9-axis sensor fusion with Kalman filter

Add support for 9-axis gravity and linear-acceleration sensors
virtual orientation sensor using 9-axis fusion

Change-Id: I6717539373fce781c10e97b6fa59f68a831a592f
This commit is contained in:
Mathias Agopian 2011-05-17 22:54:42 -07:00
parent a1b7db95b6
commit 984826cc15
23 changed files with 2158 additions and 190 deletions

View File

@ -2,13 +2,18 @@ LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)
LOCAL_SRC_FILES:= \
GravitySensor.cpp \
LinearAccelerationSensor.cpp \
RotationVectorSensor.cpp \
SensorService.cpp \
SensorInterface.cpp \
CorrectedGyroSensor.cpp \
Fusion.cpp \
GravitySensor.cpp \
LinearAccelerationSensor.cpp \
OrientationSensor.cpp \
RotationVectorSensor.cpp \
SecondOrderLowPassFilter.cpp \
SensorDevice.cpp \
SecondOrderLowPassFilter.cpp
SensorFusion.cpp \
SensorInterface.cpp \
SensorService.cpp \
LOCAL_CFLAGS:= -DLOG_TAG=\"SensorService\"

View File

@ -0,0 +1,86 @@
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdint.h>
#include <math.h>
#include <sys/types.h>
#include <utils/Errors.h>
#include <hardware/sensors.h>
#include "CorrectedGyroSensor.h"
#include "SensorDevice.h"
#include "SensorFusion.h"
namespace android {
// ---------------------------------------------------------------------------
CorrectedGyroSensor::CorrectedGyroSensor(sensor_t const* list, size_t count)
: mSensorDevice(SensorDevice::getInstance()),
mSensorFusion(SensorFusion::getInstance())
{
for (size_t i=0 ; i<count ; i++) {
if (list[i].type == SENSOR_TYPE_GYROSCOPE) {
mGyro = Sensor(list + i);
break;
}
}
}
bool CorrectedGyroSensor::process(sensors_event_t* outEvent,
const sensors_event_t& event)
{
if (event.type == SENSOR_TYPE_GYROSCOPE) {
const vec3_t bias(mSensorFusion.getGyroBias() * mSensorFusion.getEstimatedRate());
*outEvent = event;
outEvent->data[0] -= bias.x;
outEvent->data[1] -= bias.y;
outEvent->data[2] -= bias.z;
outEvent->sensor = '_cgy';
return true;
}
return false;
}
status_t CorrectedGyroSensor::activate(void* ident, bool enabled) {
mSensorDevice.activate(this, mGyro.getHandle(), enabled);
return mSensorFusion.activate(this, enabled);
}
status_t CorrectedGyroSensor::setDelay(void* ident, int handle, int64_t ns) {
mSensorDevice.setDelay(this, mGyro.getHandle(), ns);
return mSensorFusion.setDelay(this, ns);
}
Sensor CorrectedGyroSensor::getSensor() const {
sensor_t hwSensor;
hwSensor.name = "Corrected Gyroscope Sensor";
hwSensor.vendor = "Google Inc.";
hwSensor.version = 1;
hwSensor.handle = '_cgy';
hwSensor.type = SENSOR_TYPE_GYROSCOPE;
hwSensor.maxRange = mGyro.getMaxValue();
hwSensor.resolution = mGyro.getResolution();
hwSensor.power = mSensorFusion.getPowerUsage();
hwSensor.minDelay = mGyro.getMinDelay();
Sensor sensor(&hwSensor);
return sensor;
}
// ---------------------------------------------------------------------------
}; // namespace android

View File

@ -0,0 +1,52 @@
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_CORRECTED_GYRO_SENSOR_H
#define ANDROID_CORRECTED_GYRO_SENSOR_H
#include <stdint.h>
#include <sys/types.h>
#include <gui/Sensor.h>
#include "SensorInterface.h"
// ---------------------------------------------------------------------------
namespace android {
// ---------------------------------------------------------------------------
class SensorDevice;
class SensorFusion;
class CorrectedGyroSensor : public SensorInterface {
SensorDevice& mSensorDevice;
SensorFusion& mSensorFusion;
Sensor mGyro;
public:
CorrectedGyroSensor(sensor_t const* list, size_t count);
virtual bool process(sensors_event_t* outEvent,
const sensors_event_t& event);
virtual status_t activate(void* ident, bool enabled);
virtual status_t setDelay(void* ident, int handle, int64_t ns);
virtual Sensor getSensor() const;
virtual bool isVirtual() const { return true; }
};
// ---------------------------------------------------------------------------
}; // namespace android
#endif // ANDROID_CORRECTED_GYRO_SENSOR_H

