y-invert the texture coords
EXPECT_TRUE(checkPixel(x, texHeight-y-1, 255, 255, 255, 255));
} else {
// We must y-invert the texture coords
EXPECT_TRUE(checkPixel(x, texHeight-y-1, 0, 0, 0, 255));
}
}
}
pt->requestExitAndWait();
}
TEST_F(SurfaceTextureGLTest, TexturingFromCpuFilledRGBABufferNpot) {
const int texWidth = 64;
const int texHeight = 66;
ASSERT_EQ(NO_ERROR, native_window_set_buffers_geometry(mANW.get(),
texWidth, texHeight, HAL_PIXEL_FORMAT_RGBA_8888));
ASSERT_EQ(NO_ERROR, native_window_set_usage(mANW.get(),
GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN));
ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));
ASSERT_EQ(NO_ERROR, mST->updateTexImage());
glClearColor(0.2, 0.2, 0.2, 0.2);
glClear(GL_COLOR_BUFFER_BIT);
glViewport(0, 0, texWidth, texHeight);
drawTexture();
EXPECT_TRUE(checkPixel( 0, 0, 35, 35, 35, 35));
EXPECT_TRUE(checkPixel(63, 0, 231, 231, 231, 231));
EXPECT_TRUE(checkPixel(63, 65, 231, 231, 231, 231));
EXPECT_TRUE(checkPixel( 0, 65, 35, 35, 35, 35));
EXPECT_TRUE(checkPixel(15, 10, 35, 231, 231, 231));
EXPECT_TRUE(checkPixel(23, 65, 231, 35, 231, 35));
EXPECT_TRUE(checkPixel(19, 40, 35, 231, 35, 35));
EXPECT_TRUE(checkPixel(38, 30, 231, 35, 35, 35));
EXPECT_TRUE(checkPixel(42, 54, 35, 35, 35, 231));
EXPECT_TRUE(checkPixel(37, 34, 35, 231, 231, 231));
EXPECT_TRUE(checkPixel(31, 8, 231, 35, 35, 231));
EXPECT_TRUE(checkPixel(37, 47, 231, 35, 231, 231));
EXPECT_TRUE(checkPixel(25, 38, 35, 35, 35, 35));
EXPECT_TRUE(checkPixel(49, 6, 35, 231, 35, 35));
EXPECT_TRUE(checkPixel(54, 50, 35, 231, 231, 231));
EXPECT_TRUE(checkPixel(27, 26, 231, 231, 231, 231));
EXPECT_TRUE(checkPixel(10, 6, 35, 35, 231, 231));
EXPECT_TRUE(checkPixel(29, 4, 35, 35, 35, 231));
EXPECT_TRUE(checkPixel(55, 28, 35, 35, 231, 35));
EXPECT_TRUE(checkPixel(58, 55, 35, 35, 231, 231));
}
TEST_F(SurfaceTextureGLTest, TexturingFromCpuFilledRGBABufferPow2) {
const int texWidth = 64;
const int texHeight = 64;
ASSERT_EQ(NO_ERROR, native_window_set_buffers_geometry(mANW.get(),
texWidth, texHeight, HAL_PIXEL_FORMAT_RGBA_8888));
ASSERT_EQ(NO_ERROR, native_window_set_usage(mANW.get(),
GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN));
ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));
ASSERT_EQ(NO_ERROR, mST->updateTexImage());
glClearColor(0.2, 0.2, 0.2, 0.2);
glClear(GL_COLOR_BUFFER_BIT);
glViewport(0, 0, texWidth, texHeight);
drawTexture();
EXPECT_TRUE(checkPixel( 0, 0, 231, 231, 231, 231));
EXPECT_TRUE(checkPixel(63, 0, 35, 35, 35, 35));
EXPECT_TRUE(checkPixel(63, 63, 231, 231, 231, 231));
EXPECT_TRUE(checkPixel( 0, 63, 35, 35, 35, 35));
EXPECT_TRUE(checkPixel(12, 46, 231, 231, 231, 35));
EXPECT_TRUE(checkPixel(16, 1, 231, 231, 35, 231));
EXPECT_TRUE(checkPixel(21, 12, 231, 35, 35, 231));
EXPECT_TRUE(checkPixel(26, 51, 231, 35, 231, 35));
EXPECT_TRUE(checkPixel( 5, 32, 35, 231, 231, 35));
EXPECT_TRUE(checkPixel(13, 8, 35, 231, 231, 231));
EXPECT_TRUE(checkPixel(46, 3, 35, 35, 231, 35));
EXPECT_TRUE(checkPixel(30, 33, 35, 35, 35, 35));
EXPECT_TRUE(checkPixel( 6, 52, 231, 231, 35, 35));
EXPECT_TRUE(checkPixel(55, 33, 35, 231, 35, 231));
EXPECT_TRUE(checkPixel(16, 29, 35, 35, 231, 231));
EXPECT_TRUE(checkPixel( 1, 30, 35, 35, 35, 231));
EXPECT_TRUE(checkPixel(41, 37, 35, 35, 231, 231));
EXPECT_TRUE(checkPixel(46, 29, 231, 231, 35, 35));
EXPECT_TRUE(checkPixel(15, 25, 35, 231, 35, 231));
EXPECT_TRUE(checkPixel( 3, 52, 35, 231, 35, 35));
}
// Tests if GLConsumer and BufferQueue are robust enough
// to handle a special case where updateTexImage is called
// in the middle of disconnect. This ordering is enforced
// by blocking in the disconnect callback.
