9-axis sensor fusion with Kalman filter
Add support for 9-axis gravity and linear-acceleration sensors virtual orientation sensor using 9-axis fusion Change-Id: I6717539373fce781c10e97b6fa59f68a831a592f
This commit is contained in:
parent
a1b7db95b6
commit
984826cc15
@ -2,13 +2,18 @@ LOCAL_PATH:= $(call my-dir)
|
||||
include $(CLEAR_VARS)
|
||||
|
||||
LOCAL_SRC_FILES:= \
|
||||
GravitySensor.cpp \
|
||||
LinearAccelerationSensor.cpp \
|
||||
RotationVectorSensor.cpp \
|
||||
SensorService.cpp \
|
||||
SensorInterface.cpp \
|
||||
CorrectedGyroSensor.cpp \
|
||||
Fusion.cpp \
|
||||
GravitySensor.cpp \
|
||||
LinearAccelerationSensor.cpp \
|
||||
OrientationSensor.cpp \
|
||||
RotationVectorSensor.cpp \
|
||||
SecondOrderLowPassFilter.cpp \
|
||||
SensorDevice.cpp \
|
||||
SecondOrderLowPassFilter.cpp
|
||||
SensorFusion.cpp \
|
||||
SensorInterface.cpp \
|
||||
SensorService.cpp \
|
||||
|
||||
|
||||
LOCAL_CFLAGS:= -DLOG_TAG=\"SensorService\"
|
||||
|
||||
|
86
services/sensorservice/CorrectedGyroSensor.cpp
Normal file
86
services/sensorservice/CorrectedGyroSensor.cpp
Normal file
@ -0,0 +1,86 @@
|
||||
/*
|
||||
* Copyright (C) 2011 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <stdint.h>
|
||||
#include <math.h>
|
||||
#include <sys/types.h>
|
||||
|
||||
#include <utils/Errors.h>
|
||||
|
||||
#include <hardware/sensors.h>
|
||||
|
||||
#include "CorrectedGyroSensor.h"
|
||||
#include "SensorDevice.h"
|
||||
#include "SensorFusion.h"
|
||||
|
||||
namespace android {
|
||||
// ---------------------------------------------------------------------------
|
||||
|
||||
CorrectedGyroSensor::CorrectedGyroSensor(sensor_t const* list, size_t count)
|
||||
: mSensorDevice(SensorDevice::getInstance()),
|
||||
mSensorFusion(SensorFusion::getInstance())
|
||||
{
|
||||
for (size_t i=0 ; i<count ; i++) {
|
||||
if (list[i].type == SENSOR_TYPE_GYROSCOPE) {
|
||||
mGyro = Sensor(list + i);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool CorrectedGyroSensor::process(sensors_event_t* outEvent,
|
||||
const sensors_event_t& event)
|
||||
{
|
||||
if (event.type == SENSOR_TYPE_GYROSCOPE) {
|
||||
const vec3_t bias(mSensorFusion.getGyroBias() * mSensorFusion.getEstimatedRate());
|
||||
*outEvent = event;
|
||||
outEvent->data[0] -= bias.x;
|
||||
outEvent->data[1] -= bias.y;
|
||||
outEvent->data[2] -= bias.z;
|
||||
outEvent->sensor = '_cgy';
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
status_t CorrectedGyroSensor::activate(void* ident, bool enabled) {
|
||||
mSensorDevice.activate(this, mGyro.getHandle(), enabled);
|
||||
return mSensorFusion.activate(this, enabled);
|
||||
}
|
||||
|
||||
status_t CorrectedGyroSensor::setDelay(void* ident, int handle, int64_t ns) {
|
||||
mSensorDevice.setDelay(this, mGyro.getHandle(), ns);
|
||||
return mSensorFusion.setDelay(this, ns);
|
||||
}
|
||||
|
||||
Sensor CorrectedGyroSensor::getSensor() const {
|
||||
sensor_t hwSensor;
|
||||
hwSensor.name = "Corrected Gyroscope Sensor";
|
||||
hwSensor.vendor = "Google Inc.";
|
||||
hwSensor.version = 1;
|
||||
hwSensor.handle = '_cgy';
|
||||
hwSensor.type = SENSOR_TYPE_GYROSCOPE;
|
||||
hwSensor.maxRange = mGyro.getMaxValue();
|
||||
hwSensor.resolution = mGyro.getResolution();
|
||||
hwSensor.power = mSensorFusion.getPowerUsage();
|
||||
hwSensor.minDelay = mGyro.getMinDelay();
|
||||
Sensor sensor(&hwSensor);
|
||||
return sensor;
|
||||
}
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
}; // namespace android
|
||||
|
52
services/sensorservice/CorrectedGyroSensor.h
Normal file
52
services/sensorservice/CorrectedGyroSensor.h
Normal file
@ -0,0 +1,52 @@
|
||||
/*
|
||||
* Copyright (C) 2011 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef ANDROID_CORRECTED_GYRO_SENSOR_H
|
||||
#define ANDROID_CORRECTED_GYRO_SENSOR_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include <sys/types.h>
|
||||
|
||||
#include <gui/Sensor.h>
|
||||
|
||||
#include "SensorInterface.h"
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
namespace android {
|
||||
// ---------------------------------------------------------------------------
|
||||
|
||||
class SensorDevice;
|
||||
class SensorFusion;
|
||||
|
||||
class CorrectedGyroSensor : public SensorInterface {
|
||||
SensorDevice& mSensorDevice;
|
||||
SensorFusion& mSensorFusion;
|
||||
Sensor mGyro;
|
||||
|
||||
public:
|
||||
CorrectedGyroSensor(sensor_t const* list, size_t count);
|
||||
virtual bool process(sensors_event_t* outEvent,
|
||||
const sensors_event_t& event);
|
||||
virtual status_t activate(void* ident, bool enabled);
|
||||
virtual status_t setDelay(void* ident, int handle, int64_t ns);
|
||||
virtual Sensor getSensor() const;
|
||||
virtual bool isVirtual() const { return true; }
|
||||
};
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
}; // namespace android
|
||||
|
||||
#endif // ANDROID_CORRECTED_GYRO_SENSOR_H
|
431
services/sensorservice/Fusion.cpp
Normal file
431
services/sensorservice/Fusion.cpp
Normal file
@ -0,0 +1,431 @@
|
||||
/*
|
||||
* Copyright (C) 2011 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
#include <utils/Log.h>
|
||||
|
||||
#include "Fusion.h"
|
||||
|
||||
namespace android {
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
template <typename TYPE>
|
||||
static inline TYPE sqr(TYPE x) {
|
||||
return x*x;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static inline T clamp(T v) {
|
||||
return v < 0 ? 0 : v;
|
||||
}
|
||||
|
||||
template <typename TYPE, size_t C, size_t R>
|
||||
static mat<TYPE, R, R> scaleCovariance(
|
||||
const mat<TYPE, C, R>& A,
|
||||
const mat<TYPE, C, C>& P) {
|
||||
// A*P*transpose(A);
|
||||
mat<TYPE, R, R> APAt;
|
||||
for (size_t r=0 ; r<R ; r++) {
|
||||
for (size_t j=r ; j<R ; j++) {
|
||||
double apat(0);
|
||||
for (size_t c=0 ; c<C ; c++) {
|
||||
double v(A[c][r]*P[c][c]*0.5);
|
||||
for (size_t k=c+1 ; k<C ; k++)
|
||||
v += A[k][r] * P[c][k];
|
||||
apat += 2 * v * A[c][j];
|
||||
}
|
||||
APAt[j][r] = apat;
|
||||
APAt[r][j] = apat;
|
||||
}
|
||||
}
|
||||
return APAt;
|
||||
}
|
||||
|
||||
template <typename TYPE, typename OTHER_TYPE>
|
||||
static mat<TYPE, 3, 3> crossMatrix(const vec<TYPE, 3>& p, OTHER_TYPE diag) {
|
||||
mat<TYPE, 3, 3> r;
|
||||
r[0][0] = diag;
|
||||
r[1][1] = diag;
|
||||
r[2][2] = diag;
|
||||
r[0][1] = p.z;
|
||||
r[1][0] =-p.z;
|
||||
r[0][2] =-p.y;
|
||||
r[2][0] = p.y;
|
||||
r[1][2] = p.x;
|
||||
r[2][1] =-p.x;
|
||||
return r;
|
||||
}
|
||||
|
||||
template <typename TYPE>
|
||||
static mat<TYPE, 3, 3> MRPsToMatrix(const vec<TYPE, 3>& p) {
|
||||
mat<TYPE, 3, 3> res(1);
|
||||
const mat<TYPE, 3, 3> px(crossMatrix(p, 0));
|
||||
const TYPE ptp(dot_product(p,p));
|
||||
const TYPE t = 4/sqr(1+ptp);
|
||||
res -= t * (1-ptp) * px;
|
||||
res += t * 2 * sqr(px);
|
||||
return res;
|
||||
}
|
||||
|
||||
template <typename TYPE>
|
||||
vec<TYPE, 3> matrixToMRPs(const mat<TYPE, 3, 3>& R) {
|
||||
// matrix to MRPs
|
||||
vec<TYPE, 3> q;
|
||||
const float Hx = R[0].x;
|
||||
const float My = R[1].y;
|
||||
const float Az = R[2].z;
|
||||
const float w = 1 / (1 + sqrtf( clamp( Hx + My + Az + 1) * 0.25f ));
|
||||
q.x = sqrtf( clamp( Hx - My - Az + 1) * 0.25f ) * w;
|
||||
q.y = sqrtf( clamp(-Hx + My - Az + 1) * 0.25f ) * w;
|
||||
q.z = sqrtf( clamp(-Hx - My + Az + 1) * 0.25f ) * w;
|
||||
q.x = copysignf(q.x, R[2].y - R[1].z);
|
||||
q.y = copysignf(q.y, R[0].z - R[2].x);
|
||||
q.z = copysignf(q.z, R[1].x - R[0].y);
|
||||
return q;
|
||||
}
|
||||
|
||||
template<typename TYPE, size_t SIZE>
|
||||
class Covariance {
|
||||
mat<TYPE, SIZE, SIZE> mSumXX;
|
||||
vec<TYPE, SIZE> mSumX;
|
||||
size_t mN;
|
||||
public:
|
||||
Covariance() : mSumXX(0.0f), mSumX(0.0f), mN(0) { }
|
||||
void update(const vec<TYPE, SIZE>& x) {
|
||||
mSumXX += x*transpose(x);
|
||||
mSumX += x;
|
||||
mN++;
|
||||
}
|
||||
mat<TYPE, SIZE, SIZE> operator()() const {
|
||||
const float N = 1.0f / mN;
|
||||
return mSumXX*N - (mSumX*transpose(mSumX))*(N*N);
|
||||
}
|
||||
void reset() {
|
||||
mN = 0;
|
||||
mSumXX = 0;
|
||||
mSumX = 0;
|
||||
}
|
||||
size_t getCount() const {
|
||||
return mN;
|
||||
}
|
||||
};
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
Fusion::Fusion() {
|
||||
// process noise covariance matrix
|
||||
const float w1 = gyroSTDEV;
|
||||
const float w2 = biasSTDEV;
|
||||
Q[0] = w1*w1;
|
||||
Q[1] = w2*w2;
|
||||
|
||||
Ba.x = 0;
|
||||
Ba.y = 0;
|
||||
Ba.z = 1;
|
||||
|
||||
Bm.x = 0;
|
||||
Bm.y = 1;
|
||||
Bm.z = 0;
|
||||
|
||||
init();
|
||||
}
|
||||
|
||||
void Fusion::init() {
|
||||
// initial estimate: E{ x(t0) }
|
||||
x = 0;
|
||||
|
||||
// initial covariance: Var{ x(t0) }
|
||||
P = 0;
|
||||
|
||||
mInitState = 0;
|
||||
mCount[0] = 0;
|
||||
mCount[1] = 0;
|
||||
mCount[2] = 0;
|
||||
mData = 0;
|
||||
}
|
||||
|
||||
bool Fusion::hasEstimate() const {
|
||||
return (mInitState == (MAG|ACC|GYRO));
|
||||
}
|
||||
|
||||
bool Fusion::checkInitComplete(int what, const vec3_t& d) {
|
||||
if (mInitState == (MAG|ACC|GYRO))
|
||||
return true;
|
||||
|
||||
if (what == ACC) {
|
||||
mData[0] += d * (1/length(d));
|
||||
mCount[0]++;
|
||||
mInitState |= ACC;
|
||||
} else if (what == MAG) {
|
||||
mData[1] += d * (1/length(d));
|
||||
mCount[1]++;
|
||||
mInitState |= MAG;
|
||||
} else if (what == GYRO) {
|
||||
mData[2] += d;
|
||||
mCount[2]++;
|
||||
if (mCount[2] == 64) {
|
||||
// 64 samples is good enough to estimate the gyro drift and
|
||||
// doesn't take too much time.