View File

@ -0,0 +1,431 @@
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdio.h>
#include <utils/Log.h>
#include "Fusion.h"
namespace android {
// -----------------------------------------------------------------------
template <typename TYPE>
static inline TYPE sqr(TYPE x) {
return x*x;
}
template <typename T>
static inline T clamp(T v) {
return v < 0 ? 0 : v;
}
template <typename TYPE, size_t C, size_t R>
static mat<TYPE, R, R> scaleCovariance(
const mat<TYPE, C, R>& A,
const mat<TYPE, C, C>& P) {
// A*P*transpose(A);
mat<TYPE, R, R> APAt;
for (size_t r=0 ; r<R ; r++) {
for (size_t j=r ; j<R ; j++) {
double apat(0);
for (size_t c=0 ; c<C ; c++) {
double v(A[c][r]*P[c][c]*0.5);
for (size_t k=c+1 ; k<C ; k++)
v += A[k][r] * P[c][k];
apat += 2 * v * A[c][j];
}
APAt[j][r] = apat;
APAt[r][j] = apat;
}
}
return APAt;
}
template <typename TYPE, typename OTHER_TYPE>
static mat<TYPE, 3, 3> crossMatrix(const vec<TYPE, 3>& p, OTHER_TYPE diag) {
mat<TYPE, 3, 3> r;
r[0][0] = diag;
r[1][1] = diag;
r[2][2] = diag;
r[0][1] = p.z;
r[1][0] =-p.z;
r[0][2] =-p.y;
r[2][0] = p.y;
r[1][2] = p.x;
r[2][1] =-p.x;
return r;
}
template <typename TYPE>
static mat<TYPE, 3, 3> MRPsToMatrix(const vec<TYPE, 3>& p) {
mat<TYPE, 3, 3> res(1);
const mat<TYPE, 3, 3> px(crossMatrix(p, 0));
const TYPE ptp(dot_product(p,p));
const TYPE t = 4/sqr(1+ptp);
res -= t * (1-ptp) * px;
res += t * 2 * sqr(px);
return res;
}
template <typename TYPE>
vec<TYPE, 3> matrixToMRPs(const mat<TYPE, 3, 3>& R) {
// matrix to MRPs
vec<TYPE, 3> q;
const float Hx = R[0].x;
const float My = R[1].y;
const float Az = R[2].z;
const float w = 1 / (1 + sqrtf( clamp( Hx + My + Az + 1) * 0.25f ));
q.x = sqrtf( clamp( Hx - My - Az + 1) * 0.25f ) * w;
q.y = sqrtf( clamp(-Hx + My - Az + 1) * 0.25f ) * w;
q.z = sqrtf( clamp(-Hx - My + Az + 1) * 0.25f ) * w;
q.x = copysignf(q.x, R[2].y - R[1].z);
q.y = copysignf(q.y, R[0].z - R[2].x);
q.z = copysignf(q.z, R[1].x - R[0].y);
return q;
}
template<typename TYPE, size_t SIZE>
class Covariance {
mat<TYPE, SIZE, SIZE> mSumXX;
vec<TYPE, SIZE> mSumX;
size_t mN;
public:
Covariance() : mSumXX(0.0f), mSumX(0.0f), mN(0) { }
void update(const vec<TYPE, SIZE>& x) {
mSumXX += x*transpose(x);
mSumX += x;
mN++;
}
mat<TYPE, SIZE, SIZE> operator()() const {
const float N = 1.0f / mN;
return mSumXX*N - (mSumX*transpose(mSumX))*(N*N);
}
void reset() {
mN = 0;
mSumXX = 0;
mSumX = 0;
}
size_t getCount() const {
return mN;
}
};
// -----------------------------------------------------------------------
Fusion::Fusion() {
// process noise covariance matrix
const float w1 = gyroSTDEV;
const float w2 = biasSTDEV;
Q[0] = w1*w1;
Q[1] = w2*w2;
Ba.x = 0;
Ba.y = 0;
Ba.z = 1;
Bm.x = 0;
Bm.y = 1;
Bm.z = 0;
init();
}
void Fusion::init() {
// initial estimate: E{ x(t0) }
x = 0;
// initial covariance: Var{ x(t0) }
P = 0;
mInitState = 0;
mCount[0] = 0;
mCount[1] = 0;
mCount[2] = 0;
mData = 0;
}
bool Fusion::hasEstimate() const {
return (mInitState == (MAG|ACC|GYRO));
}
bool Fusion::checkInitComplete(int what, const vec3_t& d) {
if (mInitState == (MAG|ACC|GYRO))
return true;
if (what == ACC) {
mData[0] += d * (1/length(d));
mCount[0]++;
mInitState |= ACC;
} else if (what == MAG) {
mData[1] += d * (1/length(d));
mCount[1]++;
mInitState |= MAG;
} else if (what == GYRO) {
mData[2] += d;
mCount[2]++;
if (mCount[2] == 64) {
// 64 samples is good enough to estimate the gyro drift and
// doesn't take too much time.
mInitState |= GYRO;
}
}
if (mInitState == (MAG|ACC|GYRO)) {
// Average all the values we collected so far
mData[0] *= 1.0f/mCount[0];
mData[1] *= 1.0f/mCount[1];
mData[2] *= 1.0f/mCount[2];
// calculate the MRPs from the data collection, this gives us
// a rough estimate of our initial state
mat33_t R;
vec3_t up(mData[0]);
vec3_t east(cross_product(mData[1], up));
east *= 1/length(east);
vec3_t north(cross_product(up, east));
R << east << north << up;
x[0] = matrixToMRPs(R);
// NOTE: we could try to use the average of the gyro data
// to estimate the initial bias, but this only works if
// the device is not moving. For now, we don't use that value
// and start with a bias of 0.
x[1] = 0;
// initial covariance
P = 0;
}
return false;
}
void Fusion::handleGyro(const vec3_t& w, float dT) {
const vec3_t wdT(w * dT); // rad/s * s -> rad
if (!checkInitComplete(GYRO, wdT))
return;
predict(wdT);
}
status_t Fusion::handleAcc(const vec3_t& a) {
if (length(a) < 0.981f)
return BAD_VALUE;
if (!checkInitComplete(ACC, a))
return BAD_VALUE;
// ignore acceleration data if we're close to free-fall
const float l = 1/length(a);
update(a*l, Ba, accSTDEV*l);
return NO_ERROR;
}
status_t Fusion::handleMag(const vec3_t& m) {
// the geomagnetic-field should be between 30uT and 60uT
// reject obviously wrong magnetic-fields
if (length(m) > 100)
return BAD_VALUE;
if (!checkInitComplete(MAG, m))
return BAD_VALUE;
const vec3_t up( getRotationMatrix() * Ba );
const vec3_t east( cross_product(m, up) );
vec3_t north( cross_product(up, east) );
const float l = 1 / length(north);
north *= l;
#if 0
// in practice the magnetic-field sensor is so wrong
// that there is no point trying to use it to constantly
// correct the gyro. instead, we use the mag-sensor only when
// the device points north (just to give us a reference).
// We're hoping that it'll actually point north, if it doesn't
// we'll be offset, but at least the instantaneous posture
// of the device will be correct.
const float cos_30 = 0.8660254f;
if (dot_product(north, Bm) < cos_30)
return BAD_VALUE;
#endif
update(north, Bm, magSTDEV*l);
return NO_ERROR;
}
bool Fusion::checkState(const vec3_t& v) {
if (isnanf(length(v))) {
LOGW("9-axis fusion diverged. reseting state.");
P = 0;
x[1] = 0;
mInitState = 0;
mCount[0] = 0;
mCount[1] = 0;
mCount[2] = 0;
mData = 0;
return false;
}
return true;
}
vec3_t Fusion::getAttitude() const {
return x[0];
}
vec3_t Fusion::getBias() const {
return x[1];
}
mat33_t Fusion::getRotationMatrix() const {
return MRPsToMatrix(x[0]);
}
mat33_t Fusion::getF(const vec3_t& p) {
const float p0 = p.x;
const float p1 = p.y;
const float p2 = p.z;
// f(p, w)
const float p0p1 = p0*p1;
const float p0p2 = p0*p2;
const float p1p2 = p1*p2;
const float p0p0 = p0*p0;
const float p1p1 = p1*p1;
const float p2p2 = p2*p2;
const float pp = 0.5f * (1 - (p0p0 + p1p1 + p2p2));
mat33_t F;
F[0][0] = 0.5f*(p0p0 + pp);
F[0][1] = 0.5f*(p0p1 + p2);
F[0][2] = 0.5f*(p0p2 - p1);
F[1][0] = 0.5f*(p0p1 - p2);
F[1][1] = 0.5f*(p1p1 + pp);
F[1][2] = 0.5f*(p1p2 + p0);
F[2][0] = 0.5f*(p0p2 + p1);
F[2][1] = 0.5f*(p1p2 - p0);
F[2][2] = 0.5f*(p2p2 + pp);
return F;
}
mat33_t Fusion::getdFdp(const vec3_t& p, const vec3_t& we) {
// dF = | A = df/dp -F |
// | 0 0 |
mat33_t A;
A[0][0] = A[1][1] = A[2][2] = 0.5f * (p.x*we.x + p.y*we.y + p.z*we.z);
A[0][1] = 0.5f * (p.y*we.x - p.x*we.y - we.z);
A[0][2] = 0.5f * (p.z*we.x - p.x*we.z + we.y);
A[1][2] = 0.5f * (p.z*we.y - p.y*we.z - we.x);
A[1][0] = -A[0][1];
A[2][0] = -A[0][2];
A[2][1] = -A[1][2];
return A;
}
void Fusion::predict(const vec3_t& w) {
// f(p, w)
vec3_t& p(x[0]);
// There is a discontinuity at 2.pi, to avoid it we need to switch to
// the shadow of p when pT.p gets too big.
const float ptp(dot_product(p,p));
if (ptp >= 2.0f) {
p = -p * (1/ptp);
}
const mat33_t F(getF(p));
// compute w with the bias correction:
// w_estimated = w - b_estimated
const vec3_t& b(x[1]);
const vec3_t we(w - b);
// prediction
const vec3_t dX(F*we);
if (!checkState(dX))
return;
p += dX;
const mat33_t A(getdFdp(p, we));
// G = | G0 0 | = | -F 0 |
// | 0 1 | | 0 1 |
// P += A*P + P*At + F*Q*Ft
const mat33_t AP(A*transpose(P[0][0]));
const mat33_t PAt(P[0][0]*transpose(A));
const mat33_t FPSt(F*transpose(P[1][0]));
const mat33_t PSFt(P[1][0]*transpose(F));
const mat33_t FQFt(scaleCovariance(F, Q[0]));
P[0][0] += AP + PAt - FPSt - PSFt + FQFt;
P[1][0] += A*P[1][0] - F*P[1][1];
P[1][1] += Q[1];
}
void Fusion::update(const vec3_t& z, const vec3_t& Bi, float sigma) {
const vec3_t p(x[0]);
// measured vector in body space: h(p) = A(p)*Bi
const mat33_t A(MRPsToMatrix(p));
const vec3_t Bb(A*Bi);
// Sensitivity matrix H = dh(p)/dp
// H = [ L 0 ]
const float ptp(dot_product(p,p));
const mat33_t px(crossMatrix(p, 0.5f*(ptp-1)));
const mat33_t ppt(p*transpose(p));
const mat33_t L((8 / sqr(1+ptp))*crossMatrix(Bb, 0)*(ppt-px));
// update...
const mat33_t R(sigma*sigma);
const mat33_t S(scaleCovariance(L, P[0][0]) + R);
const mat33_t Si(invert(S));
const mat33_t LtSi(transpose(L)*Si);
vec<mat33_t, 2> K;
K[0] = P[0][0] * LtSi;
K[1] = transpose(P[1][0])*LtSi;
const vec3_t e(z - Bb);
const vec3_t K0e(K[0]*e);
const vec3_t K1e(K[1]*e);
if (!checkState(K0e))
return;
if (!checkState(K1e))
return;
x[0] += K0e;
x[1] += K1e;
// P -= K*H*P;
const mat33_t K0L(K[0] * L);
const mat33_t K1L(K[1] * L);
P[0][0] -= K0L*P[0][0];
P[1][1] -= K1L*P[1][0];
P[1][0] -= K0L*P[1][0];
}
// -----------------------------------------------------------------------
}; // namespace android

