When the app requests "fastest", the java layer encodes this as a
delay of 0. SensorService was passing this unchanged to the HAL.
However the HAL is required to reject delays lower that the
advertised lower delay.
Change-Id: I92be77acd3af62ffeb49e4b31e24ddcd203510e2
This is intended to absorb the cost of the IPC
to the permission controller.
Cached permission checks cost about 3us, while
full blown ones are two orders of magnitude slower.
CAVEAT: PermissionCache can only handle system
permissions safely for now, because the cache is
not purged upon global permission changes.
Change-Id: I8b8a5e71e191e3c01e8f792f253c379190eee62e
when we do our own sensor fusion, we also export an
improved orientation sensor and hide the HAL sensor.
The fused orientation sensor is much more precise, fast
and smooth.
Change-Id: I0ea843b47ad9d12f6b22cce51f8629852d423126
also use correct time propagation equation
disable the fused sensors when gyro is not present since
they were unusable in practice.
Change-Id: Iad797425784e67dc6c5690e97c71c583418cc5b5
Add support for 9-axis gravity and linear-acceleration sensors
virtual orientation sensor using 9-axis fusion
Change-Id: I6717539373fce781c10e97b6fa59f68a831a592f
SensorService main thread wasn't java-enabled. however, in
some situations we end-up calling into the BatteryService from
that thread which causes a crash.
Change-Id: Iffba90e4c4b743dba84d62f1342001a9db31916d
Make sure to send an event down only for sensors that report a value only on data
change. Other sensors, will naturally send an event when the next event is available.
Bug: 4025681
Change-Id: I6d444deda388b6bc9a33e3371e09d390f1566ec5
when an app dies, make sure to disable all sensors that process
is connected to, regardless of wether this was the LAST connection
to this sensor.
Change-Id: I9c72b1792eee03815304674d5c2f25b5270e4748
The cut-off frequency of the lowpass filter was too high
for the sampling rate used by DELAY_NORMAL.
Now we use the same filters used for the gravity vector
(cascaded biquad at 1.5 Hz)
Change-Id: I319dc4f449a3abd553d61b196a9ddcf7782f912d
whether a physical sensor needed to be active or not was managed by
a simpe reference counter; unfortunatelly nothing prevented it to
get out of sync if a sensor was disabled more than once.
sensorservice already maintainted a list of all the "clients"
connected to a physical sensor; we now use that list to determine if
a sensor should be enabled. This can never be "out-of-sync" since
this is the only data structure linking a sensor to a user of that
sensor.
also removed the isEnabled() method, which was never used and
implemented wrongly (since it didn't take into account that a sensor
could be disabled for a client but not of another).
Change-Id: I789affb877728ca957e99f7ba749def37c4db1c7
Most accelerometers have 8-bits accuracy so we beed to
reject 48dB in thestop-band, which requires a 4-th order
filter at the cut-off frequency we're using.
Change-Id: Ic00421d38d751641f86b1f3ad7663e6b44a91198
- upadte documentation for rotation vector
- update method dealing with rotation vector to deal with 4 components
- virtual rotation-vector sensor reports all four components
- improve SensorManager documentation layout
Whent he 4-th component of the rotation-vector is present, we can save
a square-root when computing the quaternion or rotation matrix from it.
Change-Id: Ia84d278dd5f0909fab1c5ba050f8df2679e2c7c8
indeed, by construction of the rotation matrix, it is
guaranteed to have a length of 1.
moreover, the normalization code was missing a square-root,
fortunatelly, since the length is 1, this didn't cause any
damage (since sqrt(1) = 1).
Change-Id: I9facd668caaf5bb3bfccb139ab872f2bb2066365
Rework sensorservice to allow "virtual sensors", that is
sensors that report a synthetized value based on real sensors.
the main change to sensorservice is around managing which real
sensor need to be activated and which rate to use.
The logic for all this has been moved into SensorDevice, which
essentially wraps the sensor HAL but adds two features to it:
- it keeps track of which sensors need to be activated
- it keeps track of what rate needs to be used
For this purpose an "identity" is associated with each real sensor
activation, so we can track them.
On start-up we check for gravity, linear-acceleration and
rotation-vector sensors, if they're not present in the HAL, we
synthetize them in sensor-service.
Change-Id: I841db2c1b37ef127ed571efa21732ecc5adf1800
the per-connection state assumed the main sensorservice
lock was held during access. This is however not true while
pre-processing the events just before sending them to clients.
Therefore, there was a small window during which this state
could be modified while being used.
we now have an internal lock that protects this state.
Change-Id: I594680f20f09d6a4f1f38f093a1d3f650dcef1be
We only recorded the last received event (which is needed when a sensor
is activated on a connection) when there was some connection active.