|
||||
mInitState |= GYRO;
|
||||
}
|
||||
}
|
||||
|
||||
if (mInitState == (MAG|ACC|GYRO)) {
|
||||
// Average all the values we collected so far
|
||||
mData[0] *= 1.0f/mCount[0];
|
||||
mData[1] *= 1.0f/mCount[1];
|
||||
mData[2] *= 1.0f/mCount[2];
|
||||
|
||||
// calculate the MRPs from the data collection, this gives us
|
||||
// a rough estimate of our initial state
|
||||
mat33_t R;
|
||||
vec3_t up(mData[0]);
|
||||
vec3_t east(cross_product(mData[1], up));
|
||||
east *= 1/length(east);
|
||||
vec3_t north(cross_product(up, east));
|
||||
R << east << north << up;
|
||||
x[0] = matrixToMRPs(R);
|
||||
|
||||
// NOTE: we could try to use the average of the gyro data
|
||||
// to estimate the initial bias, but this only works if
|
||||
// the device is not moving. For now, we don't use that value
|
||||
// and start with a bias of 0.
|
||||
x[1] = 0;
|
||||
|
||||
// initial covariance
|
||||
P = 0;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
void Fusion::handleGyro(const vec3_t& w, float dT) {
|
||||
const vec3_t wdT(w * dT); // rad/s * s -> rad
|
||||
if (!checkInitComplete(GYRO, wdT))
|
||||
return;
|
||||
|
||||
predict(wdT);
|
||||
}
|
||||
|
||||
status_t Fusion::handleAcc(const vec3_t& a) {
|
||||
if (length(a) < 0.981f)
|
||||
return BAD_VALUE;
|
||||
|
||||
if (!checkInitComplete(ACC, a))
|
||||
return BAD_VALUE;
|
||||
|
||||
// ignore acceleration data if we're close to free-fall
|
||||
const float l = 1/length(a);
|
||||
update(a*l, Ba, accSTDEV*l);
|
||||
return NO_ERROR;
|
||||
}
|
||||
|
||||
status_t Fusion::handleMag(const vec3_t& m) {
|
||||
// the geomagnetic-field should be between 30uT and 60uT
|
||||
// reject obviously wrong magnetic-fields
|
||||
if (length(m) > 100)
|
||||
return BAD_VALUE;
|
||||
|
||||
if (!checkInitComplete(MAG, m))
|
||||
return BAD_VALUE;
|
||||
|
||||
const vec3_t up( getRotationMatrix() * Ba );
|
||||
const vec3_t east( cross_product(m, up) );
|
||||
vec3_t north( cross_product(up, east) );
|
||||
|
||||
const float l = 1 / length(north);
|
||||
north *= l;
|
||||
|
||||
#if 0
|
||||
// in practice the magnetic-field sensor is so wrong
|
||||
// that there is no point trying to use it to constantly
|
||||
// correct the gyro. instead, we use the mag-sensor only when
|
||||
// the device points north (just to give us a reference).
|
||||
// We're hoping that it'll actually point north, if it doesn't
|
||||
// we'll be offset, but at least the instantaneous posture
|
||||
// of the device will be correct.
|
||||
|
||||
const float cos_30 = 0.8660254f;
|
||||
if (dot_product(north, Bm) < cos_30)
|
||||
return BAD_VALUE;
|
||||
#endif
|
||||
|
||||
update(north, Bm, magSTDEV*l);
|
||||
return NO_ERROR;
|
||||
}
|
||||
|
||||
bool Fusion::checkState(const vec3_t& v) {
|
||||
if (isnanf(length(v))) {
|
||||
LOGW("9-axis fusion diverged. reseting state.");
|
||||
P = 0;
|
||||
x[1] = 0;
|
||||
mInitState = 0;
|
||||
mCount[0] = 0;
|
||||
mCount[1] = 0;
|
||||
mCount[2] = 0;
|
||||
mData = 0;
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
vec3_t Fusion::getAttitude() const {
|
||||
return x[0];
|
||||
}
|
||||
|
||||
vec3_t Fusion::getBias() const {
|
||||
return x[1];
|
||||
}
|
||||
|
||||
mat33_t Fusion::getRotationMatrix() const {
|
||||
return MRPsToMatrix(x[0]);
|
||||
}
|
||||
|
||||
mat33_t Fusion::getF(const vec3_t& p) {
|
||||
const float p0 = p.x;
|
||||
const float p1 = p.y;
|
||||
const float p2 = p.z;
|
||||
|
||||
// f(p, w)
|
||||
const float p0p1 = p0*p1;
|
||||
const float p0p2 = p0*p2;
|
||||
const float p1p2 = p1*p2;
|
||||
const float p0p0 = p0*p0;
|
||||
const float p1p1 = p1*p1;
|
||||
const float p2p2 = p2*p2;
|
||||
const float pp = 0.5f * (1 - (p0p0 + p1p1 + p2p2));
|
||||
|
||||
mat33_t F;
|
||||
F[0][0] = 0.5f*(p0p0 + pp);
|
||||
F[0][1] = 0.5f*(p0p1 + p2);
|
||||
F[0][2] = 0.5f*(p0p2 - p1);
|
||||
F[1][0] = 0.5f*(p0p1 - p2);
|
||||
F[1][1] = 0.5f*(p1p1 + pp);
|
||||
F[1][2] = 0.5f*(p1p2 + p0);
|
||||
F[2][0] = 0.5f*(p0p2 + p1);
|
||||
F[2][1] = 0.5f*(p1p2 - p0);
|
||||
F[2][2] = 0.5f*(p2p2 + pp);
|
||||
return F;
|
||||
}
|
||||
|
||||
mat33_t Fusion::getdFdp(const vec3_t& p, const vec3_t& we) {
|
||||
|
||||
// dF = | A = df/dp -F |
|
||||
// | 0 0 |
|
||||
|
||||
mat33_t A;
|
||||
A[0][0] = A[1][1] = A[2][2] = 0.5f * (p.x*we.x + p.y*we.y + p.z*we.z);
|
||||
A[0][1] = 0.5f * (p.y*we.x - p.x*we.y - we.z);
|
||||
A[0][2] = 0.5f * (p.z*we.x - p.x*we.z + we.y);
|
||||
A[1][2] = 0.5f * (p.z*we.y - p.y*we.z - we.x);
|
||||
A[1][0] = -A[0][1];
|
||||
A[2][0] = -A[0][2];
|
||||
A[2][1] = -A[1][2];
|
||||
return A;
|
||||
}
|
||||
|
||||
void Fusion::predict(const vec3_t& w) {
|
||||
// f(p, w)
|
||||
vec3_t& p(x[0]);
|
||||
|
||||
// There is a discontinuity at 2.pi, to avoid it we need to switch to
|
||||
// the shadow of p when pT.p gets too big.
|
||||
const float ptp(dot_product(p,p));
|
||||
if (ptp >= 2.0f) {
|
||||
p = -p * (1/ptp);
|
||||
}
|
||||
|
||||
const mat33_t F(getF(p));
|
||||
|
||||
// compute w with the bias correction:
|
||||
// w_estimated = w - b_estimated
|
||||
const vec3_t& b(x[1]);
|
||||
const vec3_t we(w - b);
|
||||
|
||||
// prediction
|
||||
const vec3_t dX(F*we);
|
||||
|
||||
if (!checkState(dX))
|
||||
return;
|
||||
|
||||
p += dX;
|
||||
|
||||
const mat33_t A(getdFdp(p, we));
|
||||
|
||||
// G = | G0 0 | = | -F 0 |
|
||||
// | 0 1 | | 0 1 |
|
||||
|
||||
// P += A*P + P*At + F*Q*Ft
|
||||
const mat33_t AP(A*transpose(P[0][0]));
|
||||
const mat33_t PAt(P[0][0]*transpose(A));
|
||||
const mat33_t FPSt(F*transpose(P[1][0]));
|
||||
const mat33_t PSFt(P[1][0]*transpose(F));
|
||||
const mat33_t FQFt(scaleCovariance(F, Q[0]));
|
||||
P[0][0] += AP + PAt - FPSt - PSFt + FQFt;
|
||||
P[1][0] += A*P[1][0] - F*P[1][1];
|
||||
P[1][1] += Q[1];
|
||||
}
|
||||
|
||||
void Fusion::update(const vec3_t& z, const vec3_t& Bi, float sigma) {
|
||||
const vec3_t p(x[0]);
|
||||
// measured vector in body space: h(p) = A(p)*Bi
|
||||
const mat33_t A(MRPsToMatrix(p));
|
||||
const vec3_t Bb(A*Bi);
|
||||
|
||||
// Sensitivity matrix H = dh(p)/dp
|
||||
// H = [ L 0 ]
|
||||
const float ptp(dot_product(p,p));
|
||||
const mat33_t px(crossMatrix(p, 0.5f*(ptp-1)));
|
||||
const mat33_t ppt(p*transpose(p));
|
||||
const mat33_t L((8 / sqr(1+ptp))*crossMatrix(Bb, 0)*(ppt-px));
|
||||
|
||||
// update...
|
||||
const mat33_t R(sigma*sigma);
|
||||
const mat33_t S(scaleCovariance(L, P[0][0]) + R);
|
||||
const mat33_t Si(invert(S));
|
||||
const mat33_t LtSi(transpose(L)*Si);
|
||||
|
||||
vec<mat33_t, 2> K;
|
||||
K[0] = P[0][0] * LtSi;
|
||||
K[1] = transpose(P[1][0])*LtSi;
|
||||
|
||||
const vec3_t e(z - Bb);
|
||||
const vec3_t K0e(K[0]*e);
|
||||
const vec3_t K1e(K[1]*e);
|
||||
|
||||
if (!checkState(K0e))
|
||||
return;
|
||||
|
||||
if (!checkState(K1e))
|
||||
return;
|
||||
|
||||
x[0] += K0e;
|
||||
x[1] += K1e;
|
||||
|
||||
// P -= K*H*P;
|
||||
const mat33_t K0L(K[0] * L);
|
||||
const mat33_t K1L(K[1] * L);
|
||||
P[0][0] -= K0L*P[0][0];
|
||||
P[1][1] -= K1L*P[1][0];
|
||||
P[1][0] -= K0L*P[1][0];
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
}; // namespace android
|
||||
|
86
services/sensorservice/Fusion.h
Normal file
86
services/sensorservice/Fusion.h
Normal file
@ -0,0 +1,86 @@
|
||||
/*
|
||||
* Copyright (C) 2011 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef ANDROID_FUSION_H
|
||||
#define ANDROID_FUSION_H
|
||||
|
||||
#include <utils/Errors.h>
|
||||
|
||||
#include "vec.h"
|
||||
#include "mat.h"
|
||||
|
||||
namespace android {
|
||||
|
||||
class Fusion {
|
||||
/*
|
||||
* the state vector is made of two sub-vector containing respectively:
|
||||
* - modified Rodrigues parameters
|
||||
* - the estimated gyro bias
|
||||
*/
|
||||
vec<vec3_t, 2> x;
|
||||
|
||||
/*
|
||||
* the predicated covariance matrix is made of 4 3x3 sub-matrices and it
|
||||
* semi-definite positive.
|
||||
*
|
||||
* P = | P00 P10 | = | P00 P10 |
|
||||
* | P01 P11 | | P10t Q1 |
|
||||
*
|
||||
* Since P01 = transpose(P10), the code below never calculates or
|
||||
* stores P01. P11 is always equal to Q1, so we don't store it either.
|
||||
*/
|
||||
mat<mat33_t, 2, 2> P;
|
||||
|
||||
/*
|
||||
* the process noise covariance matrix is made of 2 3x3 sub-matrices
|
||||
* Q0 encodes the attitude's noise
|
||||
* Q1 encodes the bias' noise
|
||||
*/
|
||||
vec<mat33_t, 2> Q;
|
||||
|
||||
static const float gyroSTDEV = 1.0e-5; // rad/s (measured 1.2e-5)
|
||||
static const float accSTDEV = 0.05f; // m/s^2 (measured 0.08 / CDD 0.05)
|
||||
static const float magSTDEV = 0.5f; // uT (measured 0.7 / CDD 0.5)
|
||||
static const float biasSTDEV = 2e-9; // rad/s^2 (guessed)
|
||||
|
||||
public:
|
||||
Fusion();
|
||||
void init();
|
||||
void handleGyro(const vec3_t& w, float dT);
|
||||
status_t handleAcc(const vec3_t& a);
|
||||
status_t handleMag(const vec3_t& m);
|
||||
vec3_t getAttitude() const;
|
||||
vec3_t getBias() const;
|
||||
mat33_t getRotationMatrix() const;
|
||||
bool hasEstimate() const;
|
||||
|
||||
private:
|
||||
vec3_t Ba, Bm;
|
||||
uint32_t mInitState;
|
||||
vec<vec3_t, 3> mData;
|
||||
size_t mCount[3];
|
||||
enum { ACC=0x1, MAG=0x2, GYRO=0x4 };
|
||||
bool checkInitComplete(int, const vec3_t&);
|
||||
bool checkState(const vec3_t& v);
|
||||
void predict(const vec3_t& w);
|
||||
void update(const vec3_t& z, const vec3_t& Bi, float sigma);
|
||||
static mat33_t getF(const vec3_t& p);
|
||||
static mat33_t getdFdp(const vec3_t& p, const vec3_t& we);
|
||||
};
|
||||
|
||||
}; // namespace android
|
||||
|
||||
#endif // ANDROID_FUSION_H
|
@ -23,16 +23,18 @@
|
||||
#include <hardware/sensors.h>
|
||||
|
||||
#include "GravitySensor.h"
|
||||
#include "SensorDevice.h"
|
||||
#include "SensorFusion.h"
|
||||
|
||||
namespace android {
|
||||
// ---------------------------------------------------------------------------
|
||||
|
||||
GravitySensor::GravitySensor(sensor_t const* list, size_t count)
|
||||
: mSensorDevice(SensorDevice::getInstance()),
|
||||
mSensorFusion(SensorFusion::getInstance()),
|
||||
mAccTime(0),
|
||||
mLowPass(M_SQRT1_2, 1.5f),
|
||||
mX(mLowPass), mY(mLowPass), mZ(mLowPass)
|
||||
|
||||
{
|
||||
for (size_t i=0 ; i<count ; i++) {
|
||||
if (list[i].type == SENSOR_TYPE_ACCELEROMETER) {
|
||||
@ -47,35 +49,52 @@ bool GravitySensor::process(sensors_event_t* outEvent,
|
||||
{
|
||||
const static double NS2S = 1.0 / 1000000000.0;
|
||||
if (event.type == SENSOR_TYPE_ACCELEROMETER) {
|
||||
float x, y, z;
|
||||
const double now = event.timestamp * NS2S;
|
||||
if (mAccTime == 0) {
|
||||
x = mX.init(event.acceleration.x);
|
||||
y = mY.init(event.acceleration.y);
|
||||
z = mZ.init(event.acceleration.z);
|
||||
vec3_t g;
|
||||
if (mSensorFusion.hasGyro()) {
|
||||
if (!mSensorFusion.hasEstimate())
|
||||
return false;
|
||||
const mat33_t R(mSensorFusion.getRotationMatrix());
|
||||
// FIXME: we need to estimate the length of gravity because
|
||||
// the accelerometer may have a small scaling error. This
|
||||
// translates to an offset in the linear-acceleration sensor.