View File

@ -0,0 +1,86 @@
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_FUSION_H
#define ANDROID_FUSION_H
#include <utils/Errors.h>
#include "vec.h"
#include "mat.h"
namespace android {
class Fusion {
/*
* the state vector is made of two sub-vector containing respectively:
* - modified Rodrigues parameters
* - the estimated gyro bias
*/
vec<vec3_t, 2> x;
/*
* the predicated covariance matrix is made of 4 3x3 sub-matrices and it
* semi-definite positive.
*
* P = | P00 P10 | = | P00 P10 |
* | P01 P11 | | P10t Q1 |
*
* Since P01 = transpose(P10), the code below never calculates or
* stores P01. P11 is always equal to Q1, so we don't store it either.
*/
mat<mat33_t, 2, 2> P;
/*
* the process noise covariance matrix is made of 2 3x3 sub-matrices
* Q0 encodes the attitude's noise
* Q1 encodes the bias' noise
*/
vec<mat33_t, 2> Q;
static const float gyroSTDEV = 1.0e-5; // rad/s (measured 1.2e-5)
static const float accSTDEV = 0.05f; // m/s^2 (measured 0.08 / CDD 0.05)
static const float magSTDEV = 0.5f; // uT (measured 0.7 / CDD 0.5)
static const float biasSTDEV = 2e-9; // rad/s^2 (guessed)
public:
Fusion();
void init();
void handleGyro(const vec3_t& w, float dT);
status_t handleAcc(const vec3_t& a);
status_t handleMag(const vec3_t& m);
vec3_t getAttitude() const;
vec3_t getBias() const;
mat33_t getRotationMatrix() const;
bool hasEstimate() const;
private:
vec3_t Ba, Bm;
uint32_t mInitState;
vec<vec3_t, 3> mData;
size_t mCount[3];
enum { ACC=0x1, MAG=0x2, GYRO=0x4 };
bool checkInitComplete(int, const vec3_t&);
bool checkState(const vec3_t& v);
void predict(const vec3_t& w);
void update(const vec3_t& z, const vec3_t& Bi, float sigma);
static mat33_t getF(const vec3_t& p);
static mat33_t getdFdp(const vec3_t& p, const vec3_t& we);
};
}; // namespace android
#endif // ANDROID_FUSION_H