TEST_F(SurfaceTextureGLTest, DisconnectStressTest) {
class ProducerThread : public Thread {
public:
ProducerThread(const sp<ANativeWindow>& anw):
mANW(anw) {
}
virtual ~ProducerThread() {
}
virtual bool threadLoop() {
ANativeWindowBuffer* anb;
native_window_api_connect(mANW.get(), NATIVE_WINDOW_API_EGL);
for (int numFrames =0 ; numFrames < 2; numFrames ++) {
if (native_window_dequeue_buffer_and_wait(mANW.get(),
&anb) != NO_ERROR) {
return false;
}
if (anb == NULL) {
return false;
}
if (mANW->queueBuffer(mANW.get(), anb, -1)
!= NO_ERROR) {
return false;
}
}
native_window_api_disconnect(mANW.get(), NATIVE_WINDOW_API_EGL);
return false;
}
private:
sp<ANativeWindow> mANW;
};
sp<DisconnectWaiter> dw(new DisconnectWaiter());
mST->getBufferQueue()->consumerConnect(dw, false);
sp<Thread> pt(new ProducerThread(mANW));
pt->run();
// eat a frame so GLConsumer will own an at least one slot
dw->waitForFrame();
EXPECT_EQ(OK,mST->updateTexImage());
dw->waitForFrame();
// Could fail here as GLConsumer thinks it still owns the slot
// but bufferQueue has released all slots
EXPECT_EQ(OK,mST->updateTexImage());
dw->finishDisconnect();
}
// This test ensures that the GLConsumer clears the mCurrentTexture
// when it is disconnected and reconnected. Otherwise it will
// attempt to release a buffer that it does not owned
TEST_F(SurfaceTextureGLTest, DisconnectClearsCurrentTexture) {
ASSERT_EQ(OK, native_window_api_connect(mANW.get(),
NATIVE_WINDOW_API_EGL));
ANativeWindowBuffer *anb;
EXPECT_EQ (OK, native_window_dequeue_buffer_and_wait(mANW.get(), &anb));
EXPECT_EQ(OK, mANW->queueBuffer(mANW.get(), anb, -1));
EXPECT_EQ (OK, native_window_dequeue_buffer_and_wait(mANW.get(), &anb));
EXPECT_EQ(OK, mANW->queueBuffer(mANW.get(), anb, -1));
EXPECT_EQ(OK,mST->updateTexImage());
EXPECT_EQ(OK,mST->updateTexImage());
ASSERT_EQ(OK, native_window_api_disconnect(mANW.get(),
NATIVE_WINDOW_API_EGL));
ASSERT_EQ(OK, native_window_api_connect(mANW.get(),
NATIVE_WINDOW_API_EGL));
EXPECT_EQ(OK, native_window_dequeue_buffer_and_wait(mANW.get(), &anb));
EXPECT_EQ(OK, mANW->queueBuffer(mANW.get(), anb, -1));
// Will fail here if mCurrentTexture is not cleared properly
mFW->waitForFrame();
EXPECT_EQ(OK,mST->updateTexImage());
ASSERT_EQ(OK, native_window_api_disconnect(mANW.get(),
NATIVE_WINDOW_API_EGL));
}
TEST_F(SurfaceTextureGLTest, ScaleToWindowMode) {
ASSERT_EQ(OK, native_window_set_scaling_mode(mANW.get(),
NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW));
// The producer image size
ASSERT_EQ(OK, native_window_set_buffers_dimensions(mANW.get(), 512, 512));
// The consumer image size (16 x 9) ratio
mST->setDefaultBufferSize(1280, 720);
ASSERT_EQ(OK, native_window_api_connect(mANW.get(),
NATIVE_WINDOW_API_CPU));
ANativeWindowBuffer *anb;
android_native_rect_t odd = {23, 78, 123, 477};
ASSERT_EQ(OK, native_window_set_crop(mANW.get(), &odd));
EXPECT_EQ (OK, native_window_dequeue_buffer_and_wait(mANW.get(), &anb));
EXPECT_EQ(OK, mANW->queueBuffer(mANW.get(), anb, -1));
mFW->waitForFrame();
EXPECT_EQ(OK, mST->updateTexImage());
Rect r = mST->getCurrentCrop();
assertRectEq(Rect(23, 78, 123, 477), r);
ASSERT_EQ(OK, native_window_api_disconnect(mANW.get(),
NATIVE_WINDOW_API_CPU));
}
// This test ensures the scaling mode does the right thing
// ie NATIVE_WINDOW_SCALING_MODE_CROP should crop
// the image such that it has the same aspect ratio as the
// default buffer size
TEST_F(SurfaceTextureGLTest, CroppedScalingMode) {
ASSERT_EQ(OK, native_window_set_scaling_mode(mANW.get(),
NATIVE_WINDOW_SCALING_MODE_SCALE_CROP));
// The producer image size
ASSERT_EQ(OK, native_window_set_buffers_dimensions(mANW.get(), 512, 512));
// The consumer image size (16 x 9) ratio
mST->setDefaultBufferSize(1280, 720);
native_window_api_connect(mANW.get(), NATIVE_WINDOW_API_CPU);
ANativeWindowBuffer *anb;
// The crop is in the shape of (320, 180) === 16 x 9
android_native_rect_t standard = {10, 20, 330, 200};
ASSERT_EQ(OK, native_window_set_crop(mANW.get(), &standard));
EXPECT_EQ (OK, native_window_dequeue_buffer_and_wait(mANW.get(), &anb));
EXPECT_EQ(OK, mANW->queueBuffer(mANW.get(), anb, -1));
mFW->waitForFrame();
EXPECT_EQ(OK, mST->updateTexImage());
Rect r = mST->getCurrentCrop();
// crop should be the same as crop (same aspect ratio)
assertRectEq(Rect(10, 20, 330, 200), r);
// make this wider then desired aspect 239 x 100 (2.39:1)
android_native_rect_t wide = {20, 30, 259, 130};
ASSERT_EQ(OK, native_window_set_crop(mANW.get(), &wide));
EXPECT_EQ (OK, native_window_dequeue_buffer_and_wait(mANW.get(), &anb));
EXPECT_EQ(OK, mANW->queueBuffer(mANW.get(), anb, -1));
mFW->waitForFrame();
EXPECT_EQ(OK, mST->updateTexImage());
r = mST->getCurrentCrop();
// crop should be the same height, but have cropped left and right borders
// offset is 30.6 px L+, R-
assertRectEq(Rect(51, 30, 228, 130), r);
// This image is taller then desired aspect 400 x 300 (4:3)
android_native_rect_t narrow = {0, 0, 400, 300};
ASSERT_EQ(OK, native_window_set_crop(mANW.get(), &narrow));
EXPECT_EQ (OK, native_window_dequeue_buffer_and_wait(mANW.get(), &anb));
EXPECT_EQ(OK, mANW->queueBuffer(mANW.get(), anb, -1));
mFW->waitForFrame();
EXPECT_EQ(OK, mST->updateTexImage());
r = mST->getCurrentCrop();
// crop should be the same width, but have cropped top and bottom borders
// offset is 37.5 px
assertRectEq(Rect(0, 37, 400, 262), r);
native_window_api_disconnect(mANW.get(), NATIVE_WINDOW_API_CPU);
}
TEST_F(SurfaceTextureGLTest, AbandonUnblocksDequeueBuffer) {
class ProducerThread : public Thread {
public:
ProducerThread(const sp<ANativeWindow>& anw):
mANW(anw),
mDequeueError(NO_ERROR) {
}
virtual ~ProducerThread() {
}
virtual bool threadLoop() {
Mutex::Autolock lock(mMutex);
ANativeWindowBuffer* anb;
// Frame 1
if (native_window_dequeue_buffer_and_wait(mANW.get(),
&anb) != NO_ERROR) {
return false;
}
if (anb == NULL) {
return false;
}
if (mANW->queueBuffer(mANW.get(), anb, -1)
!= NO_ERROR) {
return false;
}
// Frame 2
if (native_window_dequeue_buffer_and_wait(mANW.get(),
&anb) != NO_ERROR) {
return false;
}
if (anb == NULL) {
return false;
}
if (mANW->queueBuffer(mANW.get(), anb, -1)
!= NO_ERROR) {
return false;
}
// Frame 3 - error expected
mDequeueError = native_window_dequeue_buffer_and_wait(mANW.get(),
&anb);
return false;
}
status_t getDequeueError() {
Mutex::Autolock lock(mMutex);
return mDequeueError;
}
private:
sp<ANativeWindow> mANW;
status_t mDequeueError;
Mutex mMutex;
};
ASSERT_EQ(OK, mST->setDefaultMaxBufferCount(2));
sp<Thread> pt(new ProducerThread(mANW));
pt->run();
mFW->waitForFrame();
mFW->waitForFrame();
// Sleep for 100ms to allow the producer thread's dequeueBuffer call to
// block waiting for a buffer to become available.