|
||||
g = R[2] * GRAVITY_EARTH;
|
||||
} else {
|
||||
double dT = now - mAccTime;
|
||||
mLowPass.setSamplingPeriod(dT);
|
||||
x = mX(event.acceleration.x);
|
||||
y = mY(event.acceleration.y);
|
||||
z = mZ(event.acceleration.z);
|
||||
const double now = event.timestamp * NS2S;
|
||||
if (mAccTime == 0) {
|
||||
g.x = mX.init(event.acceleration.x);
|
||||
g.y = mY.init(event.acceleration.y);
|
||||
g.z = mZ.init(event.acceleration.z);
|
||||
} else {
|
||||
double dT = now - mAccTime;
|
||||
mLowPass.setSamplingPeriod(dT);
|
||||
g.x = mX(event.acceleration.x);
|
||||
g.y = mY(event.acceleration.y);
|
||||
g.z = mZ(event.acceleration.z);
|
||||
}
|
||||
g *= (GRAVITY_EARTH / length(g));
|
||||
mAccTime = now;
|
||||
}
|
||||
mAccTime = now;
|
||||
*outEvent = event;
|
||||
outEvent->data[0] = x;
|
||||
outEvent->data[1] = y;
|
||||
outEvent->data[2] = z;
|
||||
outEvent->data[0] = g.x;
|
||||
outEvent->data[1] = g.y;
|
||||
outEvent->data[2] = g.z;
|
||||
outEvent->sensor = '_grv';
|
||||
outEvent->type = SENSOR_TYPE_GRAVITY;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
status_t GravitySensor::activate(void* ident, bool enabled) {
|
||||
status_t err = mSensorDevice.activate(this, mAccelerometer.getHandle(), enabled);
|
||||
if (err == NO_ERROR) {
|
||||
if (enabled) {
|
||||
mAccTime = 0;
|
||||
status_t err;
|
||||
if (mSensorFusion.hasGyro()) {
|
||||
err = mSensorFusion.activate(this, enabled);
|
||||
} else {
|
||||
err = mSensorDevice.activate(this, mAccelerometer.getHandle(), enabled);
|
||||
if (err == NO_ERROR) {
|
||||
if (enabled) {
|
||||
mAccTime = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
return err;
|
||||
@ -83,20 +102,26 @@ status_t GravitySensor::activate(void* ident, bool enabled) {
|
||||
|
||||
status_t GravitySensor::setDelay(void* ident, int handle, int64_t ns)
|
||||
{
|
||||
return mSensorDevice.setDelay(this, mAccelerometer.getHandle(), ns);
|
||||
if (mSensorFusion.hasGyro()) {
|
||||
return mSensorFusion.setDelay(this, ns);
|
||||
} else {
|
||||
return mSensorDevice.setDelay(this, mAccelerometer.getHandle(), ns);
|
||||
}
|
||||
}
|
||||
|
||||
Sensor GravitySensor::getSensor() const {
|
||||
sensor_t hwSensor;
|
||||
hwSensor.name = "Gravity Sensor";
|
||||
hwSensor.vendor = "Google Inc.";
|
||||
hwSensor.version = 1;
|
||||
hwSensor.version = mSensorFusion.hasGyro() ? 3 : 2;
|
||||
hwSensor.handle = '_grv';
|
||||
hwSensor.type = SENSOR_TYPE_GRAVITY;
|
||||
hwSensor.maxRange = mAccelerometer.getMaxValue();
|
||||
hwSensor.maxRange = GRAVITY_EARTH * 2;
|
||||
hwSensor.resolution = mAccelerometer.getResolution();
|
||||
hwSensor.power = mAccelerometer.getPowerUsage();
|
||||
hwSensor.minDelay = mAccelerometer.getMinDelay();
|
||||
hwSensor.power = mSensorFusion.hasGyro() ?
|
||||
mSensorFusion.getPowerUsage() : mAccelerometer.getPowerUsage();
|
||||
hwSensor.minDelay = mSensorFusion.hasGyro() ?
|
||||
mSensorFusion.getMinDelay() : mAccelerometer.getMinDelay();
|
||||
Sensor sensor(&hwSensor);
|
||||
return sensor;
|
||||
}
|
||||
|
@ -22,7 +22,6 @@
|
||||
|
||||
#include <gui/Sensor.h>
|
||||
|
||||
#include "SensorDevice.h"
|
||||
#include "SensorInterface.h"
|
||||
#include "SecondOrderLowPassFilter.h"
|
||||
|
||||
@ -30,13 +29,17 @@
|
||||
namespace android {
|
||||
// ---------------------------------------------------------------------------
|
||||
|
||||
class SensorDevice;
|
||||
class SensorFusion;
|
||||
|
||||
class GravitySensor : public SensorInterface {
|
||||
SensorDevice& mSensorDevice;
|
||||
SensorFusion& mSensorFusion;
|
||||
Sensor mAccelerometer;
|
||||
double mAccTime;
|
||||
|
||||
SecondOrderLowPassFilter mLowPass;
|
||||
CascadedBiquadFilter mX, mY, mZ;
|
||||
CascadedBiquadFilter<float> mX, mY, mZ;
|
||||
|
||||
public:
|
||||
GravitySensor(sensor_t const* list, size_t count);
|
||||
|
@ -23,6 +23,8 @@
|
||||
#include <hardware/sensors.h>
|
||||
|
||||
#include "LinearAccelerationSensor.h"
|
||||
#include "SensorDevice.h"
|
||||
#include "SensorFusion.h"
|
||||
|
||||
namespace android {
|
||||
// ---------------------------------------------------------------------------
|
||||
@ -31,34 +33,29 @@ LinearAccelerationSensor::LinearAccelerationSensor(sensor_t const* list, size_t
|
||||
: mSensorDevice(SensorDevice::getInstance()),
|
||||
mGravitySensor(list, count)
|
||||
{
|
||||
mData[0] = mData[1] = mData[2] = 0;
|
||||
}
|
||||
|
||||
bool LinearAccelerationSensor::process(sensors_event_t* outEvent,
|
||||
const sensors_event_t& event)
|
||||
{
|
||||
bool result = mGravitySensor.process(outEvent, event);
|
||||
if (result) {
|
||||
if (event.type == SENSOR_TYPE_ACCELEROMETER) {
|
||||
mData[0] = event.acceleration.x;
|
||||
mData[1] = event.acceleration.y;
|
||||
mData[2] = event.acceleration.z;
|
||||
}
|
||||
outEvent->data[0] = mData[0] - outEvent->data[0];
|
||||
outEvent->data[1] = mData[1] - outEvent->data[1];
|
||||
outEvent->data[2] = mData[2] - outEvent->data[2];
|
||||
if (result && event.type == SENSOR_TYPE_ACCELEROMETER) {
|
||||
outEvent->data[0] = event.acceleration.x - outEvent->data[0];
|
||||
outEvent->data[1] = event.acceleration.y - outEvent->data[1];
|
||||
outEvent->data[2] = event.acceleration.z - outEvent->data[2];
|
||||
outEvent->sensor = '_lin';
|
||||
outEvent->type = SENSOR_TYPE_LINEAR_ACCELERATION;
|
||||
return true;
|
||||
}
|
||||
return result;
|
||||
return false;
|
||||
}
|
||||
|
||||
status_t LinearAccelerationSensor::activate(void* ident, bool enabled) {
|
||||
return mGravitySensor.activate(ident, enabled);
|
||||
return mGravitySensor.activate(this, enabled);
|
||||
}
|
||||
|
||||
status_t LinearAccelerationSensor::setDelay(void* ident, int handle, int64_t ns) {
|
||||
return mGravitySensor.setDelay(ident, handle, ns);
|
||||
return mGravitySensor.setDelay(this, handle, ns);
|
||||
}
|
||||
|
||||
Sensor LinearAccelerationSensor::getSensor() const {
|
||||
@ -66,7 +63,7 @@ Sensor LinearAccelerationSensor::getSensor() const {
|
||||
sensor_t hwSensor;
|
||||
hwSensor.name = "Linear Acceleration Sensor";
|
||||
hwSensor.vendor = "Google Inc.";
|
||||
hwSensor.version = 1;
|
||||
hwSensor.version = gsensor.getVersion();
|
||||
hwSensor.handle = '_lin';
|
||||
hwSensor.type = SENSOR_TYPE_LINEAR_ACCELERATION;
|
||||
hwSensor.maxRange = gsensor.getMaxValue();
|
||||
|
@ -22,19 +22,19 @@
|
||||
|
||||
#include <gui/Sensor.h>
|
||||
|
||||
#include "SensorDevice.h"
|
||||
#include "SensorInterface.h"
|
||||
#include "GravitySensor.h"
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
|
||||
namespace android {
|
||||
// ---------------------------------------------------------------------------
|
||||
|
||||
class SensorDevice;
|
||||
class SensorFusion;
|
||||
|
||||
class LinearAccelerationSensor : public SensorInterface {
|
||||
SensorDevice& mSensorDevice;
|
||||
GravitySensor mGravitySensor;
|
||||
float mData[3];
|
||||
|
||||
virtual bool process(sensors_event_t* outEvent,
|
||||
const sensors_event_t& event);
|
||||
|
89
services/sensorservice/OrientationSensor.cpp
Normal file
89
services/sensorservice/OrientationSensor.cpp
Normal file
@ -0,0 +1,89 @@
|
||||
/*
|
||||
* Copyright (C) 2011 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <stdint.h>
|
||||
#include <math.h>
|
||||
#include <sys/types.h>
|
||||
|
||||
#include <utils/Errors.h>
|
||||
|
||||
#include <hardware/sensors.h>
|
||||
|
||||
#include "OrientationSensor.h"
|
||||
#include "SensorDevice.h"
|
||||
#include "SensorFusion.h"
|
||||
|
||||
namespace android {
|
||||
// ---------------------------------------------------------------------------
|
||||
|
||||
OrientationSensor::OrientationSensor()
|
||||
: mSensorDevice(SensorDevice::getInstance()),
|
||||
mSensorFusion(SensorFusion::getInstance())
|
||||
{
|
||||
}
|
||||
|
||||
bool OrientationSensor::process(sensors_event_t* outEvent,
|
||||
const sensors_event_t& event)
|
||||
{
|
||||
if (event.type == SENSOR_TYPE_ACCELEROMETER) {
|
||||
if (mSensorFusion.hasEstimate()) {
|
||||
vec3_t g;
|
||||
const float rad2deg = 180 / M_PI;
|
||||
const mat33_t R(mSensorFusion.getRotationMatrix());
|
||||
g[0] = atan2f(-R[1][0], R[0][0]) * rad2deg;
|
||||
g[1] = atan2f(-R[2][1], R[2][2]) * rad2deg;
|
||||
g[2] = asinf ( R[2][0]) * rad2deg;
|
||||
if (g[0] < 0)
|
||||
g[0] += 360;
|
||||
|
||||
*outEvent = event;
|
||||
outEvent->data[0] = g.x;
|
||||
outEvent->data[1] = g.y;
|
||||
outEvent->data[2] = g.z;
|
||||
outEvent->sensor = '_ypr';
|
||||
outEvent->type = SENSOR_TYPE_ORIENTATION;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
status_t OrientationSensor::activate(void* ident, bool enabled) {
|
||||
return mSensorFusion.activate(this, enabled);
|
||||
}
|
||||
|
||||
status_t OrientationSensor::setDelay(void* ident, int handle, int64_t ns) {
|
||||
return mSensorFusion.setDelay(this, ns);
|
||||
}
|
||||
|
||||
Sensor OrientationSensor::getSensor() const {
|
||||
sensor_t hwSensor;
|
||||
hwSensor.name = "Orientation Sensor";
|
||||
hwSensor.vendor = "Google Inc.";
|
||||
hwSensor.version = 1;
|
||||
hwSensor.handle = '_ypr';
|
||||
hwSensor.type = SENSOR_TYPE_ORIENTATION;
|
||||
hwSensor.maxRange = 360.0f;
|
||||
hwSensor.resolution = 1.0f/256.0f; // FIXME: real value here
|
||||
hwSensor.power = mSensorFusion.getPowerUsage();
|
||||
hwSensor.minDelay = mSensorFusion.getMinDelay();
|
||||
Sensor sensor(&hwSensor);
|
||||
return sensor;
|
||||
}
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
}; // namespace android
|
||||
|
51
services/sensorservice/OrientationSensor.h
Normal file
51
services/sensorservice/OrientationSensor.h
Normal file
@ -0,0 +1,51 @@
|
||||
/*
|
||||
* Copyright (C) 2011 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef ANDROID_ORIENTATION_SENSOR_H
|
||||
#define ANDROID_ORIENTATION_SENSOR_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include <sys/types.h>
|
||||
|
||||
#include <gui/Sensor.h>
|
||||
|
||||
#include "SensorInterface.h"
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
namespace android {
|
||||
// ---------------------------------------------------------------------------
|
||||
|
||||
class SensorDevice;
|
||||
class SensorFusion;
|
||||
|
||||
class OrientationSensor : public SensorInterface {
|
||||
SensorDevice& mSensorDevice;
|
||||
SensorFusion& mSensorFusion;
|
||||
|
||||
public:
|
||||
OrientationSensor();
|
||||
virtual bool process(sensors_event_t* outEvent,
|
||||
const sensors_event_t& event);
|
||||
virtual status_t activate(void* ident, bool enabled);