View File

@ -23,16 +23,18 @@
#include <hardware/sensors.h>
#include "GravitySensor.h"
#include "SensorDevice.h"
#include "SensorFusion.h"
namespace android {
// ---------------------------------------------------------------------------
GravitySensor::GravitySensor(sensor_t const* list, size_t count)
: mSensorDevice(SensorDevice::getInstance()),
mSensorFusion(SensorFusion::getInstance()),
mAccTime(0),
mLowPass(M_SQRT1_2, 1.5f),
mX(mLowPass), mY(mLowPass), mZ(mLowPass)
{
for (size_t i=0 ; i<count ; i++) {
if (list[i].type == SENSOR_TYPE_ACCELEROMETER) {
@ -47,35 +49,52 @@ bool GravitySensor::process(sensors_event_t* outEvent,
{
const static double NS2S = 1.0 / 1000000000.0;
if (event.type == SENSOR_TYPE_ACCELEROMETER) {
float x, y, z;
const double now = event.timestamp * NS2S;
if (mAccTime == 0) {
x = mX.init(event.acceleration.x);
y = mY.init(event.acceleration.y);
z = mZ.init(event.acceleration.z);
vec3_t g;
if (mSensorFusion.hasGyro()) {
if (!mSensorFusion.hasEstimate())
return false;
const mat33_t R(mSensorFusion.getRotationMatrix());
// FIXME: we need to estimate the length of gravity because
// the accelerometer may have a small scaling error. This
// translates to an offset in the linear-acceleration sensor.
g = R[2] * GRAVITY_EARTH;
} else {
double dT = now - mAccTime;
mLowPass.setSamplingPeriod(dT);
x = mX(event.acceleration.x);
y = mY(event.acceleration.y);
z = mZ(event.acceleration.z);
const double now = event.timestamp * NS2S;
if (mAccTime == 0) {
g.x = mX.init(event.acceleration.x);
g.y = mY.init(event.acceleration.y);
g.z = mZ.init(event.acceleration.z);
} else {
double dT = now - mAccTime;
mLowPass.setSamplingPeriod(dT);
g.x = mX(event.acceleration.x);
g.y = mY(event.acceleration.y);
g.z = mZ(event.acceleration.z);
}
g *= (GRAVITY_EARTH / length(g));
mAccTime = now;
}
mAccTime = now;
*outEvent = event;
outEvent->data[0] = x;
outEvent->data[1] = y;
outEvent->data[2] = z;
outEvent->data[0] = g.x;
outEvent->data[1] = g.y;
outEvent->data[2] = g.z;
outEvent->sensor = '_grv';
outEvent->type = SENSOR_TYPE_GRAVITY;
return true;
}
return false;
}
status_t GravitySensor::activate(void* ident, bool enabled) {
status_t err = mSensorDevice.activate(this, mAccelerometer.getHandle(), enabled);
if (err == NO_ERROR) {
if (enabled) {
mAccTime = 0;
status_t err;
if (mSensorFusion.hasGyro()) {
err = mSensorFusion.activate(this, enabled);
} else {
err = mSensorDevice.activate(this, mAccelerometer.getHandle(), enabled);
if (err == NO_ERROR) {
if (enabled) {
mAccTime = 0;
}
}
}
return err;
@ -83,20 +102,26 @@ status_t GravitySensor::activate(void* ident, bool enabled) {
status_t GravitySensor::setDelay(void* ident, int handle, int64_t ns)
{
return mSensorDevice.setDelay(this, mAccelerometer.getHandle(), ns);
if (mSensorFusion.hasGyro()) {
return mSensorFusion.setDelay(this, ns);
} else {
return mSensorDevice.setDelay(this, mAccelerometer.getHandle(), ns);
}
}
Sensor GravitySensor::getSensor() const {
sensor_t hwSensor;
hwSensor.name = "Gravity Sensor";
hwSensor.vendor = "Google Inc.";
hwSensor.version = 1;
hwSensor.version = mSensorFusion.hasGyro() ? 3 : 2;
hwSensor.handle = '_grv';
hwSensor.type = SENSOR_TYPE_GRAVITY;
hwSensor.maxRange = mAccelerometer.getMaxValue();
hwSensor.maxRange = GRAVITY_EARTH * 2;
hwSensor.resolution = mAccelerometer.getResolution();
hwSensor.power = mAccelerometer.getPowerUsage();
hwSensor.minDelay = mAccelerometer.getMinDelay();
hwSensor.power = mSensorFusion.hasGyro() ?
mSensorFusion.getPowerUsage() : mAccelerometer.getPowerUsage();
hwSensor.minDelay = mSensorFusion.hasGyro() ?
mSensorFusion.getMinDelay() : mAccelerometer.getMinDelay();
Sensor sensor(&hwSensor);
return sensor;
}

View File

@ -22,7 +22,6 @@
#include <gui/Sensor.h>
#include "SensorDevice.h"
#include "SensorInterface.h"
#include "SecondOrderLowPassFilter.h"
@ -30,13 +29,17 @@
namespace android {
// ---------------------------------------------------------------------------
class SensorDevice;
class SensorFusion;
class GravitySensor : public SensorInterface {
SensorDevice& mSensorDevice;
SensorFusion& mSensorFusion;
Sensor mAccelerometer;
double mAccTime;
SecondOrderLowPassFilter mLowPass;
CascadedBiquadFilter mX, mY, mZ;
CascadedBiquadFilter<float> mX, mY, mZ;
public:
GravitySensor(sensor_t const* list, size_t count);

View File

@ -23,6 +23,8 @@
#include <hardware/sensors.h>
#include "LinearAccelerationSensor.h"
#include "SensorDevice.h"
#include "SensorFusion.h"
namespace android {
// ---------------------------------------------------------------------------
@ -31,34 +33,29 @@ LinearAccelerationSensor::LinearAccelerationSensor(sensor_t const* list, size_t
: mSensorDevice(SensorDevice::getInstance()),
mGravitySensor(list, count)
{
mData[0] = mData[1] = mData[2] = 0;
}
bool LinearAccelerationSensor::process(sensors_event_t* outEvent,
const sensors_event_t& event)
{
bool result = mGravitySensor.process(outEvent, event);
if (result) {
if (event.type == SENSOR_TYPE_ACCELEROMETER) {
mData[0] = event.acceleration.x;
mData[1] = event.acceleration.y;
mData[2] = event.acceleration.z;
}
outEvent->data[0] = mData[0] - outEvent->data[0];
outEvent->data[1] = mData[1] - outEvent->data[1];
outEvent->data[2] = mData[2] - outEvent->data[2];
if (result && event.type == SENSOR_TYPE_ACCELEROMETER) {
outEvent->data[0] = event.acceleration.x - outEvent->data[0];
outEvent->data[1] = event.acceleration.y - outEvent->data[1];
outEvent->data[2] = event.acceleration.z - outEvent->data[2];
outEvent->sensor = '_lin';
outEvent->type = SENSOR_TYPE_LINEAR_ACCELERATION;
return true;
}
return result;
return false;
}
status_t LinearAccelerationSensor::activate(void* ident, bool enabled) {
return mGravitySensor.activate(ident, enabled);
return mGravitySensor.activate(this, enabled);
}
status_t LinearAccelerationSensor::setDelay(void* ident, int handle, int64_t ns) {
return mGravitySensor.setDelay(ident, handle, ns);
return mGravitySensor.setDelay(this, handle, ns);
}
Sensor LinearAccelerationSensor::getSensor() const {
@ -66,7 +63,7 @@ Sensor LinearAccelerationSensor::getSensor() const {
sensor_t hwSensor;
hwSensor.name = "Linear Acceleration Sensor";
hwSensor.vendor = "Google Inc.";
hwSensor.version = 1;
hwSensor.version = gsensor.getVersion();
hwSensor.handle = '_lin';
hwSensor.type = SENSOR_TYPE_LINEAR_ACCELERATION;
hwSensor.maxRange = gsensor.getMaxValue();