This should fix an issue where sometimes the light sensor doesn't
return an event whent activated.
we also didn't need to hold the main lock while dispatching events
to clients.
Change-Id: I6c6386c040051ce205e3c0516c678e0603fa45e1
the increased maximum rate is needed for proper gyro integration, current gyro
parts can sample at up to 800Hz
Change-Id: Ide75f6d5bc7a0fdafeb2dafd72db39e7afb9e794
As part of this change, consolidated and cleaned up the Looper API so
that there are fewer distinctions between the NDK and non-NDK declarations
(no need for two callback types, etc.).
Removed the dependence on specific constants from sys/poll.h such as
POLLIN. Instead looper.h defines events like LOOPER_EVENT_INPUT for
the events that it supports. That should help make any future
under-the-hood implementation changes easier.
Fixed a couple of compiler warnings along the way.
Change-Id: I449a7ec780bf061bdd325452f823673e2b39b6ae
SensorService now correctly sends the last known
state of a sensor as soon as a new connection is made.
This fixes the issue where, for instance, an application
could wait a long time before getting the light or proximity
sensor initial state.
Change-Id: Ic41392f3626e26c4f15746c7e17c7ecd44bbb10b
remove old sensor service and implement SensorManager
on top of the new (native) SensorManger API.
Change-Id: Iddb77d498755da3e11646473a44d651f12f40281
Hand merge from ics-aah
> Utils: Fix a bug in the linear transformation code.
>
> Fix a bug where an incorrect result would be computed if you used the
> linear transformation code to do a reverse transformation (from B's
> domain into A's domain) when the scaler fraction was negative.
>
> Change-Id: I8e5f109314d235a177ab41f65d3c4cd08cff78be
> Signed-off-by: John Grossman <johngro@google.com>
Change-Id: Id90e18f685c61c1a89fd91c32adcf01363b3e8f3
Signed-off-by: John Grossman <johngro@google.com>
When the app_process is shutting down the main thread will close the
binder fd while pool threads are executing an ioctl (in
IPCThreadState::stopProcess called by AppRuntime::onStarted in
app_main.c).
The binder driver will then return all pending calls in ioctl
without any error and with a command. One of the threads gets a
BR_SPAWN_LOOPER which will create a new thread (the other thread
gets a BR_NOOP). This new thread then calls
vm->AttachCurrentThread. Usually this results in a log entry with
"AndroidRuntime: NOTE: attach of thread 'Binder Thread #3' failed",
but sometimes it also causes a SIGSEGV. This depends on the timing
between the new thread an the main thread that calls DestroyJavaVM
(in AndroidRuntime::start).
If IPCThreadState.cpp is compiled with "#define LOG_NDEBUG 0" the
pool thread will loop and hit the
ALOG_ASSERT(mProcess->mDriverFD >= 0) in
IPCThreadState::talkWithDriver.
Crashes like this has been seen when running the am command and
other commands that use the app_process.
This fix makes sure that any command that is received when the driver
fd is closed are ignored and IPCThreadState::talkWithDriver instead
returns an error which will cause the pool thread to exit and detach
itself from the vm. A check to avoid calling ioctl to a fd with -1
was also added in IPCThreadState::threadDestructor.
Another solution might be to change the binder driver so that it
returns an error when the fd is closed (or atleast not a
BR_SPAWN_LOOPER command). It might also be possible to call exit(0)
which is done when System.exit(0) is called from java.
Change-Id: I3d1f0ff64896c44be2a5994b3a90f7a06d27f429
ISurfaceTexture::dequeueBuffer now returns the buffer's fence for the
client to wait on. For BufferQueue, this means passing it through
Binder so it can be returned to the SurfaceTextureClient. Now
SurfaceTextureClient is responsible for waiting on the fence in
dequeueBuffer instead of BufferQueue: one step closer to the goal.
Change-Id: I677ae758bcd23acee2d784b8cec11b32cccc196d
After a HWC set, each SurfaceFlinger Layer retrieves the release fence
HWC returned and gives it to the layer's SurfaceTexture. The
SurfaceTexture accumulates the fences into a merged fence until the
next updateTexImage, then passes the merged fence to the BufferQueue
in releaseBuffer.
In a follow-on change, BufferQueue will return the fence along with
the buffer slot in dequeueBuffer. For now, dequeueBuffer waits for the
fence to signal before returning.
The releaseFence default value for BufferQueue::releaseBuffer() is
temporary to avoid transient build breaks with a multi-project
checkin. It'll disappear in the next change.
Change-Id: Iaa9a0d5775235585d9cbf453d3a64623d08013d9