|
||||
virtual status_t setDelay(void* ident, int handle, int64_t ns);
|
||||
virtual Sensor getSensor() const;
|
||||
virtual bool isVirtual() const { return true; }
|
||||
};
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
}; // namespace android
|
||||
|
||||
#endif // ANDROID_ORIENTATION_SENSOR_H
|
@ -32,134 +32,67 @@ static inline T clamp(T v) {
|
||||
return v < 0 ? 0 : v;
|
||||
}
|
||||
|
||||
RotationVectorSensor::RotationVectorSensor(sensor_t const* list, size_t count)
|
||||
RotationVectorSensor::RotationVectorSensor()
|
||||
: mSensorDevice(SensorDevice::getInstance()),
|
||||
mALowPass(M_SQRT1_2, 1.5f),
|
||||
mAX(mALowPass), mAY(mALowPass), mAZ(mALowPass),
|
||||
mMLowPass(M_SQRT1_2, 1.5f),
|
||||
mMX(mMLowPass), mMY(mMLowPass), mMZ(mMLowPass)
|
||||
mSensorFusion(SensorFusion::getInstance())
|
||||
{
|
||||
for (size_t i=0 ; i<count ; i++) {
|
||||
if (list[i].type == SENSOR_TYPE_ACCELEROMETER) {
|
||||
mAcc = Sensor(list + i);
|
||||
}
|
||||
if (list[i].type == SENSOR_TYPE_MAGNETIC_FIELD) {
|
||||
mMag = Sensor(list + i);
|
||||
}
|
||||
}
|
||||
memset(mMagData, 0, sizeof(mMagData));
|
||||
}
|
||||
|
||||
bool RotationVectorSensor::process(sensors_event_t* outEvent,
|
||||
const sensors_event_t& event)
|
||||
{
|
||||
const static double NS2S = 1.0 / 1000000000.0;
|
||||
if (event.type == SENSOR_TYPE_MAGNETIC_FIELD) {
|
||||
const double now = event.timestamp * NS2S;
|
||||
if (mMagTime == 0) {
|
||||
mMagData[0] = mMX.init(event.magnetic.x);
|
||||
mMagData[1] = mMY.init(event.magnetic.y);
|
||||
mMagData[2] = mMZ.init(event.magnetic.z);
|
||||
} else {
|
||||
double dT = now - mMagTime;
|
||||
mMLowPass.setSamplingPeriod(dT);
|
||||
mMagData[0] = mMX(event.magnetic.x);
|
||||
mMagData[1] = mMY(event.magnetic.y);
|
||||
mMagData[2] = mMZ(event.magnetic.z);
|
||||
}
|
||||
mMagTime = now;
|
||||
}
|
||||
if (event.type == SENSOR_TYPE_ACCELEROMETER) {
|
||||
const double now = event.timestamp * NS2S;
|
||||
float Ax, Ay, Az;
|
||||
if (mAccTime == 0) {
|
||||
Ax = mAX.init(event.acceleration.x);
|
||||
Ay = mAY.init(event.acceleration.y);
|
||||
Az = mAZ.init(event.acceleration.z);
|
||||
} else {
|
||||
double dT = now - mAccTime;
|
||||
mALowPass.setSamplingPeriod(dT);
|
||||
Ax = mAX(event.acceleration.x);
|
||||
Ay = mAY(event.acceleration.y);
|
||||
Az = mAZ(event.acceleration.z);
|
||||
if (mSensorFusion.hasEstimate()) {
|
||||
const mat33_t R(mSensorFusion.getRotationMatrix());
|
||||
|
||||
// matrix to rotation vector (normalized quaternion)
|
||||
const float Hx = R[0].x;
|
||||
const float My = R[1].y;
|
||||
const float Az = R[2].z;
|
||||
|
||||
float qw = sqrtf( clamp( Hx + My + Az + 1) * 0.25f );
|
||||
float qx = sqrtf( clamp( Hx - My - Az + 1) * 0.25f );
|
||||
float qy = sqrtf( clamp(-Hx + My - Az + 1) * 0.25f );
|
||||
float qz = sqrtf( clamp(-Hx - My + Az + 1) * 0.25f );
|
||||
qx = copysignf(qx, R[2].y - R[1].z);
|
||||
qy = copysignf(qy, R[0].z - R[2].x);
|
||||
qz = copysignf(qz, R[1].x - R[0].y);
|
||||
|
||||
// this quaternion is guaranteed to be normalized, by construction
|
||||
// of the rotation matrix.
|
||||
|
||||
*outEvent = event;
|
||||
outEvent->data[0] = qx;
|
||||
outEvent->data[1] = qy;
|
||||
outEvent->data[2] = qz;
|
||||
outEvent->data[3] = qw;
|
||||
outEvent->sensor = '_rov';
|
||||
outEvent->type = SENSOR_TYPE_ROTATION_VECTOR;
|
||||
return true;
|
||||
}
|
||||
mAccTime = now;
|
||||
const float Ex = mMagData[0];
|
||||
const float Ey = mMagData[1];
|
||||
const float Ez = mMagData[2];
|
||||
float Hx = Ey*Az - Ez*Ay;
|
||||
float Hy = Ez*Ax - Ex*Az;
|
||||
float Hz = Ex*Ay - Ey*Ax;
|
||||
const float normH = sqrtf(Hx*Hx + Hy*Hy + Hz*Hz);
|
||||
if (normH < 0.1f) {
|
||||
// device is close to free fall (or in space?), or close to
|
||||
// magnetic north pole. Typical values are > 100.
|
||||
return false;
|
||||
}
|
||||
const float invH = 1.0f / normH;
|
||||
const float invA = 1.0f / sqrtf(Ax*Ax + Ay*Ay + Az*Az);
|
||||
Hx *= invH;
|
||||
Hy *= invH;
|
||||
Hz *= invH;
|
||||
Ax *= invA;
|
||||
Ay *= invA;
|
||||
Az *= invA;
|
||||
const float Mx = Ay*Hz - Az*Hy;
|
||||
const float My = Az*Hx - Ax*Hz;
|
||||
const float Mz = Ax*Hy - Ay*Hx;
|
||||
|
||||
// matrix to rotation vector (normalized quaternion)
|
||||
float qw = sqrtf( clamp( Hx + My + Az + 1) * 0.25f );
|
||||
float qx = sqrtf( clamp( Hx - My - Az + 1) * 0.25f );
|
||||
float qy = sqrtf( clamp(-Hx + My - Az + 1) * 0.25f );
|
||||
float qz = sqrtf( clamp(-Hx - My + Az + 1) * 0.25f );
|
||||
qx = copysignf(qx, Ay - Mz);
|
||||
qy = copysignf(qy, Hz - Ax);
|
||||
qz = copysignf(qz, Mx - Hy);
|
||||
|
||||
// this quaternion is guaranteed to be normalized, by construction
|
||||
// of the rotation matrix.
|
||||
|
||||
*outEvent = event;
|
||||
outEvent->data[0] = qx;
|
||||
outEvent->data[1] = qy;
|
||||
outEvent->data[2] = qz;
|
||||
outEvent->data[3] = qw;
|
||||
outEvent->sensor = '_rov';
|
||||
outEvent->type = SENSOR_TYPE_ROTATION_VECTOR;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
status_t RotationVectorSensor::activate(void* ident, bool enabled) {
|
||||
mSensorDevice.activate(this, mAcc.getHandle(), enabled);
|
||||
mSensorDevice.activate(this, mMag.getHandle(), enabled);
|
||||
if (enabled) {
|
||||
mMagTime = 0;
|
||||
mAccTime = 0;
|
||||
}
|
||||
return NO_ERROR;
|
||||
return mSensorFusion.activate(this, enabled);
|
||||
}
|
||||
|
||||
status_t RotationVectorSensor::setDelay(void* ident, int handle, int64_t ns)
|
||||
{
|
||||
mSensorDevice.setDelay(this, mAcc.getHandle(), ns);
|
||||
mSensorDevice.setDelay(this, mMag.getHandle(), ns);
|
||||
return NO_ERROR;
|
||||
status_t RotationVectorSensor::setDelay(void* ident, int handle, int64_t ns) {
|
||||
return mSensorFusion.setDelay(this, ns);
|
||||
}
|
||||
|
||||
Sensor RotationVectorSensor::getSensor() const {
|
||||
sensor_t hwSensor;
|
||||
hwSensor.name = "Rotation Vector Sensor";
|
||||
hwSensor.vendor = "Google Inc.";
|
||||
hwSensor.version = 1;
|
||||
hwSensor.version = mSensorFusion.hasGyro() ? 3 : 2;
|
||||
hwSensor.handle = '_rov';
|
||||
hwSensor.type = SENSOR_TYPE_ROTATION_VECTOR;
|
||||
hwSensor.maxRange = 1;
|
||||
hwSensor.resolution = 1.0f / (1<<24);
|
||||
hwSensor.power = mAcc.getPowerUsage() + mMag.getPowerUsage();
|
||||
hwSensor.minDelay = mAcc.getMinDelay();
|
||||
hwSensor.power = mSensorFusion.getPowerUsage();
|
||||
hwSensor.minDelay = mSensorFusion.getMinDelay();
|
||||
Sensor sensor(&hwSensor);
|
||||
return sensor;
|
||||
}
|
||||
|
@ -26,24 +26,19 @@
|
||||
#include "SensorInterface.h"
|
||||
#include "SecondOrderLowPassFilter.h"
|
||||
|
||||
#include "Fusion.h"
|
||||
#include "SensorFusion.h"
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
namespace android {
|
||||
// ---------------------------------------------------------------------------
|
||||
|
||||
class RotationVectorSensor : public SensorInterface {
|
||||
SensorDevice& mSensorDevice;
|
||||
Sensor mAcc;
|
||||
Sensor mMag;
|
||||
float mMagData[3];
|
||||
double mAccTime;
|
||||
double mMagTime;
|
||||
SecondOrderLowPassFilter mALowPass;
|
||||
CascadedBiquadFilter mAX, mAY, mAZ;
|
||||
SecondOrderLowPassFilter mMLowPass;
|
||||
CascadedBiquadFilter mMX, mMY, mMZ;
|
||||
SensorFusion& mSensorFusion;
|
||||
|
||||
public:
|
||||
RotationVectorSensor(sensor_t const* list, size_t count);
|
||||
RotationVectorSensor();
|
||||
virtual bool process(sensors_event_t* outEvent,
|
||||
const sensors_event_t& event);
|
||||
virtual status_t activate(void* ident, bool enabled);
|
||||
|
@ -21,6 +21,7 @@
|
||||
#include <cutils/log.h>
|
||||
|
||||
#include "SecondOrderLowPassFilter.h"
|
||||
#include "vec.h"
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
|
||||
@ -44,21 +45,24 @@ void SecondOrderLowPassFilter::setSamplingPeriod(float dT)
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
|
||||
BiquadFilter::BiquadFilter(const SecondOrderLowPassFilter& s)
|
||||
template<typename T>
|
||||
BiquadFilter<T>::BiquadFilter(const SecondOrderLowPassFilter& s)
|
||||
: s(s)
|
||||
{
|
||||
}
|
||||
|
||||
float BiquadFilter::init(float x)
|
||||
template<typename T>
|
||||
T BiquadFilter<T>::init(const T& x)
|
||||
{
|
||||
x1 = x2 = x;
|
||||
y1 = y2 = x;
|
||||
return x;
|
||||
}
|
||||
|
||||
float BiquadFilter::operator()(float x)
|
||||
template<typename T>
|
||||
T BiquadFilter<T>::operator()(const T& x)
|
||||
{
|
||||
float y = (x + x2)*s.a0 + x1*s.a1 - y1*s.b1 - y2*s.b2;
|
||||
T y = (x + x2)*s.a0 + x1*s.a1 - y1*s.b1 - y2*s.b2;
|
||||
x2 = x1;
|
||||
y2 = y1;
|
||||
x1 = x;
|
||||
@ -68,22 +72,32 @@ float BiquadFilter::operator()(float x)
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
|
||||
CascadedBiquadFilter::CascadedBiquadFilter(const SecondOrderLowPassFilter& s)
|
||||
template<typename T>
|
||||
CascadedBiquadFilter<T>::CascadedBiquadFilter(const SecondOrderLowPassFilter& s)
|
||||
: mA(s), mB(s)
|
||||
{
|
||||
}
|
||||
|
||||
float CascadedBiquadFilter::init(float x)
|
||||
template<typename T>
|
||||
T CascadedBiquadFilter<T>::init(const T& x)
|
||||
{
|
||||
mA.init(x);
|
||||
mB.init(x);
|
||||
return x;
|
||||
}
|
||||
|
||||
float CascadedBiquadFilter::operator()(float x)
|
||||
template<typename T>
|
||||
T CascadedBiquadFilter<T>::operator()(const T& x)
|
||||
{
|
||||
return mB(mA(x));
|
||||
}
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
|
||||
template class BiquadFilter<float>;
|
||||
template class CascadedBiquadFilter<float>;
|
||||
template class BiquadFilter<vec3_t>;
|
||||
template class CascadedBiquadFilter<vec3_t>;
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
}; // namespace android
|
||||
|
@ -25,12 +25,14 @@
|
||||
namespace android {
|
||||
// ---------------------------------------------------------------------------
|
||||
|
||||
template<typename T>
|
||||
class BiquadFilter;
|
||||
|
||||
/*
|
||||
* State of a 2nd order low-pass IIR filter
|
||||
*/
|
||||
class SecondOrderLowPassFilter {
|
||||
template<typename T>
|
||||
friend class BiquadFilter;
|
||||
float iQ, fc;
|
||||
float K, iD;
|
||||
@ -44,27 +46,29 @@ public:
|
||||
/*
|
||||
* Implements a Biquad IIR filter
|
||||
*/
|
||||
template<typename T>
|
||||
class BiquadFilter {
|
||||
float x1, x2;
|
||||
float y1, y2;
|
||||
T x1, x2;
|
||||
T y1, y2;
|
||||
const SecondOrderLowPassFilter& s;
|
||||
public:
|
||||
BiquadFilter(const SecondOrderLowPassFilter& s);
|
||||
float init(float in);
|
||||
float operator()(float in);
|
||||