View File

@ -22,19 +22,19 @@
#include <gui/Sensor.h>
#include "SensorDevice.h"
#include "SensorInterface.h"
#include "GravitySensor.h"
// ---------------------------------------------------------------------------
namespace android {
// ---------------------------------------------------------------------------
class SensorDevice;
class SensorFusion;
class LinearAccelerationSensor : public SensorInterface {
SensorDevice& mSensorDevice;
GravitySensor mGravitySensor;
float mData[3];
virtual bool process(sensors_event_t* outEvent,
const sensors_event_t& event);

View File

@ -0,0 +1,89 @@
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdint.h>
#include <math.h>
#include <sys/types.h>
#include <utils/Errors.h>
#include <hardware/sensors.h>
#include "OrientationSensor.h"
#include "SensorDevice.h"
#include "SensorFusion.h"
namespace android {
// ---------------------------------------------------------------------------
OrientationSensor::OrientationSensor()
: mSensorDevice(SensorDevice::getInstance()),
mSensorFusion(SensorFusion::getInstance())
{
}
bool OrientationSensor::process(sensors_event_t* outEvent,
const sensors_event_t& event)
{
if (event.type == SENSOR_TYPE_ACCELEROMETER) {
if (mSensorFusion.hasEstimate()) {
vec3_t g;
const float rad2deg = 180 / M_PI;
const mat33_t R(mSensorFusion.getRotationMatrix());
g[0] = atan2f(-R[1][0], R[0][0]) * rad2deg;
g[1] = atan2f(-R[2][1], R[2][2]) * rad2deg;
g[2] = asinf ( R[2][0]) * rad2deg;
if (g[0] < 0)
g[0] += 360;
*outEvent = event;
outEvent->data[0] = g.x;
outEvent->data[1] = g.y;
outEvent->data[2] = g.z;
outEvent->sensor = '_ypr';
outEvent->type = SENSOR_TYPE_ORIENTATION;
return true;
}
}
return false;
}
status_t OrientationSensor::activate(void* ident, bool enabled) {
return mSensorFusion.activate(this, enabled);
}
status_t OrientationSensor::setDelay(void* ident, int handle, int64_t ns) {
return mSensorFusion.setDelay(this, ns);
}
Sensor OrientationSensor::getSensor() const {
sensor_t hwSensor;
hwSensor.name = "Orientation Sensor";
hwSensor.vendor = "Google Inc.";
hwSensor.version = 1;
hwSensor.handle = '_ypr';
hwSensor.type = SENSOR_TYPE_ORIENTATION;
hwSensor.maxRange = 360.0f;
hwSensor.resolution = 1.0f/256.0f; // FIXME: real value here
hwSensor.power = mSensorFusion.getPowerUsage();
hwSensor.minDelay = mSensorFusion.getMinDelay();
Sensor sensor(&hwSensor);
return sensor;
}
// ---------------------------------------------------------------------------
}; // namespace android

View File

@ -0,0 +1,51 @@
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_ORIENTATION_SENSOR_H
#define ANDROID_ORIENTATION_SENSOR_H
#include <stdint.h>
#include <sys/types.h>
#include <gui/Sensor.h>
#include "SensorInterface.h"
// ---------------------------------------------------------------------------
namespace android {
// ---------------------------------------------------------------------------
class SensorDevice;
class SensorFusion;
class OrientationSensor : public SensorInterface {
SensorDevice& mSensorDevice;
SensorFusion& mSensorFusion;
public:
OrientationSensor();
virtual bool process(sensors_event_t* outEvent,
const sensors_event_t& event);
virtual status_t activate(void* ident, bool enabled);
virtual status_t setDelay(void* ident, int handle, int64_t ns);
virtual Sensor getSensor() const;
virtual bool isVirtual() const { return true; }
};
// ---------------------------------------------------------------------------
}; // namespace android
#endif // ANDROID_ORIENTATION_SENSOR_H