usleep(100000);
mST->abandon();
pt->requestExitAndWait();
ASSERT_EQ(NO_INIT,
reinterpret_cast<ProducerThread*>(pt.get())->getDequeueError());
}
TEST_F(SurfaceTextureGLTest, InvalidWidthOrHeightFails) {
int texHeight = 16;
ANativeWindowBuffer* anb;
GLint maxTextureSize;
glGetIntegerv(GL_MAX_TEXTURE_SIZE, &maxTextureSize);
// make sure it works with small textures
mST->setDefaultBufferSize(16, texHeight);
EXPECT_EQ(NO_ERROR, native_window_dequeue_buffer_and_wait(mANW.get(),
&anb));
EXPECT_EQ(16, anb->width);
EXPECT_EQ(texHeight, anb->height);
EXPECT_EQ(NO_ERROR, mANW->queueBuffer(mANW.get(), anb, -1));
EXPECT_EQ(NO_ERROR, mST->updateTexImage());
// make sure it works with GL_MAX_TEXTURE_SIZE
mST->setDefaultBufferSize(maxTextureSize, texHeight);
EXPECT_EQ(NO_ERROR, native_window_dequeue_buffer_and_wait(mANW.get(),
&anb));
EXPECT_EQ(maxTextureSize, anb->width);
EXPECT_EQ(texHeight, anb->height);
EXPECT_EQ(NO_ERROR, mANW->queueBuffer(mANW.get(), anb, -1));
EXPECT_EQ(NO_ERROR, mST->updateTexImage());
// make sure it fails with GL_MAX_TEXTURE_SIZE+1
mST->setDefaultBufferSize(maxTextureSize+1, texHeight);
EXPECT_EQ(NO_ERROR, native_window_dequeue_buffer_and_wait(mANW.get(),
&anb));
EXPECT_EQ(maxTextureSize+1, anb->width);
EXPECT_EQ(texHeight, anb->height);
EXPECT_EQ(NO_ERROR, mANW->queueBuffer(mANW.get(), anb, -1));
ASSERT_NE(NO_ERROR, mST->updateTexImage());
}
/*
* This test fixture is for testing GL -> GL texture streaming. It creates an
* EGLSurface and an EGLContext for the image producer to use.
*/
class SurfaceTextureGLToGLTest : public SurfaceTextureGLTest {
protected:
SurfaceTextureGLToGLTest():
mProducerEglSurface(EGL_NO_SURFACE),
mProducerEglContext(EGL_NO_CONTEXT) {
}
virtual void SetUp() {
SurfaceTextureGLTest::SetUp();
mProducerEglSurface = eglCreateWindowSurface(mEglDisplay, mGlConfig,
mANW.get(), NULL);
ASSERT_EQ(EGL_SUCCESS, eglGetError());
ASSERT_NE(EGL_NO_SURFACE, mProducerEglSurface);
mProducerEglContext = eglCreateContext(mEglDisplay, mGlConfig,
EGL_NO_CONTEXT, getContextAttribs());
ASSERT_EQ(EGL_SUCCESS, eglGetError());
ASSERT_NE(EGL_NO_CONTEXT, mProducerEglContext);
}
virtual void TearDown() {
if (mProducerEglContext != EGL_NO_CONTEXT) {
eglDestroyContext(mEglDisplay, mProducerEglContext);
}
if (mProducerEglSurface != EGL_NO_SURFACE) {
eglDestroySurface(mEglDisplay, mProducerEglSurface);
}
SurfaceTextureGLTest::TearDown();
}
EGLSurface mProducerEglSurface;
EGLContext mProducerEglContext;
};
TEST_F(SurfaceTextureGLToGLTest, TransformHintGetsRespected) {
const uint32_t texWidth = 32;
const uint32_t texHeight = 64;
mST->setDefaultBufferSize(texWidth, texHeight);
mST->setTransformHint(NATIVE_WINDOW_TRANSFORM_ROT_90);
// This test requires 3 buffers to avoid deadlock because we're
// both producer and consumer, and only using one thread.
mST->setDefaultMaxBufferCount(3);
// Do the producer side of things
EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface,
mProducerEglSurface, mProducerEglContext));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
// Start a buffer with our chosen size and transform hint moving
// through the system.
glClear(GL_COLOR_BUFFER_BIT); // give the driver something to do
eglSwapBuffers(mEglDisplay, mProducerEglSurface);
mST->updateTexImage(); // consume it
// Swap again.
glClear(GL_COLOR_BUFFER_BIT);
eglSwapBuffers(mEglDisplay, mProducerEglSurface);
mST->updateTexImage();
// The current buffer should either show the effects of the transform
// hint (in the form of an inverse transform), or show that the
// transform hint has been ignored.
sp<GraphicBuffer> buf = mST->getCurrentBuffer();
if (mST->getCurrentTransform() == NATIVE_WINDOW_TRANSFORM_ROT_270) {
ASSERT_EQ(texWidth, buf->getHeight());
ASSERT_EQ(texHeight, buf->getWidth());
} else {
ASSERT_EQ(texWidth, buf->getWidth());
ASSERT_EQ(texHeight, buf->getHeight());
}
// Reset the transform hint and confirm that it takes.
mST->setTransformHint(0);
glClear(GL_COLOR_BUFFER_BIT);
eglSwapBuffers(mEglDisplay, mProducerEglSurface);
mST->updateTexImage();
glClear(GL_COLOR_BUFFER_BIT);
eglSwapBuffers(mEglDisplay, mProducerEglSurface);
mST->updateTexImage();
buf = mST->getCurrentBuffer();
ASSERT_EQ((uint32_t) 0, mST->getCurrentTransform());
ASSERT_EQ(texWidth, buf->getWidth());
ASSERT_EQ(texHeight, buf->getHeight());
}
TEST_F(SurfaceTextureGLToGLTest, TexturingFromGLFilledRGBABufferPow2) {
const int texWidth = 64;
const int texHeight = 64;
mST->setDefaultBufferSize(texWidth, texHeight);
// This test requires 3 buffers to complete run on a single thread.
mST->setDefaultMaxBufferCount(3);
// Do the producer side of things
EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface,
mProducerEglSurface, mProducerEglContext));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
// This is needed to ensure we pick up a buffer of the correct size.
eglSwapBuffers(mEglDisplay, mProducerEglSurface);
glClearColor(0.6, 0.6, 0.6, 0.6);
glClear(GL_COLOR_BUFFER_BIT);
glEnable(GL_SCISSOR_TEST);
glScissor(4, 4, 4, 4);
glClearColor(1.0, 0.0, 0.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT);
glScissor(24, 48, 4, 4);
glClearColor(0.0, 1.0, 0.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT);
glScissor(37, 17, 4, 4);
glClearColor(0.0, 0.0, 1.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT);
eglSwapBuffers(mEglDisplay, mProducerEglSurface);
// Do the consumer side of things
EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
mEglContext));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
glDisable(GL_SCISSOR_TEST);
// Skip the first frame, which was empty
ASSERT_EQ(NO_ERROR, mST->updateTexImage());
ASSERT_EQ(NO_ERROR, mST->updateTexImage());
glClearColor(0.2, 0.2, 0.2, 0.2);
glClear(GL_COLOR_BUFFER_BIT);
glViewport(0, 0, texWidth, texHeight);
drawTexture();
EXPECT_TRUE(checkPixel( 0, 0, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel(63, 0, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel(63, 63, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel( 0, 63, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel( 4, 7, 255, 0, 0, 255));
EXPECT_TRUE(checkPixel(25, 51, 0, 255, 0, 255));
EXPECT_TRUE(checkPixel(40, 19, 0, 0, 255, 255));
EXPECT_TRUE(checkPixel(29, 51, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel( 5, 32, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel(13, 8, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel(46, 3, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel(30, 33, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel( 6, 52, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel(55, 33, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel(16, 29, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel( 1, 30, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel(41, 37, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel(46, 29, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel(15, 25, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel( 3, 52, 153, 153, 153, 153));
}
TEST_F(SurfaceTextureGLToGLTest, EglDestroySurfaceUnrefsBuffers) {
sp<GraphicBuffer> buffers[2];
// This test requires async mode to run on a single thread.
EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface,
mProducerEglSurface, mProducerEglContext));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
EXPECT_TRUE(eglSwapInterval(mEglDisplay, 0));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
for (int i = 0; i < 2; i++) {
// Produce a frame
EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface,
mProducerEglSurface, mProducerEglContext));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
glClear(GL_COLOR_BUFFER_BIT);
eglSwapBuffers(mEglDisplay, mProducerEglSurface);
// Consume a frame
EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
mEglContext));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
mFW->waitForFrame();
ASSERT_EQ(NO_ERROR, mST->updateTexImage());
buffers[i] = mST->getCurrentBuffer();
}
// Destroy the GL texture object to release its ref on buffers[2].