T init(const T& in);
|
||||
T operator()(const T& in);
|
||||
};
|
||||
|
||||
/*
|
||||
* Two cascaded biquad IIR filters
|
||||
* (4-poles IIR)
|
||||
*/
|
||||
template<typename T>
|
||||
class CascadedBiquadFilter {
|
||||
BiquadFilter mA;
|
||||
BiquadFilter mB;
|
||||
BiquadFilter<T> mA;
|
||||
BiquadFilter<T> mB;
|
||||
public:
|
||||
CascadedBiquadFilter(const SecondOrderLowPassFilter& s);
|
||||
float init(float in);
|
||||
float operator()(float in);
|
||||
T init(const T& in);
|
||||
T operator()(const T& in);
|
||||
};
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
|
@ -251,6 +251,9 @@ status_t SensorDevice::setDelay(void* ident, int handle, int64_t ns)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//LOGD("setDelay: ident=%p, handle=%d, ns=%lld", ident, handle, ns);
|
||||
|
||||
return mSensorDevice->setDelay(mSensorDevice, handle, ns);
|
||||
}
|
||||
|
||||
|
180
services/sensorservice/SensorFusion.cpp
Normal file
180
services/sensorservice/SensorFusion.cpp
Normal file
@ -0,0 +1,180 @@
|
||||
/*
|
||||
* Copyright (C) 2011 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "SensorDevice.h"
|
||||
#include "SensorFusion.h"
|
||||
#include "SensorService.h"
|
||||
|
||||
namespace android {
|
||||
// ---------------------------------------------------------------------------
|
||||
|
||||
ANDROID_SINGLETON_STATIC_INSTANCE(SensorFusion)
|
||||
|
||||
SensorFusion::SensorFusion()
|
||||
: mSensorDevice(SensorDevice::getInstance()),
|
||||
mEnabled(false), mHasGyro(false), mGyroTime(0), mRotationMatrix(1),
|
||||
mLowPass(M_SQRT1_2, 1.0f), mAccData(mLowPass),
|
||||
mFilteredMag(0.0f), mFilteredAcc(0.0f)
|
||||
{
|
||||
sensor_t const* list;
|
||||
size_t count = mSensorDevice.getSensorList(&list);
|
||||
for (size_t i=0 ; i<count ; i++) {
|
||||
if (list[i].type == SENSOR_TYPE_ACCELEROMETER) {
|
||||
mAcc = Sensor(list + i);
|
||||
}
|
||||
if (list[i].type == SENSOR_TYPE_MAGNETIC_FIELD) {
|
||||
mMag = Sensor(list + i);
|
||||
}
|
||||
if (list[i].type == SENSOR_TYPE_GYROSCOPE) {
|
||||
mGyro = Sensor(list + i);
|
||||
// 200 Hz for gyro events is a good compromise between precision
|
||||
// and power/cpu usage.
|
||||
mTargetDelayNs = 1000000000LL/200;
|
||||
mGyroRate = 1000000000.0f / mTargetDelayNs;
|
||||
mHasGyro = true;
|
||||
}
|
||||
}
|
||||
mFusion.init();
|
||||
mAccData.init(vec3_t(0.0f));
|
||||
}
|
||||
|
||||
void SensorFusion::process(const sensors_event_t& event) {
|
||||
|
||||
if (event.type == SENSOR_TYPE_GYROSCOPE && mHasGyro) {
|
||||
if (mGyroTime != 0) {
|
||||
const float dT = (event.timestamp - mGyroTime) / 1000000000.0f;
|
||||
const float freq = 1 / dT;
|
||||
const float alpha = 2 / (2 + dT); // 2s time-constant
|
||||
mGyroRate = mGyroRate*alpha + freq*(1 - alpha);
|
||||
}
|
||||
mGyroTime = event.timestamp;
|
||||
mFusion.handleGyro(vec3_t(event.data), 1.0f/mGyroRate);
|
||||
} else if (event.type == SENSOR_TYPE_MAGNETIC_FIELD) {
|
||||
const vec3_t mag(event.data);
|
||||
if (mHasGyro) {
|
||||
mFusion.handleMag(mag);
|
||||
} else {
|
||||
const float l(length(mag));
|
||||
if (l>5 && l<100) {
|
||||
mFilteredMag = mag * (1/l);
|
||||
}
|
||||
}
|
||||
} else if (event.type == SENSOR_TYPE_ACCELEROMETER) {
|
||||
const vec3_t acc(event.data);
|
||||
if (mHasGyro) {
|
||||
mFusion.handleAcc(acc);
|
||||
mRotationMatrix = mFusion.getRotationMatrix();
|
||||
} else {
|
||||
const float l(length(acc));
|
||||
if (l > 0.981f) {
|
||||
// remove the linear-acceleration components
|
||||
mFilteredAcc = mAccData(acc * (1/l));
|
||||
}
|
||||
if (length(mFilteredAcc)>0 && length(mFilteredMag)>0) {
|
||||
vec3_t up(mFilteredAcc);
|
||||
vec3_t east(cross_product(mFilteredMag, up));
|
||||
east *= 1/length(east);
|
||||
vec3_t north(cross_product(up, east));
|
||||
mRotationMatrix << east << north << up;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T> inline T min(T a, T b) { return a<b ? a : b; }
|
||||
template <typename T> inline T max(T a, T b) { return a>b ? a : b; }
|
||||
|
||||
status_t SensorFusion::activate(void* ident, bool enabled) {
|
||||
|
||||
LOGD_IF(DEBUG_CONNECTIONS,
|
||||
"SensorFusion::activate(ident=%p, enabled=%d)",
|
||||
ident, enabled);
|
||||
|
||||
const ssize_t idx = mClients.indexOf(ident);
|
||||
if (enabled) {
|
||||
if (idx < 0) {
|
||||
mClients.add(ident);
|
||||
}
|
||||
} else {
|
||||
if (idx >= 0) {
|
||||
mClients.removeItemsAt(idx);
|
||||
}
|
||||
}
|
||||
|
||||
mSensorDevice.activate(ident, mAcc.getHandle(), enabled);
|
||||
mSensorDevice.activate(ident, mMag.getHandle(), enabled);
|
||||
if (mHasGyro) {
|
||||
mSensorDevice.activate(ident, mGyro.getHandle(), enabled);
|
||||
}
|
||||
|
||||
const bool newState = mClients.size() != 0;
|
||||
if (newState != mEnabled) {
|
||||
mEnabled = newState;
|
||||
if (newState) {
|
||||
mFusion.init();
|
||||
}
|
||||
}
|
||||
return NO_ERROR;
|
||||
}
|
||||
|
||||
status_t SensorFusion::setDelay(void* ident, int64_t ns) {
|
||||
if (mHasGyro) {
|
||||
mSensorDevice.setDelay(ident, mAcc.getHandle(), ns);
|
||||
mSensorDevice.setDelay(ident, mMag.getHandle(), ms2ns(20));
|
||||
mSensorDevice.setDelay(ident, mGyro.getHandle(), mTargetDelayNs);
|
||||
} else {
|
||||
const static double NS2S = 1.0 / 1000000000.0;
|
||||
mSensorDevice.setDelay(ident, mAcc.getHandle(), ns);
|
||||
mSensorDevice.setDelay(ident, mMag.getHandle(), max(ns, mMag.getMinDelayNs()));
|
||||
mLowPass.setSamplingPeriod(ns*NS2S);
|
||||
}
|
||||
return NO_ERROR;
|
||||
}
|
||||
|
||||
|
||||
float SensorFusion::getPowerUsage() const {
|
||||
float power = mAcc.getPowerUsage() + mMag.getPowerUsage();
|
||||
if (mHasGyro) {
|
||||
power += mGyro.getPowerUsage();
|
||||
}
|
||||
return power;
|
||||
}
|
||||
|
||||
int32_t SensorFusion::getMinDelay() const {
|
||||
return mAcc.getMinDelay();
|
||||
}
|
||||
|
||||
void SensorFusion::dump(String8& result, char* buffer, size_t SIZE) {
|
||||
const Fusion& fusion(mFusion);
|
||||
snprintf(buffer, SIZE, "Fusion (%s) %s (%d clients), gyro-rate=%7.2fHz, "
|
||||
"MRPS=< %g, %g, %g > (%g), "
|
||||
"BIAS=< %g, %g, %g >\n",
|
||||
mHasGyro ? "9-axis" : "6-axis",
|
||||
mEnabled ? "enabled" : "disabled",
|
||||
mClients.size(),
|
||||
mGyroRate,
|
||||
fusion.getAttitude().x,
|
||||
fusion.getAttitude().y,
|
||||
fusion.getAttitude().z,
|
||||
dot_product(fusion.getAttitude(), fusion.getAttitude()),
|
||||
fusion.getBias().x,
|
||||
fusion.getBias().y,
|
||||
fusion.getBias().z);
|
||||
result.append(buffer);
|
||||
}
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
}; // namespace android
|
84
services/sensorservice/SensorFusion.h
Normal file
84
services/sensorservice/SensorFusion.h
Normal file
@ -0,0 +1,84 @@
|
||||
/*
|
||||
* Copyright (C) 2011 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef ANDROID_SENSOR_FUSION_H
|
||||
#define ANDROID_SENSOR_FUSION_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include <sys/types.h>
|
||||
|
||||
#include <utils/SortedVector.h>
|
||||
#include <utils/Singleton.h>
|
||||
#include <utils/String8.h>
|
||||
|
||||
#include <gui/Sensor.h>
|
||||
|
||||
#include "Fusion.h"
|
||||
#include "SecondOrderLowPassFilter.h"
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
|
||||
namespace android {
|
||||
// ---------------------------------------------------------------------------
|
||||
|
||||
class SensorDevice;
|
||||
|
||||
class SensorFusion : public Singleton<SensorFusion> {
|
||||
friend class Singleton<SensorFusion>;
|
||||
|
||||
SensorDevice& mSensorDevice;
|
||||
Sensor mAcc;
|
||||
Sensor mMag;
|
||||
Sensor mGyro;
|
||||
Fusion mFusion;
|
||||
bool mEnabled;
|
||||
bool mHasGyro;
|
||||
float mGyroRate;
|
||||
nsecs_t mTargetDelayNs;
|
||||
nsecs_t mGyroTime;
|
||||
mat33_t mRotationMatrix;
|
||||
SecondOrderLowPassFilter mLowPass;
|
||||
BiquadFilter<vec3_t> mAccData;
|
||||
vec3_t mFilteredMag;
|
||||
vec3_t mFilteredAcc;
|
||||
SortedVector<void*> mClients;
|
||||
|
||||
SensorFusion();
|
||||
|
||||
public:
|
||||
void process(const sensors_event_t& event);
|
||||
|
||||
bool isEnabled() const { return mEnabled; }
|
||||
bool hasGyro() const { return mHasGyro; }
|
||||
bool hasEstimate() const { return !mHasGyro || mFusion.hasEstimate(); }
|
||||
mat33_t getRotationMatrix() const { return mRotationMatrix; }
|
||||
vec3_t getGyroBias() const { return mFusion.getBias(); }
|
||||
float getEstimatedRate() const { return mGyroRate; }
|
||||
|
||||
status_t activate(void* ident, bool enabled);
|
||||
status_t setDelay(void* ident, int64_t ns);
|
||||
|
||||
float getPowerUsage() const;
|
||||
int32_t getMinDelay() const;
|
||||
|
||||
void dump(String8& result, char* buffer, size_t SIZE);
|
||||
};
|
||||
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
}; // namespace android
|
||||
|
||||
#endif // ANDROID_SENSOR_FUSION_H
|
@ -20,8 +20,6 @@
|
||||
#include <stdint.h>
|
||||
#include <sys/types.h>
|
||||
|
||||
#include <utils/Singleton.h>
|
||||
|
||||
#include <gui/Sensor.h>
|
||||
|
||||
#include "SensorDevice.h"
|
||||
|
@ -35,10 +35,13 @@
|
||||
|
||||
#include <hardware/sensors.h>
|
||||
|
||||
#include "SensorService.h"
|
||||
#include "CorrectedGyroSensor.h"
|
||||
#include "GravitySensor.h"
|
||||
#include "LinearAccelerationSensor.h"
|
||||
#include "OrientationSensor.h"
|
||||
#include "RotationVectorSensor.h"
|
||||
#include "SensorFusion.h"
|
||||
#include "SensorService.h"
|
||||
|
||||
namespace android {
|
||||
// ---------------------------------------------------------------------------
|
||||
@ -74,14 +77,26 @@ void SensorService::onFirstRef()
|
||||
}
|
||||
}
|
||||
|
||||
if (virtualSensorsNeeds & (1<<SENSOR_TYPE_GRAVITY)) {
|
||||
registerVirtualSensor( new GravitySensor(list, count) );
|
||||
}
|
||||
if (virtualSensorsNeeds & (1<<SENSOR_TYPE_LINEAR_ACCELERATION)) {
|
||||
registerVirtualSensor( new LinearAccelerationSensor(list, count) );
|
||||
}
|
||||
if (virtualSensorsNeeds & (1<<SENSOR_TYPE_ROTATION_VECTOR)) {
|
||||
registerVirtualSensor( new RotationVectorSensor(list, count) );
|
||||
// it's safe to instantiate the SensorFusion object here
|
||||
// (it wants to be instantiated after h/w sensors have been
|
||||
// registered)
|
||||
const SensorFusion& fusion(SensorFusion::getInstance());
|
||||
|
||||
// Always instantiate Android's virtual sensors. Since they are
|
||||
// instantiated behind sensors from the HAL, they won't
|
||||
// interfere with applications, unless they looks specifically
|
||||
// for them (by name).