View File

@ -32,134 +32,67 @@ static inline T clamp(T v) {
return v < 0 ? 0 : v;
}
RotationVectorSensor::RotationVectorSensor(sensor_t const* list, size_t count)
RotationVectorSensor::RotationVectorSensor()
: mSensorDevice(SensorDevice::getInstance()),
mALowPass(M_SQRT1_2, 1.5f),
mAX(mALowPass), mAY(mALowPass), mAZ(mALowPass),
mMLowPass(M_SQRT1_2, 1.5f),
mMX(mMLowPass), mMY(mMLowPass), mMZ(mMLowPass)
mSensorFusion(SensorFusion::getInstance())
{
for (size_t i=0 ; i<count ; i++) {
if (list[i].type == SENSOR_TYPE_ACCELEROMETER) {
mAcc = Sensor(list + i);
}
if (list[i].type == SENSOR_TYPE_MAGNETIC_FIELD) {
mMag = Sensor(list + i);
}
}
memset(mMagData, 0, sizeof(mMagData));
}
bool RotationVectorSensor::process(sensors_event_t* outEvent,
const sensors_event_t& event)
{
const static double NS2S = 1.0 / 1000000000.0;
if (event.type == SENSOR_TYPE_MAGNETIC_FIELD) {
const double now = event.timestamp * NS2S;
if (mMagTime == 0) {
mMagData[0] = mMX.init(event.magnetic.x);
mMagData[1] = mMY.init(event.magnetic.y);
mMagData[2] = mMZ.init(event.magnetic.z);
} else {
double dT = now - mMagTime;
mMLowPass.setSamplingPeriod(dT);
mMagData[0] = mMX(event.magnetic.x);
mMagData[1] = mMY(event.magnetic.y);
mMagData[2] = mMZ(event.magnetic.z);
}
mMagTime = now;
}
if (event.type == SENSOR_TYPE_ACCELEROMETER) {
const double now = event.timestamp * NS2S;
float Ax, Ay, Az;
if (mAccTime == 0) {
Ax = mAX.init(event.acceleration.x);
Ay = mAY.init(event.acceleration.y);
Az = mAZ.init(event.acceleration.z);
} else {
double dT = now - mAccTime;
mALowPass.setSamplingPeriod(dT);
Ax = mAX(event.acceleration.x);
Ay = mAY(event.acceleration.y);
Az = mAZ(event.acceleration.z);
if (mSensorFusion.hasEstimate()) {
const mat33_t R(mSensorFusion.getRotationMatrix());
// matrix to rotation vector (normalized quaternion)
const float Hx = R[0].x;
const float My = R[1].y;
const float Az = R[2].z;
float qw = sqrtf( clamp( Hx + My + Az + 1) * 0.25f );
float qx = sqrtf( clamp( Hx - My - Az + 1) * 0.25f );
float qy = sqrtf( clamp(-Hx + My - Az + 1) * 0.25f );
float qz = sqrtf( clamp(-Hx - My + Az + 1) * 0.25f );
qx = copysignf(qx, R[2].y - R[1].z);
qy = copysignf(qy, R[0].z - R[2].x);
qz = copysignf(qz, R[1].x - R[0].y);
// this quaternion is guaranteed to be normalized, by construction
// of the rotation matrix.
*outEvent = event;
outEvent->data[0] = qx;
outEvent->data[1] = qy;
outEvent->data[2] = qz;
outEvent->data[3] = qw;
outEvent->sensor = '_rov';
outEvent->type = SENSOR_TYPE_ROTATION_VECTOR;
return true;
}
mAccTime = now;
const float Ex = mMagData[0];
const float Ey = mMagData[1];
const float Ez = mMagData[2];
float Hx = Ey*Az - Ez*Ay;
float Hy = Ez*Ax - Ex*Az;
float Hz = Ex*Ay - Ey*Ax;
const float normH = sqrtf(Hx*Hx + Hy*Hy + Hz*Hz);
if (normH < 0.1f) {
// device is close to free fall (or in space?), or close to
// magnetic north pole. Typical values are > 100.
return false;
}
const float invH = 1.0f / normH;
const float invA = 1.0f / sqrtf(Ax*Ax + Ay*Ay + Az*Az);
Hx *= invH;
Hy *= invH;
Hz *= invH;
Ax *= invA;
Ay *= invA;
Az *= invA;
const float Mx = Ay*Hz - Az*Hy;
const float My = Az*Hx - Ax*Hz;
const float Mz = Ax*Hy - Ay*Hx;
// matrix to rotation vector (normalized quaternion)
float qw = sqrtf( clamp( Hx + My + Az + 1) * 0.25f );
float qx = sqrtf( clamp( Hx - My - Az + 1) * 0.25f );
float qy = sqrtf( clamp(-Hx + My - Az + 1) * 0.25f );
float qz = sqrtf( clamp(-Hx - My + Az + 1) * 0.25f );
qx = copysignf(qx, Ay - Mz);
qy = copysignf(qy, Hz - Ax);
qz = copysignf(qz, Mx - Hy);
// this quaternion is guaranteed to be normalized, by construction
// of the rotation matrix.
*outEvent = event;
outEvent->data[0] = qx;
outEvent->data[1] = qy;
outEvent->data[2] = qz;
outEvent->data[3] = qw;
outEvent->sensor = '_rov';
outEvent->type = SENSOR_TYPE_ROTATION_VECTOR;
return true;
}
return false;
}
status_t RotationVectorSensor::activate(void* ident, bool enabled) {
mSensorDevice.activate(this, mAcc.getHandle(), enabled);
mSensorDevice.activate(this, mMag.getHandle(), enabled);
if (enabled) {
mMagTime = 0;
mAccTime = 0;
}
return NO_ERROR;
return mSensorFusion.activate(this, enabled);
}
status_t RotationVectorSensor::setDelay(void* ident, int handle, int64_t ns)
{
mSensorDevice.setDelay(this, mAcc.getHandle(), ns);
mSensorDevice.setDelay(this, mMag.getHandle(), ns);
return NO_ERROR;
status_t RotationVectorSensor::setDelay(void* ident, int handle, int64_t ns) {
return mSensorFusion.setDelay(this, ns);
}
Sensor RotationVectorSensor::getSensor() const {
sensor_t hwSensor;
hwSensor.name = "Rotation Vector Sensor";
hwSensor.vendor = "Google Inc.";
hwSensor.version = 1;
hwSensor.version = mSensorFusion.hasGyro() ? 3 : 2;
hwSensor.handle = '_rov';
hwSensor.type = SENSOR_TYPE_ROTATION_VECTOR;
hwSensor.maxRange = 1;
hwSensor.resolution = 1.0f / (1<<24);
hwSensor.power = mAcc.getPowerUsage() + mMag.getPowerUsage();
hwSensor.minDelay = mAcc.getMinDelay();
hwSensor.power = mSensorFusion.getPowerUsage();
hwSensor.minDelay = mSensorFusion.getMinDelay();
Sensor sensor(&hwSensor);
return sensor;
}

View File

@ -26,24 +26,19 @@
#include "SensorInterface.h"
#include "SecondOrderLowPassFilter.h"
#include "Fusion.h"
#include "SensorFusion.h"
// ---------------------------------------------------------------------------
namespace android {
// ---------------------------------------------------------------------------
class RotationVectorSensor : public SensorInterface {
SensorDevice& mSensorDevice;
Sensor mAcc;
Sensor mMag;
float mMagData[3];
double mAccTime;
double mMagTime;
SecondOrderLowPassFilter mALowPass;
CascadedBiquadFilter mAX, mAY, mAZ;
SecondOrderLowPassFilter mMLowPass;
CascadedBiquadFilter mMX, mMY, mMZ;
SensorFusion& mSensorFusion;
public:
RotationVectorSensor(sensor_t const* list, size_t count);
RotationVectorSensor();
virtual bool process(sensors_event_t* outEvent,
const sensors_event_t& event);
virtual status_t activate(void* ident, bool enabled);