GLuint texID = TEX_ID;
glDeleteTextures(1, &texID);
// Destroy the EGLSurface
EXPECT_TRUE(eglDestroySurface(mEglDisplay, mProducerEglSurface));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
mProducerEglSurface = EGL_NO_SURFACE;
// This test should have the only reference to buffer 0.
EXPECT_EQ(1, buffers[0]->getStrongCount());
// The GLConsumer should hold a single reference to buffer 1 in its
// mCurrentBuffer member. All of the references in the slots should have
// been released.
EXPECT_EQ(2, buffers[1]->getStrongCount());
}
TEST_F(SurfaceTextureGLToGLTest, EglDestroySurfaceAfterAbandonUnrefsBuffers) {
sp<GraphicBuffer> buffers[3];
// This test requires async mode to run on a single thread.
EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface,
mProducerEglSurface, mProducerEglContext));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
EXPECT_TRUE(eglSwapInterval(mEglDisplay, 0));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
for (int i = 0; i < 3; i++) {
// Produce a frame
EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface,
mProducerEglSurface, mProducerEglContext));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
glClear(GL_COLOR_BUFFER_BIT);
EXPECT_TRUE(eglSwapBuffers(mEglDisplay, mProducerEglSurface));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
// Consume a frame
EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
mEglContext));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
mFW->waitForFrame();
ASSERT_EQ(NO_ERROR, mST->updateTexImage());
buffers[i] = mST->getCurrentBuffer();
}
// Abandon the GLConsumer, releasing the ref that the GLConsumer has
// on buffers[2].
mST->abandon();
// Destroy the GL texture object to release its ref on buffers[2].
GLuint texID = TEX_ID;
glDeleteTextures(1, &texID);
// Destroy the EGLSurface.
EXPECT_TRUE(eglDestroySurface(mEglDisplay, mProducerEglSurface));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
mProducerEglSurface = EGL_NO_SURFACE;
EXPECT_EQ(1, buffers[0]->getStrongCount());
EXPECT_EQ(1, buffers[1]->getStrongCount());
// Depending on how lazily the GL driver dequeues buffers, we may end up
// with either two or three total buffers. If there are three, make sure
// the last one was properly down-ref'd.
if (buffers[2] != buffers[0]) {
EXPECT_EQ(1, buffers[2]->getStrongCount());
}
}
TEST_F(SurfaceTextureGLToGLTest, EglMakeCurrentBeforeConsumerDeathUnrefsBuffers) {
sp<GraphicBuffer> buffer;
EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface,
mProducerEglSurface, mProducerEglContext));
// Produce a frame
glClear(GL_COLOR_BUFFER_BIT);
EXPECT_TRUE(eglSwapBuffers(mEglDisplay, mProducerEglSurface));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
// Destroy the EGLSurface.
EXPECT_TRUE(eglDestroySurface(mEglDisplay, mProducerEglSurface));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
mProducerEglSurface = EGL_NO_SURFACE;
mSTC.clear();
mANW.clear();
mTextureRenderer.clear();
// Consume a frame
ASSERT_EQ(NO_ERROR, mST->updateTexImage());
buffer = mST->getCurrentBuffer();
// Destroy the GL texture object to release its ref
GLuint texID = TEX_ID;
glDeleteTextures(1, &texID);
// make un-current, all references to buffer should be gone
EXPECT_TRUE(eglMakeCurrent(mEglDisplay, EGL_NO_SURFACE,
EGL_NO_SURFACE, EGL_NO_CONTEXT));
// Destroy consumer
mST.clear();
EXPECT_EQ(1, buffer->getStrongCount());
}
TEST_F(SurfaceTextureGLToGLTest, EglMakeCurrentAfterConsumerDeathUnrefsBuffers) {
sp<GraphicBuffer> buffer;
EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface,
mProducerEglSurface, mProducerEglContext));
// Produce a frame
glClear(GL_COLOR_BUFFER_BIT);
EXPECT_TRUE(eglSwapBuffers(mEglDisplay, mProducerEglSurface));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
// Destroy the EGLSurface.
EXPECT_TRUE(eglDestroySurface(mEglDisplay, mProducerEglSurface));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
mProducerEglSurface = EGL_NO_SURFACE;
mSTC.clear();
mANW.clear();
mTextureRenderer.clear();
// Consume a frame
ASSERT_EQ(NO_ERROR, mST->updateTexImage());
buffer = mST->getCurrentBuffer();
// Destroy the GL texture object to release its ref
GLuint texID = TEX_ID;
glDeleteTextures(1, &texID);
// Destroy consumer
mST.clear();
// make un-current, all references to buffer should be gone
EXPECT_TRUE(eglMakeCurrent(mEglDisplay, EGL_NO_SURFACE,
EGL_NO_SURFACE, EGL_NO_CONTEXT));
EXPECT_EQ(1, buffer->getStrongCount());
}
TEST_F(SurfaceTextureGLToGLTest, TexturingFromUserSizedGLFilledBuffer) {
enum { texWidth = 64 };
enum { texHeight = 64 };
// This test requires 3 buffers to complete run on a single thread.
mST->setDefaultMaxBufferCount(3);
// Set the user buffer size.
native_window_set_buffers_user_dimensions(mANW.get(), texWidth, texHeight);
// Do the producer side of things
EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface,
mProducerEglSurface, mProducerEglContext));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
// This is needed to ensure we pick up a buffer of the correct size.
eglSwapBuffers(mEglDisplay, mProducerEglSurface);
glClearColor(0.6, 0.6, 0.6, 0.6);
glClear(GL_COLOR_BUFFER_BIT);
glEnable(GL_SCISSOR_TEST);
glScissor(4, 4, 1, 1);
glClearColor(1.0, 0.0, 0.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT);
eglSwapBuffers(mEglDisplay, mProducerEglSurface);
// Do the consumer side of things
EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
mEglContext));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
glDisable(GL_SCISSOR_TEST);
// Skip the first frame, which was empty
ASSERT_EQ(NO_ERROR, mST->updateTexImage());
ASSERT_EQ(NO_ERROR, mST->updateTexImage());
glClearColor(0.2, 0.2, 0.2, 0.2);
glClear(GL_COLOR_BUFFER_BIT);
glViewport(0, 0, texWidth, texHeight);
drawTexture();
EXPECT_TRUE(checkPixel( 0, 0, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel(63, 0, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel(63, 63, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel( 0, 63, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel( 4, 4, 255, 0, 0, 255));
EXPECT_TRUE(checkPixel( 5, 5, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel( 3, 3, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel(45, 52, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel(12, 36, 153, 153, 153, 153));
}
TEST_F(SurfaceTextureGLToGLTest, TexturingFromPreRotatedUserSizedGLFilledBuffer) {
enum { texWidth = 64 };
enum { texHeight = 16 };
// This test requires 3 buffers to complete run on a single thread.
mST->setDefaultMaxBufferCount(3);
// Set the transform hint.
mST->setTransformHint(NATIVE_WINDOW_TRANSFORM_ROT_90);
// Set the user buffer size.
native_window_set_buffers_user_dimensions(mANW.get(), texWidth, texHeight);
// Do the producer side of things
EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface,
mProducerEglSurface, mProducerEglContext));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
// This is needed to ensure we pick up a buffer of the correct size and the
// new rotation hint.