|
||||
|
||||
registerVirtualSensor( new RotationVectorSensor() );
|
||||
registerVirtualSensor( new GravitySensor(list, count) );
|
||||
registerVirtualSensor( new LinearAccelerationSensor(list, count) );
|
||||
|
||||
// if we have a gyro, we have the option of enabling these
|
||||
// "better" orientation and gyro sensors
|
||||
if (fusion.hasGyro()) {
|
||||
// FIXME: OrientationSensor buggy when not pointing north
|
||||
registerVirtualSensor( new OrientationSensor() );
|
||||
registerVirtualSensor( new CorrectedGyroSensor(list, count) );
|
||||
}
|
||||
|
||||
run("SensorService", PRIORITY_URGENT_DISPLAY);
|
||||
@ -133,7 +148,9 @@ status_t SensorService::dump(int fd, const Vector<String16>& args)
|
||||
for (size_t i=0 ; i<mSensorList.size() ; i++) {
|
||||
const Sensor& s(mSensorList[i]);
|
||||
const sensors_event_t& e(mLastEventSeen.valueFor(s.getHandle()));
|
||||
snprintf(buffer, SIZE, "%-48s| %-32s | 0x%08x | maxRate=%7.2fHz | last=<%5.1f,%5.1f,%5.1f>\n",
|
||||
snprintf(buffer, SIZE,
|
||||
"%-48s| %-32s | 0x%08x | maxRate=%7.2fHz | "
|
||||
"last=<%5.1f,%5.1f,%5.1f>\n",
|
||||
s.getName().string(),
|
||||
s.getVendor().string(),
|
||||
s.getHandle(),
|
||||
@ -141,6 +158,7 @@ status_t SensorService::dump(int fd, const Vector<String16>& args)
|
||||
e.data[0], e.data[1], e.data[2]);
|
||||
result.append(buffer);
|
||||
}
|
||||
SensorFusion::getInstance().dump(result, buffer, SIZE);
|
||||
SensorDevice::getInstance().dump(result, buffer, SIZE);
|
||||
|
||||
snprintf(buffer, SIZE, "%d active connections\n",
|
||||
@ -183,13 +201,19 @@ bool SensorService::threadLoop()
|
||||
|
||||
// handle virtual sensors
|
||||
if (count && vcount) {
|
||||
sensors_event_t const * const event = buffer;
|
||||
const DefaultKeyedVector<int, SensorInterface*> virtualSensors(
|
||||
getActiveVirtualSensors());
|
||||
const size_t activeVirtualSensorCount = virtualSensors.size();
|
||||
if (activeVirtualSensorCount) {
|
||||
size_t k = 0;
|
||||
SensorFusion& fusion(SensorFusion::getInstance());
|
||||
if (fusion.isEnabled()) {
|
||||
for (size_t i=0 ; i<size_t(count) ; i++) {
|
||||
fusion.process(event[i]);
|
||||
}
|
||||
}
|
||||
for (size_t i=0 ; i<size_t(count) ; i++) {
|
||||
sensors_event_t const * const event = buffer;
|
||||
for (size_t j=0 ; j<activeVirtualSensorCount ; j++) {
|
||||
sensors_event_t out;
|
||||
if (virtualSensors.valueAt(j)->process(&out, event[i])) {
|
||||
|
370
services/sensorservice/mat.h
Normal file
370
services/sensorservice/mat.h
Normal file
@ -0,0 +1,370 @@
|
||||
/*
|
||||
* Copyright (C) 2011 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef ANDROID_MAT_H
|
||||
#define ANDROID_MAT_H
|
||||
|
||||
#include "vec.h"
|
||||
#include "traits.h"
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
namespace android {
|
||||
|
||||
template <typename TYPE, size_t C, size_t R>
|
||||
class mat;
|
||||
|
||||
namespace helpers {
|
||||
|
||||
template <typename TYPE, size_t C, size_t R>
|
||||
mat<TYPE, C, R>& doAssign(
|
||||
mat<TYPE, C, R>& lhs,
|
||||
typename TypeTraits<TYPE>::ParameterType rhs) {
|
||||
for (size_t i=0 ; i<C ; i++)
|
||||
for (size_t j=0 ; j<R ; j++)
|
||||
lhs[i][j] = (i==j) ? rhs : 0;
|
||||
return lhs;
|
||||
}
|
||||
|
||||
template <typename TYPE, size_t C, size_t R, size_t D>
|
||||
mat<TYPE, C, R> PURE doMul(
|
||||
const mat<TYPE, D, R>& lhs,
|
||||
const mat<TYPE, C, D>& rhs)
|
||||
{
|
||||
mat<TYPE, C, R> res;
|
||||
for (size_t c=0 ; c<C ; c++) {
|
||||
for (size_t r=0 ; r<R ; r++) {
|
||||
TYPE v(0);
|
||||
for (size_t k=0 ; k<D ; k++) {
|
||||
v += lhs[k][r] * rhs[c][k];
|
||||
}
|
||||
res[c][r] = v;
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
template <typename TYPE, size_t R, size_t D>
|
||||
vec<TYPE, R> PURE doMul(
|
||||
const mat<TYPE, D, R>& lhs,
|
||||
const vec<TYPE, D>& rhs)
|
||||
{
|
||||
vec<TYPE, R> res;
|
||||
for (size_t r=0 ; r<R ; r++) {
|
||||
TYPE v(0);
|
||||
for (size_t k=0 ; k<D ; k++) {
|
||||
v += lhs[k][r] * rhs[k];
|
||||
}
|
||||
res[r] = v;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
template <typename TYPE, size_t C, size_t R>
|
||||
mat<TYPE, C, R> PURE doMul(
|
||||
const vec<TYPE, R>& lhs,
|
||||
const mat<TYPE, C, 1>& rhs)
|
||||
{
|
||||
mat<TYPE, C, R> res;
|
||||
for (size_t c=0 ; c<C ; c++) {
|
||||
for (size_t r=0 ; r<R ; r++) {
|
||||
res[c][r] = lhs[r] * rhs[c][0];
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
template <typename TYPE, size_t C, size_t R>
|
||||
mat<TYPE, C, R> PURE doMul(
|
||||
const mat<TYPE, C, R>& rhs,
|
||||
typename TypeTraits<TYPE>::ParameterType v)
|
||||
{
|
||||
mat<TYPE, C, R> res;
|
||||
for (size_t c=0 ; c<C ; c++) {
|
||||
for (size_t r=0 ; r<R ; r++) {
|
||||
res[c][r] = rhs[c][r] * v;
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
template <typename TYPE, size_t C, size_t R>
|
||||
mat<TYPE, C, R> PURE doMul(
|
||||
typename TypeTraits<TYPE>::ParameterType v,
|
||||
const mat<TYPE, C, R>& rhs)
|
||||
{
|
||||
mat<TYPE, C, R> res;
|
||||
for (size_t c=0 ; c<C ; c++) {
|
||||
for (size_t r=0 ; r<R ; r++) {
|
||||
res[c][r] = v * rhs[c][r];
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
}; // namespace helpers
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
template <typename TYPE, size_t C, size_t R>
|
||||
class mat : public vec< vec<TYPE, R>, C > {
|
||||
typedef typename TypeTraits<TYPE>::ParameterType pTYPE;
|
||||
typedef vec< vec<TYPE, R>, C > base;
|
||||
public:
|
||||
// STL-like interface.
|
||||
typedef TYPE value_type;
|
||||
typedef TYPE& reference;
|
||||
typedef TYPE const& const_reference;
|
||||
typedef size_t size_type;
|
||||
size_type size() const { return R*C; }
|
||||
enum { ROWS = R, COLS = C };
|
||||
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
// default constructors
|
||||
|
||||
mat() { }
|
||||
mat(const mat& rhs) : base(rhs) { }
|
||||
mat(const base& rhs) : base(rhs) { }
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
// conversion constructors
|
||||
|
||||
// sets the diagonal to the value, off-diagonal to zero
|
||||
mat(pTYPE rhs) {
|
||||
helpers::doAssign(*this, rhs);
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
// Assignment
|
||||
|
||||
mat& operator=(const mat& rhs) {
|
||||
base::operator=(rhs);
|
||||
return *this;
|
||||
}
|
||||
|
||||
mat& operator=(const base& rhs) {
|
||||
base::operator=(rhs);
|
||||
return *this;
|
||||
}
|
||||
|
||||
mat& operator=(pTYPE rhs) {
|
||||
return helpers::doAssign(*this, rhs);
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
// non-member function declaration and definition
|
||||
|
||||
friend inline mat PURE operator + (const mat& lhs, const mat& rhs) {
|
||||
return helpers::doAdd(
|
||||
static_cast<const base&>(lhs),
|
||||
static_cast<const base&>(rhs));
|
||||
}
|
||||
friend inline mat PURE operator - (const mat& lhs, const mat& rhs) {
|
||||
return helpers::doSub(
|
||||
static_cast<const base&>(lhs),
|
||||
static_cast<const base&>(rhs));
|
||||
}
|
||||
|
||||
// matrix*matrix
|
||||
template <size_t D>
|
||||
friend mat PURE operator * (
|
||||
const mat<TYPE, D, R>& lhs,
|
||||
const mat<TYPE, C, D>& rhs) {
|
||||
return helpers::doMul(lhs, rhs);
|
||||
}
|
||||
|
||||
// matrix*vector
|
||||
friend vec<TYPE, R> PURE operator * (
|
||||
const mat& lhs, const vec<TYPE, C>& rhs) {
|
||||
return helpers::doMul(lhs, rhs);
|
||||
}
|
||||
|
||||
// vector*matrix
|
||||
friend mat PURE operator * (
|
||||
const vec<TYPE, R>& lhs, const mat<TYPE, C, 1>& rhs) {
|
||||
return helpers::doMul(lhs, rhs);
|
||||
}
|
||||
|
||||
// matrix*scalar
|
||||
friend inline mat PURE operator * (const mat& lhs, pTYPE v) {
|
||||
return helpers::doMul(lhs, v);
|
||||
}
|
||||
|
||||
// scalar*matrix
|
||||
friend inline mat PURE operator * (pTYPE v, const mat& rhs) {
|
||||
return helpers::doMul(v, rhs);
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
// streaming operator to set the columns of the matrix:
|
||||
// example:
|
||||
// mat33_t m;
|
||||
// m << v0 << v1 << v2;
|
||||
|
||||
// column_builder<> stores the matrix and knows which column to set
|
||||
template<size_t PREV_COLUMN>
|
||||
struct column_builder {
|
||||
mat& matrix;
|
||||
column_builder(mat& matrix) : matrix(matrix) { }
|
||||
};
|
||||
|
||||
// operator << is not a method of column_builder<> so we can
|
||||
// overload it for unauthorized values (partial specialization
|
||||
// not allowed in class-scope).