View File

@ -21,6 +21,7 @@
#include <cutils/log.h>
#include "SecondOrderLowPassFilter.h"
#include "vec.h"
// ---------------------------------------------------------------------------
@ -44,21 +45,24 @@ void SecondOrderLowPassFilter::setSamplingPeriod(float dT)
// ---------------------------------------------------------------------------
BiquadFilter::BiquadFilter(const SecondOrderLowPassFilter& s)
template<typename T>
BiquadFilter<T>::BiquadFilter(const SecondOrderLowPassFilter& s)
: s(s)
{
}
float BiquadFilter::init(float x)
template<typename T>
T BiquadFilter<T>::init(const T& x)
{
x1 = x2 = x;
y1 = y2 = x;
return x;
}
float BiquadFilter::operator()(float x)
template<typename T>
T BiquadFilter<T>::operator()(const T& x)
{
float y = (x + x2)*s.a0 + x1*s.a1 - y1*s.b1 - y2*s.b2;
T y = (x + x2)*s.a0 + x1*s.a1 - y1*s.b1 - y2*s.b2;
x2 = x1;
y2 = y1;
x1 = x;
@ -68,22 +72,32 @@ float BiquadFilter::operator()(float x)
// ---------------------------------------------------------------------------
CascadedBiquadFilter::CascadedBiquadFilter(const SecondOrderLowPassFilter& s)
template<typename T>
CascadedBiquadFilter<T>::CascadedBiquadFilter(const SecondOrderLowPassFilter& s)
: mA(s), mB(s)
{
}
float CascadedBiquadFilter::init(float x)
template<typename T>
T CascadedBiquadFilter<T>::init(const T& x)
{
mA.init(x);
mB.init(x);
return x;
}
float CascadedBiquadFilter::operator()(float x)
template<typename T>
T CascadedBiquadFilter<T>::operator()(const T& x)
{
return mB(mA(x));
}
// ---------------------------------------------------------------------------
template class BiquadFilter<float>;
template class CascadedBiquadFilter<float>;
template class BiquadFilter<vec3_t>;
template class CascadedBiquadFilter<vec3_t>;
// ---------------------------------------------------------------------------
}; // namespace android

View File

@ -25,12 +25,14 @@
namespace android {
// ---------------------------------------------------------------------------
template<typename T>
class BiquadFilter;
/*
* State of a 2nd order low-pass IIR filter
*/
class SecondOrderLowPassFilter {
template<typename T>
friend class BiquadFilter;
float iQ, fc;
float K, iD;
@ -44,27 +46,29 @@ public:
/*
* Implements a Biquad IIR filter
*/
template<typename T>
class BiquadFilter {
float x1, x2;
float y1, y2;
T x1, x2;
T y1, y2;
const SecondOrderLowPassFilter& s;
public:
BiquadFilter(const SecondOrderLowPassFilter& s);
float init(float in);
float operator()(float in);
T init(const T& in);
T operator()(const T& in);
};
/*
* Two cascaded biquad IIR filters
* (4-poles IIR)
*/
template<typename T>
class CascadedBiquadFilter {
BiquadFilter mA;
BiquadFilter mB;
BiquadFilter<T> mA;
BiquadFilter<T> mB;
public:
CascadedBiquadFilter(const SecondOrderLowPassFilter& s);
float init(float in);
float operator()(float in);
T init(const T& in);
T operator()(const T& in);
};
// ---------------------------------------------------------------------------

View File

@ -251,6 +251,9 @@ status_t SensorDevice::setDelay(void* ident, int handle, int64_t ns)
}
}
}
//LOGD("setDelay: ident=%p, handle=%d, ns=%lld", ident, handle, ns);
return mSensorDevice->setDelay(mSensorDevice, handle, ns);
}

View File

@ -0,0 +1,180 @@
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "SensorDevice.h"
#include "SensorFusion.h"
#include "SensorService.h"
namespace android {
// ---------------------------------------------------------------------------
ANDROID_SINGLETON_STATIC_INSTANCE(SensorFusion)
SensorFusion::SensorFusion()
: mSensorDevice(SensorDevice::getInstance()),
mEnabled(false), mHasGyro(false), mGyroTime(0), mRotationMatrix(1),
mLowPass(M_SQRT1_2, 1.0f), mAccData(mLowPass),
mFilteredMag(0.0f), mFilteredAcc(0.0f)
{
sensor_t const* list;
size_t count = mSensorDevice.getSensorList(&list);
for (size_t i=0 ; i<count ; i++) {
if (list[i].type == SENSOR_TYPE_ACCELEROMETER) {
mAcc = Sensor(list + i);
}
if (list[i].type == SENSOR_TYPE_MAGNETIC_FIELD) {
mMag = Sensor(list + i);
}
if (list[i].type == SENSOR_TYPE_GYROSCOPE) {
mGyro = Sensor(list + i);
// 200 Hz for gyro events is a good compromise between precision
// and power/cpu usage.
mTargetDelayNs = 1000000000LL/200;
mGyroRate = 1000000000.0f / mTargetDelayNs;
mHasGyro = true;
}
}
mFusion.init();
mAccData.init(vec3_t(0.0f));
}
void SensorFusion::process(const sensors_event_t& event) {
if (event.type == SENSOR_TYPE_GYROSCOPE && mHasGyro) {
if (mGyroTime != 0) {
const float dT = (event.timestamp - mGyroTime) / 1000000000.0f;
const float freq = 1 / dT;
const float alpha = 2 / (2 + dT); // 2s time-constant
mGyroRate = mGyroRate*alpha + freq*(1 - alpha);
}
mGyroTime = event.timestamp;
mFusion.handleGyro(vec3_t(event.data), 1.0f/mGyroRate);
} else if (event.type == SENSOR_TYPE_MAGNETIC_FIELD) {
const vec3_t mag(event.data);
if (mHasGyro) {
mFusion.handleMag(mag);
} else {
const float l(length(mag));
if (l>5 && l<100) {
mFilteredMag = mag * (1/l);
}
}
} else if (event.type == SENSOR_TYPE_ACCELEROMETER) {
const vec3_t acc(event.data);
if (mHasGyro) {
mFusion.handleAcc(acc);
mRotationMatrix = mFusion.getRotationMatrix();
} else {
const float l(length(acc));
if (l > 0.981f) {
// remove the linear-acceleration components
mFilteredAcc = mAccData(acc * (1/l));
}
if (length(mFilteredAcc)>0 && length(mFilteredMag)>0) {
vec3_t up(mFilteredAcc);
vec3_t east(cross_product(mFilteredMag, up));
east *= 1/length(east);
vec3_t north(cross_product(up, east));
mRotationMatrix << east << north << up;
}
}
}
}
template <typename T> inline T min(T a, T b) { return a<b ? a : b; }
template <typename T> inline T max(T a, T b) { return a>b ? a : b; }
status_t SensorFusion::activate(void* ident, bool enabled) {
LOGD_IF(DEBUG_CONNECTIONS,
"SensorFusion::activate(ident=%p, enabled=%d)",
ident, enabled);
const ssize_t idx = mClients.indexOf(ident);
if (enabled) {
if (idx < 0) {
mClients.add(ident);
}
} else {
if (idx >= 0) {
mClients.removeItemsAt(idx);
}
}
mSensorDevice.activate(ident, mAcc.getHandle(), enabled);
mSensorDevice.activate(ident, mMag.getHandle(), enabled);
if (mHasGyro) {
mSensorDevice.activate(ident, mGyro.getHandle(), enabled);
}
const bool newState = mClients.size() != 0;
if (newState != mEnabled) {
mEnabled = newState;
if (newState) {
mFusion.init();
}
}
return NO_ERROR;
}
status_t SensorFusion::setDelay(void* ident, int64_t ns) {
if (mHasGyro) {
mSensorDevice.setDelay(ident, mAcc.getHandle(), ns);
mSensorDevice.setDelay(ident, mMag.getHandle(), ms2ns(20));
mSensorDevice.setDelay(ident, mGyro.getHandle(), mTargetDelayNs);
} else {
const static double NS2S = 1.0 / 1000000000.0;
mSensorDevice.setDelay(ident, mAcc.getHandle(), ns);
mSensorDevice.setDelay(ident, mMag.getHandle(), max(ns, mMag.getMinDelayNs()));
mLowPass.setSamplingPeriod(ns*NS2S);
}
return NO_ERROR;
}
float SensorFusion::getPowerUsage() const {
float power = mAcc.getPowerUsage() + mMag.getPowerUsage();
if (mHasGyro) {
power += mGyro.getPowerUsage();
}
return power;
}
int32_t SensorFusion::getMinDelay() const {
return mAcc.getMinDelay();
}
void SensorFusion::dump(String8& result, char* buffer, size_t SIZE) {
const Fusion& fusion(mFusion);
snprintf(buffer, SIZE, "Fusion (%s) %s (%d clients), gyro-rate=%7.2fHz, "
"MRPS=< %g, %g, %g > (%g), "
"BIAS=< %g, %g, %g >\n",
mHasGyro ? "9-axis" : "6-axis",
mEnabled ? "enabled" : "disabled",
mClients.size(),
mGyroRate,
fusion.getAttitude().x,
fusion.getAttitude().y,
fusion.getAttitude().z,
dot_product(fusion.getAttitude(), fusion.getAttitude()),
fusion.getBias().x,
fusion.getBias().y,
fusion.getBias().z);
result.append(buffer);
}
// ---------------------------------------------------------------------------
}; // namespace android