eglSwapBuffers(mEglDisplay, mProducerEglSurface);
glClearColor(0.6, 0.6, 0.6, 0.6);
glClear(GL_COLOR_BUFFER_BIT);
glEnable(GL_SCISSOR_TEST);
glScissor(24, 4, 1, 1);
glClearColor(1.0, 0.0, 0.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT);
eglSwapBuffers(mEglDisplay, mProducerEglSurface);
// Do the consumer side of things
EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
mEglContext));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
glDisable(GL_SCISSOR_TEST);
// Skip the first frame, which was empty
ASSERT_EQ(NO_ERROR, mST->updateTexImage());
ASSERT_EQ(NO_ERROR, mST->updateTexImage());
glClearColor(0.2, 0.2, 0.2, 0.2);
glClear(GL_COLOR_BUFFER_BIT);
glViewport(0, 0, texWidth, texHeight);
drawTexture();
EXPECT_TRUE(checkPixel( 0, 0, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel(63, 0, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel(63, 15, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel( 0, 15, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel(24, 4, 255, 0, 0, 255));
EXPECT_TRUE(checkPixel(25, 5, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel(23, 3, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel(45, 13, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel(12, 8, 153, 153, 153, 153));
}
TEST_F(SurfaceTextureGLToGLTest, TexturingFromPreRotatedGLFilledBuffer) {
enum { texWidth = 64 };
enum { texHeight = 16 };
// This test requires 3 buffers to complete run on a single thread.
mST->setDefaultMaxBufferCount(3);
// Set the transform hint.
mST->setTransformHint(NATIVE_WINDOW_TRANSFORM_ROT_90);
// Set the default buffer size.
mST->setDefaultBufferSize(texWidth, texHeight);
// Do the producer side of things
EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mProducerEglSurface,
mProducerEglSurface, mProducerEglContext));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
// This is needed to ensure we pick up a buffer of the correct size and the
// new rotation hint.
eglSwapBuffers(mEglDisplay, mProducerEglSurface);
glClearColor(0.6, 0.6, 0.6, 0.6);
glClear(GL_COLOR_BUFFER_BIT);
glEnable(GL_SCISSOR_TEST);
glScissor(24, 4, 1, 1);
glClearColor(1.0, 0.0, 0.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT);
eglSwapBuffers(mEglDisplay, mProducerEglSurface);
// Do the consumer side of things
EXPECT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
mEglContext));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
glDisable(GL_SCISSOR_TEST);
// Skip the first frame, which was empty
ASSERT_EQ(NO_ERROR, mST->updateTexImage());
ASSERT_EQ(NO_ERROR, mST->updateTexImage());
glClearColor(0.2, 0.2, 0.2, 0.2);
glClear(GL_COLOR_BUFFER_BIT);
glViewport(0, 0, texWidth, texHeight);
drawTexture();
EXPECT_TRUE(checkPixel( 0, 0, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel(63, 0, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel(63, 15, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel( 0, 15, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel(24, 4, 255, 0, 0, 255));
EXPECT_TRUE(checkPixel(25, 5, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel(23, 3, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel(45, 13, 153, 153, 153, 153));
EXPECT_TRUE(checkPixel(12, 8, 153, 153, 153, 153));
}
/*
* This test fixture is for testing GL -> GL texture streaming from one thread
* to another. It contains functionality to create a producer thread that will
* perform GL rendering to an ANativeWindow that feeds frames to a
* GLConsumer. Additionally it supports interlocking the producer and
* consumer threads so that a specific sequence of calls can be
* deterministically created by the test.
*
* The intended usage is as follows:
*
* TEST_F(...) {
* class PT : public ProducerThread {
* virtual void render() {
* ...
* swapBuffers();
* }
* };
*
* runProducerThread(new PT());
*
* // The order of these calls will vary from test to test and may include
* // multiple frames and additional operations (e.g. GL rendering from the
* // texture).
* fc->waitForFrame();
* mST->updateTexImage();
* fc->finishFrame();
* }
*
*/
class SurfaceTextureGLThreadToGLTest : public SurfaceTextureGLToGLTest {
protected:
// ProducerThread is an abstract base class to simplify the creation of
// OpenGL ES frame producer threads.
class ProducerThread : public Thread {
public:
virtual ~ProducerThread() {
}
void setEglObjects(EGLDisplay producerEglDisplay,
EGLSurface producerEglSurface,
EGLContext producerEglContext) {
mProducerEglDisplay = producerEglDisplay;
mProducerEglSurface = producerEglSurface;
mProducerEglContext = producerEglContext;
}
virtual bool threadLoop() {
eglMakeCurrent(mProducerEglDisplay, mProducerEglSurface,
mProducerEglSurface, mProducerEglContext);
render();
eglMakeCurrent(mProducerEglDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE,
EGL_NO_CONTEXT);
return false;
}
protected:
virtual void render() = 0;
void swapBuffers() {
eglSwapBuffers(mProducerEglDisplay, mProducerEglSurface);
}
EGLDisplay mProducerEglDisplay;
EGLSurface mProducerEglSurface;
EGLContext mProducerEglContext;
};
// FrameCondition is a utility class for interlocking between the producer
// and consumer threads. The FrameCondition object should be created and
// destroyed in the consumer thread only. The consumer thread should set
// the FrameCondition as the FrameAvailableListener of the GLConsumer,
// and should call both waitForFrame and finishFrame once for each expected
// frame.
//
// This interlocking relies on the fact that onFrameAvailable gets called
// synchronously from GLConsumer::queueBuffer.
class FrameCondition : public GLConsumer::FrameAvailableListener {
public:
FrameCondition():
mFrameAvailable(false),
mFrameFinished(false) {
}
// waitForFrame waits for the next frame to arrive. This should be
// called from the consumer thread once for every frame expected by the
// test.
void waitForFrame() {
Mutex::Autolock lock(mMutex);
ALOGV("+waitForFrame");
while (!mFrameAvailable) {
mFrameAvailableCondition.wait(mMutex);
}
mFrameAvailable = false;
ALOGV("-waitForFrame");
}
// Allow the producer to return from its swapBuffers call and continue
// on to produce the next frame. This should be called by the consumer
// thread once for every frame expected by the test.
void finishFrame() {
Mutex::Autolock lock(mMutex);
ALOGV("+finishFrame");
mFrameFinished = true;
mFrameFinishCondition.signal();
ALOGV("-finishFrame");
}
// This should be called by GLConsumer on the producer thread.
virtual void onFrameAvailable() {
Mutex::Autolock lock(mMutex);
ALOGV("+onFrameAvailable");
mFrameAvailable = true;
mFrameAvailableCondition.signal();
while (!mFrameFinished) {
mFrameFinishCondition.wait(mMutex);
}
mFrameFinished = false;
ALOGV("-onFrameAvailable");
}
protected:
bool mFrameAvailable;
bool mFrameFinished;
Mutex mMutex;
Condition mFrameAvailableCondition;
Condition mFrameFinishCondition;
};
virtual void SetUp() {
SurfaceTextureGLToGLTest::SetUp();
mFC = new FrameCondition();
mST->setFrameAvailableListener(mFC);
}
virtual void TearDown() {
if (mProducerThread != NULL) {
mProducerThread->requestExitAndWait();
}
mProducerThread.clear();
mFC.clear();
SurfaceTextureGLToGLTest::TearDown();
}
void runProducerThread(const sp<ProducerThread> producerThread) {
ASSERT_TRUE(mProducerThread == NULL);
mProducerThread = producerThread;
producerThread->setEglObjects(mEglDisplay, mProducerEglSurface,
mProducerEglContext);
producerThread->run();
}
sp<ProducerThread> mProducerThread;
sp<FrameCondition> mFC;
};
TEST_F(SurfaceTextureGLThreadToGLTest,
UpdateTexImageBeforeFrameFinishedCompletes) {
class PT : public ProducerThread {
virtual void render() {
glClearColor(0.0f, 1.0f, 0.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT);
swapBuffers();
}
};
runProducerThread(new PT());
mFC->waitForFrame();
ASSERT_EQ(NO_ERROR, mST->updateTexImage());
mFC->finishFrame();
// TODO: Add frame verification once RGB TEX_EXTERNAL_OES is supported!