|
||||
// we just set the column and return the next column_builder<>
|
||||
template<size_t PREV_COLUMN>
|
||||
friend column_builder<PREV_COLUMN+1> operator << (
|
||||
const column_builder<PREV_COLUMN>& lhs,
|
||||
const vec<TYPE, R>& rhs) {
|
||||
lhs.matrix[PREV_COLUMN+1] = rhs;
|
||||
return column_builder<PREV_COLUMN+1>(lhs.matrix);
|
||||
}
|
||||
|
||||
// we return void here so we get a compile-time error if the
|
||||
// user tries to set too many columns
|
||||
friend void operator << (
|
||||
const column_builder<C-2>& lhs,
|
||||
const vec<TYPE, R>& rhs) {
|
||||
lhs.matrix[C-1] = rhs;
|
||||
}
|
||||
|
||||
// this is where the process starts. we set the first columns and
|
||||
// return the next column_builder<>
|
||||
column_builder<0> operator << (const vec<TYPE, R>& rhs) {
|
||||
(*this)[0] = rhs;
|
||||
return column_builder<0>(*this);
|
||||
}
|
||||
};
|
||||
|
||||
// Specialize column matrix so they're exactly equivalent to a vector
|
||||
template <typename TYPE, size_t R>
|
||||
class mat<TYPE, 1, R> : public vec<TYPE, R> {
|
||||
typedef vec<TYPE, R> base;
|
||||
public:
|
||||
// STL-like interface.
|
||||
typedef TYPE value_type;
|
||||
typedef TYPE& reference;
|
||||
typedef TYPE const& const_reference;
|
||||
typedef size_t size_type;
|
||||
size_type size() const { return R; }
|
||||
enum { ROWS = R, COLS = 1 };
|
||||
|
||||
mat() { }
|
||||
mat(const base& rhs) : base(rhs) { }
|
||||
mat(const mat& rhs) : base(rhs) { }
|
||||
mat(const TYPE& rhs) { helpers::doAssign(*this, rhs); }
|
||||
mat& operator=(const mat& rhs) { base::operator=(rhs); return *this; }
|
||||
mat& operator=(const base& rhs) { base::operator=(rhs); return *this; }
|
||||
mat& operator=(const TYPE& rhs) { return helpers::doAssign(*this, rhs); }
|
||||
// we only have one column, so ignore the index
|
||||
const base& operator[](size_t) const { return *this; }
|
||||
base& operator[](size_t) { return *this; }
|
||||
void operator << (const vec<TYPE, R>& rhs) { base::operator[](0) = rhs; }
|
||||
};
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
// matrix functions
|
||||
|
||||
// transpose. this handles matrices of matrices
|
||||
inline int PURE transpose(int v) { return v; }
|
||||
inline float PURE transpose(float v) { return v; }
|
||||
inline double PURE transpose(double v) { return v; }
|
||||
|
||||
// Transpose a matrix
|
||||
template <typename TYPE, size_t C, size_t R>
|
||||
mat<TYPE, R, C> PURE transpose(const mat<TYPE, C, R>& m) {
|
||||
mat<TYPE, R, C> r;
|
||||
for (size_t i=0 ; i<R ; i++)
|
||||
for (size_t j=0 ; j<C ; j++)
|
||||
r[i][j] = transpose(m[j][i]);
|
||||
return r;
|
||||
}
|
||||
|
||||
// Transpose a vector
|
||||
template <
|
||||
template<typename T, size_t S> class VEC,
|
||||
typename TYPE,
|
||||
size_t SIZE
|
||||
>
|
||||
mat<TYPE, SIZE, 1> PURE transpose(const VEC<TYPE, SIZE>& v) {
|
||||
mat<TYPE, SIZE, 1> r;
|
||||
for (size_t i=0 ; i<SIZE ; i++)
|
||||
r[i][0] = transpose(v[i]);
|
||||
return r;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
// "dumb" matrix inversion
|
||||
template<typename T, size_t N>
|
||||
mat<T, N, N> PURE invert(const mat<T, N, N>& src) {
|
||||
T t;
|
||||
size_t swap;
|
||||
mat<T, N, N> tmp(src);
|
||||
mat<T, N, N> inverse(1);
|
||||
|
||||
for (size_t i=0 ; i<N ; i++) {
|
||||
// look for largest element in column
|
||||
swap = i;
|
||||
for (size_t j=i+1 ; j<N ; j++) {
|
||||
if (fabs(tmp[j][i]) > fabs(tmp[i][i])) {
|
||||
swap = j;
|
||||
}
|
||||
}
|
||||
|
||||
if (swap != i) {
|
||||
/* swap rows. */
|
||||
for (size_t k=0 ; k<N ; k++) {
|
||||
t = tmp[i][k];
|
||||
tmp[i][k] = tmp[swap][k];
|
||||
tmp[swap][k] = t;
|
||||
|
||||
t = inverse[i][k];
|
||||
inverse[i][k] = inverse[swap][k];
|
||||
inverse[swap][k] = t;
|
||||
}
|
||||
}
|
||||
|
||||
t = 1 / tmp[i][i];
|
||||
for (size_t k=0 ; k<N ; k++) {
|
||||
tmp[i][k] *= t;
|
||||
inverse[i][k] *= t;
|
||||
}
|
||||
for (size_t j=0 ; j<N ; j++) {
|
||||
if (j != i) {
|
||||
t = tmp[j][i];
|
||||
for (size_t k=0 ; k<N ; k++) {
|
||||
tmp[j][k] -= tmp[i][k] * t;
|
||||
inverse[j][k] -= inverse[i][k] * t;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return inverse;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
typedef mat<float, 2, 2> mat22_t;
|
||||
typedef mat<float, 3, 3> mat33_t;
|
||||
typedef mat<float, 4, 4> mat44_t;
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
}; // namespace android
|
||||
|
||||
#endif /* ANDROID_MAT_H */
|
118
services/sensorservice/traits.h
Normal file
118
services/sensorservice/traits.h
Normal file
@ -0,0 +1,118 @@
|
||||
/*
|
||||
* Copyright (C) 2011 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef ANDROID_TRAITS_H
|
||||
#define ANDROID_TRAITS_H
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
// Typelists
|
||||
|
||||
namespace android {
|
||||
|
||||
// end-of-list marker
|
||||
class NullType {};
|
||||
|
||||
// type-list node
|
||||
template <typename T, typename U>
|
||||
struct TypeList {
|
||||
typedef T Head;
|
||||
typedef U Tail;
|
||||
};
|
||||
|
||||
// helpers to build typelists
|
||||
#define TYPELIST_1(T1) TypeList<T1, NullType>
|
||||
#define TYPELIST_2(T1, T2) TypeList<T1, TYPELIST_1(T2)>
|
||||
#define TYPELIST_3(T1, T2, T3) TypeList<T1, TYPELIST_2(T2, T3)>
|
||||
#define TYPELIST_4(T1, T2, T3, T4) TypeList<T1, TYPELIST_3(T2, T3, T4)>
|
||||
|
||||
// typelists algorithms
|
||||
namespace TL {
|
||||
template <typename TList, typename T> struct IndexOf;
|
||||
|
||||
template <typename T>
|
||||
struct IndexOf<NullType, T> {
|
||||
enum { value = -1 };
|
||||
};
|
||||
|
||||
template <typename T, typename Tail>
|
||||
struct IndexOf<TypeList<T, Tail>, T> {
|
||||
enum { value = 0 };
|
||||
};
|
||||
|
||||
template <typename Head, typename Tail, typename T>
|
||||
struct IndexOf<TypeList<Head, Tail>, T> {
|
||||
private:
|
||||
enum { temp = IndexOf<Tail, T>::value };
|
||||
public:
|
||||
enum { value = temp == -1 ? -1 : 1 + temp };
|
||||
};
|
||||
|
||||
}; // namespace TL
|
||||
|
||||
// type selection based on a boolean
|
||||
template <bool flag, typename T, typename U>
|
||||
struct Select {
|
||||
typedef T Result;
|
||||
};
|
||||
template <typename T, typename U>
|
||||
struct Select<false, T, U> {
|
||||
typedef U Result;
|
||||
};
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
// Type traits
|
||||
|
||||
template <typename T>
|
||||
class TypeTraits {
|
||||
typedef TYPELIST_4(
|
||||
unsigned char, unsigned short,
|
||||
unsigned int, unsigned long int) UnsignedInts;
|
||||
|
||||
typedef TYPELIST_4(
|
||||
signed char, signed short,
|
||||
signed int, signed long int) SignedInts;
|
||||
|
||||
typedef TYPELIST_1(
|
||||
bool) OtherInts;
|
||||
|
||||
typedef TYPELIST_3(
|
||||
float, double, long double) Floats;
|
||||
|
||||
template<typename U> struct PointerTraits {
|
||||
enum { result = false };
|
||||
typedef NullType PointeeType;
|
||||
};
|
||||
template<typename U> struct PointerTraits<U*> {
|
||||
enum { result = true };
|
||||
typedef U PointeeType;
|
||||
};
|
||||
|
||||
public:
|
||||
enum { isStdUnsignedInt = TL::IndexOf<UnsignedInts, T>::value >= 0 };
|
||||
enum { isStdSignedInt = TL::IndexOf<SignedInts, T>::value >= 0 };
|
||||
enum { isStdIntegral = TL::IndexOf<OtherInts, T>::value >= 0 || isStdUnsignedInt || isStdSignedInt };
|
||||
enum { isStdFloat = TL::IndexOf<Floats, T>::value >= 0 };
|
||||
enum { isPointer = PointerTraits<T>::result };
|
||||
enum { isStdArith = isStdIntegral || isStdFloat };
|
||||
|
||||
// best parameter type for given type
|
||||
typedef typename Select<isStdArith || isPointer, T, const T&>::Result ParameterType;
|
||||
};
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
}; // namespace android
|
||||
|
||||
#endif /* ANDROID_TRAITS_H */
|
420
services/sensorservice/vec.h
Normal file
420
services/sensorservice/vec.h
Normal file
@ -0,0 +1,420 @@
|
||||
/*
|
||||
* Copyright (C) 2011 The Android Open Source Project
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef ANDROID_VEC_H
|
||||
#define ANDROID_VEC_H
|
||||
|
||||
#include <math.h>
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stddef.h>
|
||||
|
||||
#include "traits.h"
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
#define PURE __attribute__((pure))
|
||||
|
||||
namespace android {
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
// non-inline helpers
|
||||
|
||||
template <typename TYPE, size_t SIZE>
|
||||
class vec;
|
||||
|
||||
template <typename TYPE, size_t SIZE>
|
||||
class vbase;
|
||||
|
||||
namespace helpers {
|
||||
|
||||
template <typename T> inline T min(T a, T b) { return a<b ? a : b; }
|
||||
template <typename T> inline T max(T a, T b) { return a>b ? a : b; }
|
||||
|
||||
template < template<typename T, size_t S> class VEC,
|
||||
typename TYPE, size_t SIZE, size_t S>
|
||||
vec<TYPE, SIZE>& doAssign(
|
||||
vec<TYPE, SIZE>& lhs, const VEC<TYPE, S>& rhs) {
|
||||
const size_t minSize = min(SIZE, S);
|
||||
const size_t maxSize = max(SIZE, S);
|
||||
for (size_t i=0 ; i<minSize ; i++)
|
||||
lhs[i] = rhs[i];
|
||||
for (size_t i=minSize ; i<maxSize ; i++)
|
||||
lhs[i] = 0;
|
||||
return lhs;
|
||||
}
|
||||
|
||||
|
||||
template <
|
||||
template<typename T, size_t S> class VLHS,
|
||||
template<typename T, size_t S> class VRHS,
|
||||
typename TYPE,
|
||||
size_t SIZE
|
||||
>
|
||||
VLHS<TYPE, SIZE> PURE doAdd(
|
||||
const VLHS<TYPE, SIZE>& lhs,
|
||||
const VRHS<TYPE, SIZE>& rhs) {
|
||||
VLHS<TYPE, SIZE> r;
|
||||
for (size_t i=0 ; i<SIZE ; i++)
|
||||
r[i] = lhs[i] + rhs[i];
|
||||
return r;
|
||||
}
|
||||
|
||||
template <
|
||||
template<typename T, size_t S> class VLHS,
|
||||
template<typename T, size_t S> class VRHS,
|
||||
typename TYPE,
|
||||
size_t SIZE
|
||||
>
|
||||
VLHS<TYPE, SIZE> PURE doSub(
|
||||
const VLHS<TYPE, SIZE>& lhs,
|
||||
const VRHS<TYPE, SIZE>& rhs) {
|
||||
VLHS<TYPE, SIZE> r;
|
||||
for (size_t i=0 ; i<SIZE ; i++)
|
||||
r[i] = lhs[i] - rhs[i];
|
||||
return r;
|
||||
}
|
||||
|
||||
template <
|
||||
template<typename T, size_t S> class VEC,
|
||||
typename TYPE,
|
||||
size_t SIZE
|
||||
>
|
||||
VEC<TYPE, SIZE> PURE doMulScalar(
|
||||
const VEC<TYPE, SIZE>& lhs,
|
||||
typename TypeTraits<TYPE>::ParameterType rhs) {
|
||||
VEC<TYPE, SIZE> r;
|
||||
for (size_t i=0 ; i<SIZE ; i++)
|
||||
r[i] = lhs[i] * rhs;
|
||||
return r;
|
||||
}
|
||||
|
||||
template <
|
||||
template<typename T, size_t S> class VEC,
|
||||
typename TYPE,
|
||||
size_t SIZE
|
||||
>
|
||||
VEC<TYPE, SIZE> PURE doScalarMul(
|
||||
typename TypeTraits<TYPE>::ParameterType lhs,
|
||||
const VEC<TYPE, SIZE>& rhs) {
|
||||
VEC<TYPE, SIZE> r;
|
||||
for (size_t i=0 ; i<SIZE ; i++)
|
||||
r[i] = lhs * rhs[i];
|
||||
return r;
|
||||
}
|
||||
|
||||
}; // namespace helpers
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
// Below we define the mathematical operators for vectors.
|
||||
// We use template template arguments so we can generically
|
||||
// handle the case where the right-hand-size and left-hand-side are
|
||||
// different vector types (but with same value_type and size).
|
||||
// This is needed for performance when using ".xy{z}" element access
|
||||
// on vec<>. Without this, an extra conversion to vec<> would be needed.
|
||||
//
|
||||
// example:
|
||||
// vec4_t a;
|
||||
// vec3_t b;
|
||||
// vec3_t c = a.xyz + b;
|
||||
//
|
||||
// "a.xyz + b" is a mixed-operation between a vbase<> and a vec<>, requiring
|
||||
// a conversion of vbase<> to vec<>. The template gunk below avoids this,
|
||||
// by allowing the addition on these different vector types directly
|
||||
//
|
||||
|
||||
template <
|
||||
template<typename T, size_t S> class VLHS,
|
||||
template<typename T, size_t S> class VRHS,
|
||||
typename TYPE,
|
||||
size_t SIZE
|
||||
>
|
||||
inline VLHS<TYPE, SIZE> PURE operator + (
|
||||
const VLHS<TYPE, SIZE>& lhs,
|
||||
const VRHS<TYPE, SIZE>& rhs) {
|
||||
return helpers::doAdd(lhs, rhs);
|
||||
}
|
||||
|
||||
template <
|
||||
template<typename T, size_t S> class VLHS,
|
||||
template<typename T, size_t S> class VRHS,
|
||||
typename TYPE,
|
||||
size_t SIZE
|
||||
>
|
||||
inline VLHS<TYPE, SIZE> PURE operator - (
|
||||
const VLHS<TYPE, SIZE>& lhs,
|
||||
const VRHS<TYPE, SIZE>& rhs) {
|
||||
return helpers::doSub(lhs, rhs);
|
||||
}
|
||||
|
||||
template <
|
||||
template<typename T, size_t S> class VEC,
|
||||
typename TYPE,
|
||||
size_t SIZE
|
||||
>
|
||||
inline VEC<TYPE, SIZE> PURE operator * (
|
||||
const VEC<TYPE, SIZE>& lhs,
|
||||
typename TypeTraits<TYPE>::ParameterType rhs) {
|
||||
return helpers::doMulScalar(lhs, rhs);
|
||||
}
|
||||
|
||||
template <
|
||||
template<typename T, size_t S> class VEC,
|
||||
typename TYPE,
|
||||
size_t SIZE
|
||||
>
|
||||
inline VEC<TYPE, SIZE> PURE operator * (
|
||||
typename TypeTraits<TYPE>::ParameterType lhs,
|
||||
const VEC<TYPE, SIZE>& rhs) {
|
||||
return helpers::doScalarMul(lhs, rhs);
|
||||
}
|
||||
|
||||
|
||||
template <
|
||||
template<typename T, size_t S> class VLHS,
|
||||
template<typename T, size_t S> class VRHS,
|
||||
typename TYPE,
|
||||
size_t SIZE
|
||||
>
|
||||
TYPE PURE dot_product(
|
||||
const VLHS<TYPE, SIZE>& lhs,
|
||||
const VRHS<TYPE, SIZE>& rhs) {
|
||||
TYPE r(0);
|
||||
for (size_t i=0 ; i<SIZE ; i++)
|
||||
r += lhs[i] * rhs[i];
|
||||
return r;
|
||||
}
|
||||
|
||||
template <
|
||||
template<typename T, size_t S> class V,
|
||||
typename TYPE,
|
||||
size_t SIZE
|
||||
>
|
||||
TYPE PURE length(const V<TYPE, SIZE>& v) {
|
||||
return sqrt(dot_product(v, v));
|
||||
}
|
||||
|
||||
template <
|
||||
template<typename T, size_t S> class VLHS,
|
||||
template<typename T, size_t S> class VRHS,
|
||||
typename TYPE
|
||||
>
|
||||
VLHS<TYPE, 3> PURE cross_product(
|
||||
const VLHS<TYPE, 3>& u,
|
||||
const VRHS<TYPE, 3>& v) {
|
||||
VLHS<TYPE, 3> r;
|
||||
r.x = u.y*v.z - u.z*v.y;
|
||||
r.y = u.z*v.x - u.x*v.z;
|
||||
r.z = u.x*v.y - u.y*v.x;
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
template <typename TYPE, size_t SIZE>
|
||||
vec<TYPE, SIZE> PURE operator - (const vec<TYPE, SIZE>& lhs) {
|
||||
vec<TYPE, SIZE> r;
|
||||
for (size_t i=0 ; i<SIZE ; i++)
|
||||
r[i] = -lhs[i];
|
||||
return r;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
// This our basic vector type, it just implements the data storage
|
||||
// and accessors.
|
||||
|
||||
template <typename TYPE, size_t SIZE>
|
||||
struct vbase {
|
||||
TYPE v[SIZE];
|
||||
inline const TYPE& operator[](size_t i) const { return v[i]; }
|
||||
inline TYPE& operator[](size_t i) { return v[i]; }
|
||||
};
|
||||
template<> struct vbase<float, 2> {
|
||||
union {
|
||||
float v[2];
|
||||
struct { float x, y; };
|
||||
struct { float s, t; };
|
||||
};
|
||||
inline const float& operator[](size_t i) const { return v[i]; }
|
||||
inline float& operator[](size_t i) { return v[i]; }
|
||||
};
|
||||
template<> struct vbase<float, 3> {
|
||||
union {
|
||||
float v[3];
|
||||
struct { float x, y, z; };
|
||||
struct { float s, t, r; };
|
||||
vbase<float, 2> xy;
|
||||
vbase<float, 2> st;
|
||||
};
|
||||
inline const float& operator[](size_t i) const { return v[i]; }
|
||||
inline float& operator[](size_t i) { return v[i]; }
|
||||
};
|
||||
template<> struct vbase<float, 4> {
|
||||
union {
|
||||
float v[4];
|
||||
struct { float x, y, z, w; };
|
||||
struct { float s, t, r, q; };
|
||||
vbase<float, 3> xyz;
|
||||
vbase<float, 3> str;
|
||||
vbase<float, 2> xy;
|
||||
vbase<float, 2> st;
|
||||
};
|
||||
inline const float& operator[](size_t i) const { return v[i]; }
|
||||
inline float& operator[](size_t i) { return v[i]; }
|
||||
};
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
template <typename TYPE, size_t SIZE>
|
||||
class vec : public vbase<TYPE, SIZE>
|
||||
{
|
||||
typedef typename TypeTraits<TYPE>::ParameterType pTYPE;
|
||||
typedef vbase<TYPE, SIZE> base;
|
||||
|
||||
public:
|
||||
// STL-like interface.
|
||||
typedef TYPE value_type;
|
||||
typedef TYPE& reference;
|
||||
typedef TYPE const& const_reference;
|
||||
typedef size_t size_type;
|
||||
|
||||
typedef TYPE* iterator;
|
||||
typedef TYPE const* const_iterator;
|
||||
iterator begin() { return base::v; }
|
||||
iterator end() { return base::v + SIZE; }
|
||||
const_iterator begin() const { return base::v; }
|
||||
const_iterator end() const { return base::v + SIZE; }
|
||||
size_type size() const { return SIZE; }
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
// default constructors
|
||||
|
||||
vec() { }
|
||||
vec(const vec& rhs) : base(rhs) { }
|
||||
vec(const base& rhs) : base(rhs) { }
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
// conversion constructors
|
||||
|
||||
vec(pTYPE rhs) {
|
||||
for (size_t i=0 ; i<SIZE ; i++)
|
||||
base::operator[](i) = rhs;
|
||||
}
|
||||
|
||||
template < template<typename T, size_t S> class VEC, size_t S>
|
||||
explicit vec(const VEC<TYPE, S>& rhs) {
|
||||
helpers::doAssign(*this, rhs);
|
||||
}
|
||||
|
||||
explicit vec(TYPE const* array) {
|
||||
for (size_t i=0 ; i<SIZE ; i++)
|
||||
base::operator[](i) = array[i];
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
// Assignment
|
||||
|
||||
vec& operator = (const vec& rhs) {
|
||||
base::operator=(rhs);
|
||||
return *this;
|
||||
}
|
||||
|
||||
vec& operator = (const base& rhs) {
|
||||
base::operator=(rhs);
|
||||
return *this;
|
||||
}
|
||||
|
||||
vec& operator = (pTYPE rhs) {
|
||||
for (size_t i=0 ; i<SIZE ; i++)
|
||||
base::operator[](i) = rhs;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template < template<typename T, size_t S> class VEC, size_t S>
|
||||
vec& operator = (const VEC<TYPE, S>& rhs) {
|
||||
return helpers::doAssign(*this, rhs);
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
// operation-assignment
|
||||
|
||||
vec& operator += (const vec& rhs);
|
||||
vec& operator -= (const vec& rhs);
|
||||
vec& operator *= (pTYPE rhs);
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
// non-member function declaration and definition
|
||||
// NOTE: we declare the non-member function as friend inside the class
|
||||
// so that they are known to the compiler when the class is instantiated.
|
||||
// This helps the compiler doing template argument deduction when the
|
||||
// passed types are not identical. Essentially this helps with
|
||||
// type conversion so that you can multiply a vec<float> by an scalar int
|
||||
// (for instance).
|
||||
|
||||
friend inline vec PURE operator + (const vec& lhs, const vec& rhs) {
|
||||
return helpers::doAdd(lhs, rhs);
|
||||
}
|
||||
friend inline vec PURE operator - (const vec& lhs, const vec& rhs) {
|
||||
return helpers::doSub(lhs, rhs);
|
||||
}
|
||||
friend inline vec PURE operator * (const vec& lhs, pTYPE v) {
|
||||
return helpers::doMulScalar(lhs, v);
|
||||
}
|
||||
friend inline vec PURE operator * (pTYPE v, const vec& rhs) {
|
||||
return helpers::doScalarMul(v, rhs);
|
||||
}
|
||||
friend inline TYPE PURE dot_product(const vec& lhs, const vec& rhs) {
|
||||
return android::dot_product(lhs, rhs);
|
||||
}
|
||||
};
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
template <typename TYPE, size_t SIZE>
|
||||
vec<TYPE, SIZE>& vec<TYPE, SIZE>::operator += (const vec<TYPE, SIZE>& rhs) {
|
||||
vec<TYPE, SIZE>& lhs(*this);
|
||||
for (size_t i=0 ; i<SIZE ; i++)
|
||||
lhs[i] += rhs[i];
|
||||
return lhs;
|
||||
}
|
||||
|
||||
template <typename TYPE, size_t SIZE>
|
||||
vec<TYPE, SIZE>& vec<TYPE, SIZE>::operator -= (const vec<TYPE, SIZE>& rhs) {
|
||||
vec<TYPE, SIZE>& lhs(*this);
|
||||
for (size_t i=0 ; i<SIZE ; i++)
|
||||
lhs[i] -= rhs[i];
|
||||
return lhs;
|
||||
}
|
||||
|
||||
template <typename TYPE, size_t SIZE>
|
||||
vec<TYPE, SIZE>& vec<TYPE, SIZE>::operator *= (vec<TYPE, SIZE>::pTYPE rhs) {
|
||||
vec<TYPE, SIZE>& lhs(*this);
|
||||
for (size_t i=0 ; i<SIZE ; i++)
|
||||
lhs[i] *= rhs;
|
||||
return lhs;
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
typedef vec<float, 2> vec2_t;
|
||||
typedef vec<float, 3> vec3_t;
|
||||
typedef vec<float, 4> vec4_t;
|
||||
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
}; // namespace android
|
||||
|
||||
#endif /* ANDROID_VEC_H */
|
Loading…
Reference in New Issue
Block a user