}
TEST_F(SurfaceTextureGLThreadToGLTest,
UpdateTexImageAfterFrameFinishedCompletes) {
class PT : public ProducerThread {
virtual void render() {
glClearColor(0.0f, 1.0f, 0.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT);
swapBuffers();
}
};
runProducerThread(new PT());
mFC->waitForFrame();
mFC->finishFrame();
ASSERT_EQ(NO_ERROR, mST->updateTexImage());
// TODO: Add frame verification once RGB TEX_EXTERNAL_OES is supported!
}
TEST_F(SurfaceTextureGLThreadToGLTest,
RepeatedUpdateTexImageBeforeFrameFinishedCompletes) {
enum { NUM_ITERATIONS = 1024 };
class PT : public ProducerThread {
virtual void render() {
for (int i = 0; i < NUM_ITERATIONS; i++) {
glClearColor(0.0f, 1.0f, 0.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT);
ALOGV("+swapBuffers");
swapBuffers();
ALOGV("-swapBuffers");
}
}
};
runProducerThread(new PT());
for (int i = 0; i < NUM_ITERATIONS; i++) {
mFC->waitForFrame();
ALOGV("+updateTexImage");
ASSERT_EQ(NO_ERROR, mST->updateTexImage());
ALOGV("-updateTexImage");
mFC->finishFrame();
// TODO: Add frame verification once RGB TEX_EXTERNAL_OES is supported!
}
}
TEST_F(SurfaceTextureGLThreadToGLTest,
RepeatedUpdateTexImageAfterFrameFinishedCompletes) {
enum { NUM_ITERATIONS = 1024 };
class PT : public ProducerThread {
virtual void render() {
for (int i = 0; i < NUM_ITERATIONS; i++) {
glClearColor(0.0f, 1.0f, 0.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT);
ALOGV("+swapBuffers");
swapBuffers();
ALOGV("-swapBuffers");
}
}
};
runProducerThread(new PT());
for (int i = 0; i < NUM_ITERATIONS; i++) {
mFC->waitForFrame();
mFC->finishFrame();
ALOGV("+updateTexImage");
ASSERT_EQ(NO_ERROR, mST->updateTexImage());
ALOGV("-updateTexImage");
// TODO: Add frame verification once RGB TEX_EXTERNAL_OES is supported!
}
}
// XXX: This test is disabled because it is currently hanging on some devices.
TEST_F(SurfaceTextureGLThreadToGLTest,
DISABLED_RepeatedSwapBuffersWhileDequeueStalledCompletes) {
enum { NUM_ITERATIONS = 64 };
class PT : public ProducerThread {
virtual void render() {
for (int i = 0; i < NUM_ITERATIONS; i++) {
glClearColor(0.0f, 1.0f, 0.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT);
ALOGV("+swapBuffers");
swapBuffers();
ALOGV("-swapBuffers");
}
}
};
ASSERT_EQ(OK, mST->setDefaultMaxBufferCount(2));
runProducerThread(new PT());
// Allow three frames to be rendered and queued before starting the
// rendering in this thread. For the latter two frames we don't call
// updateTexImage so the next dequeue from the producer thread will block
// waiting for a frame to become available.
mFC->waitForFrame();
mFC->finishFrame();
// We must call updateTexImage to consume the first frame so that the
// SurfaceTexture is able to reduce the buffer count to 2. This is because
// the GL driver may dequeue a buffer when the EGLSurface is created, and
// that happens before we call setDefaultMaxBufferCount. It's possible that the
// driver does not dequeue a buffer at EGLSurface creation time, so we
// cannot rely on this to cause the second dequeueBuffer call to block.
ASSERT_EQ(NO_ERROR, mST->updateTexImage());
mFC->waitForFrame();
mFC->finishFrame();
mFC->waitForFrame();
mFC->finishFrame();
// Sleep for 100ms to allow the producer thread's dequeueBuffer call to
// block waiting for a buffer to become available.
usleep(100000);
// Render and present a number of images. This thread should not be blocked
// by the fact that the producer thread is blocking in dequeue.
for (int i = 0; i < NUM_ITERATIONS; i++) {
glClear(GL_COLOR_BUFFER_BIT);
eglSwapBuffers(mEglDisplay, mEglSurface);
}
// Consume the two pending buffers to unblock the producer thread.
ASSERT_EQ(NO_ERROR, mST->updateTexImage());
ASSERT_EQ(NO_ERROR, mST->updateTexImage());
// Consume the remaining buffers from the producer thread.
for (int i = 0; i < NUM_ITERATIONS-3; i++) {
mFC->waitForFrame();
mFC->finishFrame();
ALOGV("+updateTexImage");
ASSERT_EQ(NO_ERROR, mST->updateTexImage());
ALOGV("-updateTexImage");
}
}
class SurfaceTextureFBOTest : public SurfaceTextureGLTest {
protected:
virtual void SetUp() {
SurfaceTextureGLTest::SetUp();
glGenFramebuffers(1, &mFbo);
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
glGenTextures(1, &mFboTex);
glBindTexture(GL_TEXTURE_2D, mFboTex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, getSurfaceWidth(),
getSurfaceHeight(), 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
glBindTexture(GL_TEXTURE_2D, 0);
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
glBindFramebuffer(GL_FRAMEBUFFER, mFbo);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, mFboTex, 0);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
}
virtual void TearDown() {
SurfaceTextureGLTest::TearDown();
glDeleteTextures(1, &mFboTex);
glDeleteFramebuffers(1, &mFbo);
}
GLuint mFbo;
GLuint mFboTex;
};
// This test is intended to verify that proper synchronization is done when
// rendering into an FBO.
TEST_F(SurfaceTextureFBOTest, BlitFromCpuFilledBufferToFbo) {
const int texWidth = 64;
const int texHeight = 64;
ASSERT_EQ(NO_ERROR, native_window_set_buffers_geometry(mANW.get(),
texWidth, texHeight, HAL_PIXEL_FORMAT_RGBA_8888));
ASSERT_EQ(NO_ERROR, native_window_set_usage(mANW.get(),
GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN));
android_native_buffer_t* anb;
ASSERT_EQ(NO_ERROR, native_window_dequeue_buffer_and_wait(mANW.get(),
&anb));
ASSERT_TRUE(anb != NULL);
sp<GraphicBuffer> buf(new GraphicBuffer(anb, false));
// Fill the buffer with green
uint8_t* img = NULL;
buf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&img));
fillRGBA8BufferSolid(img, texWidth, texHeight, buf->getStride(), 0, 255,
0, 255);
buf->unlock();
ASSERT_EQ(NO_ERROR, mANW->queueBuffer(mANW.get(), buf->getNativeBuffer(),
-1));
ASSERT_EQ(NO_ERROR, mST->updateTexImage());
glBindFramebuffer(GL_FRAMEBUFFER, mFbo);
drawTexture();
glBindFramebuffer(GL_FRAMEBUFFER, 0);
for (int i = 0; i < 4; i++) {
SCOPED_TRACE(String8::format("frame %d", i).string());
ASSERT_EQ(NO_ERROR, native_window_dequeue_buffer_and_wait(mANW.get(),
&anb));
ASSERT_TRUE(anb != NULL);
buf = new GraphicBuffer(anb, false);
// Fill the buffer with red
ASSERT_EQ(NO_ERROR, buf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN,
(void**)(&img)));
fillRGBA8BufferSolid(img, texWidth, texHeight, buf->getStride(), 255, 0,
0, 255);
ASSERT_EQ(NO_ERROR, buf->unlock());
ASSERT_EQ(NO_ERROR, mANW->queueBuffer(mANW.get(),
buf->getNativeBuffer(), -1));
ASSERT_EQ(NO_ERROR, mST->updateTexImage());
drawTexture();
EXPECT_TRUE(checkPixel( 24, 39, 255, 0, 0, 255));
}
glBindFramebuffer(GL_FRAMEBUFFER, mFbo);
EXPECT_TRUE(checkPixel( 24, 39, 0, 255, 0, 255));
}
class SurfaceTextureMultiContextGLTest : public SurfaceTextureGLTest {
protected:
enum { SECOND_TEX_ID = 123 };
enum { THIRD_TEX_ID = 456 };
SurfaceTextureMultiContextGLTest():
mSecondEglContext(EGL_NO_CONTEXT) {
}
virtual void SetUp() {
SurfaceTextureGLTest::SetUp();
// Set up the secondary context and texture renderer.
mSecondEglContext = eglCreateContext(mEglDisplay, mGlConfig,
EGL_NO_CONTEXT, getContextAttribs());
ASSERT_EQ(EGL_SUCCESS, eglGetError());
ASSERT_NE(EGL_NO_CONTEXT, mSecondEglContext);
ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
mSecondEglContext));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
mSecondTextureRenderer = new TextureRenderer(SECOND_TEX_ID, mST);
ASSERT_NO_FATAL_FAILURE(mSecondTextureRenderer->SetUp());
// Set up the tertiary context and texture renderer.
mThirdEglContext = eglCreateContext(mEglDisplay, mGlConfig,
EGL_NO_CONTEXT, getContextAttribs());
ASSERT_EQ(EGL_SUCCESS, eglGetError());
ASSERT_NE(EGL_NO_CONTEXT, mThirdEglContext);
ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
mThirdEglContext));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
mThirdTextureRenderer = new TextureRenderer(THIRD_TEX_ID, mST);
ASSERT_NO_FATAL_FAILURE(mThirdTextureRenderer->SetUp());
// Switch back to the primary context to start the tests.
ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
mEglContext));
}
virtual void TearDown() {
if (mThirdEglContext != EGL_NO_CONTEXT) {
eglDestroyContext(mEglDisplay, mThirdEglContext);
}
if (mSecondEglContext != EGL_NO_CONTEXT) {
eglDestroyContext(mEglDisplay, mSecondEglContext);
}
SurfaceTextureGLTest::TearDown();
}
EGLContext mSecondEglContext;
sp<TextureRenderer> mSecondTextureRenderer;
EGLContext mThirdEglContext;
sp<TextureRenderer> mThirdTextureRenderer;
};
TEST_F(SurfaceTextureMultiContextGLTest, UpdateFromMultipleContextsFails) {
ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));
// Latch the texture contents on the primary context.
mFW->waitForFrame();
ASSERT_EQ(OK, mST->updateTexImage());
// Attempt to latch the texture on the secondary context.
ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
mSecondEglContext));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
ASSERT_EQ(INVALID_OPERATION, mST->updateTexImage());
}
TEST_F(SurfaceTextureMultiContextGLTest, DetachFromContextSucceeds) {
ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));
// Latch the texture contents on the primary context.
mFW->waitForFrame();
ASSERT_EQ(OK, mST->updateTexImage());
// Detach from the primary context.
ASSERT_EQ(OK, mST->detachFromContext());
// Check that the GL texture was deleted.
EXPECT_EQ(GL_FALSE, glIsTexture(TEX_ID));
}
TEST_F(SurfaceTextureMultiContextGLTest,
DetachFromContextSucceedsAfterProducerDisconnect) {
ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));
// Latch the texture contents on the primary context.
mFW->waitForFrame();
ASSERT_EQ(OK, mST->updateTexImage());
// Detach from the primary context.
native_window_api_disconnect(mANW.get(), NATIVE_WINDOW_API_CPU);
ASSERT_EQ(OK, mST->detachFromContext());
// Check that the GL texture was deleted.
EXPECT_EQ(GL_FALSE, glIsTexture(TEX_ID));
}
TEST_F(SurfaceTextureMultiContextGLTest, DetachFromContextFailsWhenAbandoned) {
ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));
// Latch the texture contents on the primary context.
mFW->waitForFrame();
ASSERT_EQ(OK, mST->updateTexImage());
// Attempt to detach from the primary context.
mST->abandon();
ASSERT_EQ(NO_INIT, mST->detachFromContext());
}
TEST_F(SurfaceTextureMultiContextGLTest, DetachFromContextFailsWhenDetached) {
ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));
// Latch the texture contents on the primary context.
mFW->waitForFrame();
ASSERT_EQ(OK, mST->updateTexImage());
// Detach from the primary context.
ASSERT_EQ(OK, mST->detachFromContext());
// Attempt to detach from the primary context again.
ASSERT_EQ(INVALID_OPERATION, mST->detachFromContext());
}
TEST_F(SurfaceTextureMultiContextGLTest, DetachFromContextFailsWithNoDisplay) {
ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));
// Latch the texture contents on the primary context.
mFW->waitForFrame();
ASSERT_EQ(OK, mST->updateTexImage());
// Make there be no current display.
ASSERT_TRUE(eglMakeCurrent(mEglDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE,
EGL_NO_CONTEXT));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
// Attempt to detach from the primary context.
ASSERT_EQ(INVALID_OPERATION, mST->detachFromContext());
}
TEST_F(SurfaceTextureMultiContextGLTest, DetachFromContextFailsWithNoContext) {
ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));
// Latch the texture contents on the primary context.
mFW->waitForFrame();
ASSERT_EQ(OK, mST->updateTexImage());
// Make current context be incorrect.
ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
mSecondEglContext));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
// Attempt to detach from the primary context.
ASSERT_EQ(INVALID_OPERATION, mST->detachFromContext());
}
TEST_F(SurfaceTextureMultiContextGLTest, UpdateTexImageFailsWhenDetached) {
ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));
// Detach from the primary context.
ASSERT_EQ(OK, mST->detachFromContext());
// Attempt to latch the texture contents on the primary context.
mFW->waitForFrame();
ASSERT_EQ(INVALID_OPERATION, mST->updateTexImage());
}
TEST_F(SurfaceTextureMultiContextGLTest, AttachToContextSucceeds) {
ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));
// Latch the texture contents on the primary context.
mFW->waitForFrame();
ASSERT_EQ(OK, mST->updateTexImage());
// Detach from the primary context.
ASSERT_EQ(OK, mST->detachFromContext());
// Attach to the secondary context.
ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
mSecondEglContext));
ASSERT_EQ(OK, mST->attachToContext(SECOND_TEX_ID));
// Verify that the texture object was created and bound.
GLint texBinding = -1;
glGetIntegerv(GL_TEXTURE_BINDING_EXTERNAL_OES, &texBinding);
EXPECT_EQ(SECOND_TEX_ID, texBinding);
// Try to use the texture from the secondary context.
glClearColor(0.2, 0.2, 0.2, 0.2);
glClear(GL_COLOR_BUFFER_BIT);
glViewport(0, 0, 1, 1);
mSecondTextureRenderer->drawTexture();
ASSERT_TRUE(checkPixel( 0, 0, 35, 35, 35, 35));
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
}
TEST_F(SurfaceTextureMultiContextGLTest,
AttachToContextSucceedsAfterProducerDisconnect) {
ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));
// Latch the texture contents on the primary context.
mFW->waitForFrame();
ASSERT_EQ(OK, mST->updateTexImage());
// Detach from the primary context.
native_window_api_disconnect(mANW.get(), NATIVE_WINDOW_API_CPU);
ASSERT_EQ(OK, mST->detachFromContext());
// Attach to the secondary context.
ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
mSecondEglContext));
ASSERT_EQ(OK, mST->attachToContext(SECOND_TEX_ID));
// Verify that the texture object was created and bound.
GLint texBinding = -1;
glGetIntegerv(GL_TEXTURE_BINDING_EXTERNAL_OES, &texBinding);
EXPECT_EQ(SECOND_TEX_ID, texBinding);
// Try to use the texture from the secondary context.
glClearColor(0.2, 0.2, 0.2, 0.2);
glClear(GL_COLOR_BUFFER_BIT);
glViewport(0, 0, 1, 1);
mSecondTextureRenderer->drawTexture();
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
ASSERT_TRUE(checkPixel( 0, 0, 35, 35, 35, 35));
}
TEST_F(SurfaceTextureMultiContextGLTest,
AttachToContextSucceedsBeforeUpdateTexImage) {
ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));
// Detach from the primary context.
native_window_api_disconnect(mANW.get(), NATIVE_WINDOW_API_CPU);
ASSERT_EQ(OK, mST->detachFromContext());
// Attach to the secondary context.
ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
mSecondEglContext));
ASSERT_EQ(OK, mST->attachToContext(SECOND_TEX_ID));
// Verify that the texture object was created and bound.
GLint texBinding = -1;
glGetIntegerv(GL_TEXTURE_BINDING_EXTERNAL_OES, &texBinding);
EXPECT_EQ(SECOND_TEX_ID, texBinding);
// Latch the texture contents on the primary context.
mFW->waitForFrame();
ASSERT_EQ(OK, mST->updateTexImage());
// Try to use the texture from the secondary context.
glClearColor(0.2, 0.2, 0.2, 0.2);
glClear(GL_COLOR_BUFFER_BIT);
glViewport(0, 0, 1, 1);
mSecondTextureRenderer->drawTexture();
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
ASSERT_TRUE(checkPixel( 0, 0, 35, 35, 35, 35));
}
TEST_F(SurfaceTextureMultiContextGLTest, AttachToContextFailsWhenAbandoned) {
ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));
// Latch the texture contents on the primary context.
mFW->waitForFrame();
ASSERT_EQ(OK, mST->updateTexImage());
// Detach from the primary context.
ASSERT_EQ(OK, mST->detachFromContext());
// Attempt to attach to the secondary context.
mST->abandon();
// Attempt to attach to the primary context.
ASSERT_EQ(NO_INIT, mST->attachToContext(SECOND_TEX_ID));
}
TEST_F(SurfaceTextureMultiContextGLTest, AttachToContextFailsWhenAttached) {
ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));
// Latch the texture contents on the primary context.
mFW->waitForFrame();
ASSERT_EQ(OK, mST->updateTexImage());
// Attempt to attach to the primary context.
ASSERT_EQ(INVALID_OPERATION, mST->attachToContext(SECOND_TEX_ID));
}
TEST_F(SurfaceTextureMultiContextGLTest,
AttachToContextFailsWhenAttachedBeforeUpdateTexImage) {
ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));
// Attempt to attach to the primary context.
ASSERT_EQ(INVALID_OPERATION, mST->attachToContext(SECOND_TEX_ID));
}
TEST_F(SurfaceTextureMultiContextGLTest, AttachToContextFailsWithNoDisplay) {
ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));
// Latch the texture contents on the primary context.
mFW->waitForFrame();
ASSERT_EQ(OK, mST->updateTexImage());
// Detach from the primary context.
ASSERT_EQ(OK, mST->detachFromContext());
// Make there be no current display.
ASSERT_TRUE(eglMakeCurrent(mEglDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE,
EGL_NO_CONTEXT));
ASSERT_EQ(EGL_SUCCESS, eglGetError());
// Attempt to attach with no context current.
ASSERT_EQ(INVALID_OPERATION, mST->attachToContext(SECOND_TEX_ID));
}
TEST_F(SurfaceTextureMultiContextGLTest, AttachToContextSucceedsTwice) {
ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));
// Latch the texture contents on the primary context.
mFW->waitForFrame();
ASSERT_EQ(OK, mST->updateTexImage());
// Detach from the primary context.
ASSERT_EQ(OK, mST->detachFromContext());
// Attach to the secondary context.
ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
mSecondEglContext));
ASSERT_EQ(OK, mST->attachToContext(SECOND_TEX_ID));
// Detach from the secondary context.
ASSERT_EQ(OK, mST->detachFromContext());
// Attach to the tertiary context.
ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
mThirdEglContext));
ASSERT_EQ(OK, mST->attachToContext(THIRD_TEX_ID));
// Verify that the texture object was created and bound.
GLint texBinding = -1;
glGetIntegerv(GL_TEXTURE_BINDING_EXTERNAL_OES, &texBinding);
EXPECT_EQ(THIRD_TEX_ID, texBinding);
// Try to use the texture from the tertiary context.
glClearColor(0.2, 0.2, 0.2, 0.2);
glClear(GL_COLOR_BUFFER_BIT);
glViewport(0, 0, 1, 1);
mThirdTextureRenderer->drawTexture();
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
ASSERT_TRUE(checkPixel( 0, 0, 35, 35, 35, 35));
}
TEST_F(SurfaceTextureMultiContextGLTest,
AttachToContextSucceedsTwiceBeforeUpdateTexImage) {
ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));
// Detach from the primary context.
ASSERT_EQ(OK, mST->detachFromContext());
// Attach to the secondary context.
ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
mSecondEglContext));
ASSERT_EQ(OK, mST->attachToContext(SECOND_TEX_ID));
// Detach from the secondary context.
ASSERT_EQ(OK, mST->detachFromContext());
// Attach to the tertiary context.
ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
mThirdEglContext));
ASSERT_EQ(OK, mST->attachToContext(THIRD_TEX_ID));
// Verify that the texture object was created and bound.
GLint texBinding = -1;
glGetIntegerv(GL_TEXTURE_BINDING_EXTERNAL_OES, &texBinding);
EXPECT_EQ(THIRD_TEX_ID, texBinding);
// Latch the texture contents on the tertiary context.
mFW->waitForFrame();
ASSERT_EQ(OK, mST->updateTexImage());
// Try to use the texture from the tertiary context.
glClearColor(0.2, 0.2, 0.2, 0.2);
glClear(GL_COLOR_BUFFER_BIT);
glViewport(0, 0, 1, 1);
mThirdTextureRenderer->drawTexture();
ASSERT_EQ(GLenum(GL_NO_ERROR), glGetError());
ASSERT_TRUE(checkPixel( 0, 0, 35, 35, 35, 35));
}
TEST_F(SurfaceTextureMultiContextGLTest,
UpdateTexImageSucceedsForBufferConsumedBeforeDetach) {
ASSERT_EQ(NO_ERROR, mST->setDefaultMaxBufferCount(2));
// produce two frames and consume them both on the primary context
ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));
mFW->waitForFrame();
ASSERT_EQ(OK, mST->updateTexImage());
ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));
mFW->waitForFrame();
ASSERT_EQ(OK, mST->updateTexImage());
// produce one more frame
ASSERT_NO_FATAL_FAILURE(produceOneRGBA8Frame(mANW));
// Detach from the primary context and attach to the secondary context
ASSERT_EQ(OK, mST->detachFromContext());
ASSERT_TRUE(eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
mSecondEglContext));
ASSERT_EQ(OK, mST->attachToContext(SECOND_TEX_ID));
// Consume final frame on secondary context
mFW->waitForFrame();
ASSERT_EQ(OK, mST->updateTexImage());
}
} // namespace android