View File

@ -0,0 +1,84 @@
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_SENSOR_FUSION_H
#define ANDROID_SENSOR_FUSION_H
#include <stdint.h>
#include <sys/types.h>
#include <utils/SortedVector.h>
#include <utils/Singleton.h>
#include <utils/String8.h>
#include <gui/Sensor.h>
#include "Fusion.h"
#include "SecondOrderLowPassFilter.h"
// ---------------------------------------------------------------------------
namespace android {
// ---------------------------------------------------------------------------
class SensorDevice;
class SensorFusion : public Singleton<SensorFusion> {
friend class Singleton<SensorFusion>;
SensorDevice& mSensorDevice;
Sensor mAcc;
Sensor mMag;
Sensor mGyro;
Fusion mFusion;
bool mEnabled;
bool mHasGyro;
float mGyroRate;
nsecs_t mTargetDelayNs;
nsecs_t mGyroTime;
mat33_t mRotationMatrix;
SecondOrderLowPassFilter mLowPass;
BiquadFilter<vec3_t> mAccData;
vec3_t mFilteredMag;
vec3_t mFilteredAcc;
SortedVector<void*> mClients;
SensorFusion();
public:
void process(const sensors_event_t& event);
bool isEnabled() const { return mEnabled; }
bool hasGyro() const { return mHasGyro; }
bool hasEstimate() const { return !mHasGyro || mFusion.hasEstimate(); }
mat33_t getRotationMatrix() const { return mRotationMatrix; }
vec3_t getGyroBias() const { return mFusion.getBias(); }
float getEstimatedRate() const { return mGyroRate; }
status_t activate(void* ident, bool enabled);
status_t setDelay(void* ident, int64_t ns);
float getPowerUsage() const;
int32_t getMinDelay() const;
void dump(String8& result, char* buffer, size_t SIZE);
};
// ---------------------------------------------------------------------------
}; // namespace android
#endif // ANDROID_SENSOR_FUSION_H

View File

@ -20,8 +20,6 @@
#include <stdint.h>
#include <sys/types.h>
#include <utils/Singleton.h>
#include <gui/Sensor.h>
#include "SensorDevice.h"

View File

@ -35,10 +35,13 @@
#include <hardware/sensors.h>
#include "SensorService.h"
#include "CorrectedGyroSensor.h"
#include "GravitySensor.h"
#include "LinearAccelerationSensor.h"
#include "OrientationSensor.h"
#include "RotationVectorSensor.h"
#include "SensorFusion.h"
#include "SensorService.h"
namespace android {
// ---------------------------------------------------------------------------
@ -74,14 +77,26 @@ void SensorService::onFirstRef()
}
}
if (virtualSensorsNeeds & (1<<SENSOR_TYPE_GRAVITY)) {
registerVirtualSensor( new GravitySensor(list, count) );
}
if (virtualSensorsNeeds & (1<<SENSOR_TYPE_LINEAR_ACCELERATION)) {
registerVirtualSensor( new LinearAccelerationSensor(list, count) );
}
if (virtualSensorsNeeds & (1<<SENSOR_TYPE_ROTATION_VECTOR)) {
registerVirtualSensor( new RotationVectorSensor(list, count) );
// it's safe to instantiate the SensorFusion object here
// (it wants to be instantiated after h/w sensors have been
// registered)
const SensorFusion& fusion(SensorFusion::getInstance());
// Always instantiate Android's virtual sensors. Since they are
// instantiated behind sensors from the HAL, they won't
// interfere with applications, unless they looks specifically
// for them (by name).
registerVirtualSensor( new RotationVectorSensor() );
registerVirtualSensor( new GravitySensor(list, count) );
registerVirtualSensor( new LinearAccelerationSensor(list, count) );
// if we have a gyro, we have the option of enabling these
// "better" orientation and gyro sensors
if (fusion.hasGyro()) {
// FIXME: OrientationSensor buggy when not pointing north
registerVirtualSensor( new OrientationSensor() );
registerVirtualSensor( new CorrectedGyroSensor(list, count) );
}
run("SensorService", PRIORITY_URGENT_DISPLAY);
@ -133,7 +148,9 @@ status_t SensorService::dump(int fd, const Vector<String16>& args)
for (size_t i=0 ; i<mSensorList.size() ; i++) {
const Sensor& s(mSensorList[i]);
const sensors_event_t& e(mLastEventSeen.valueFor(s.getHandle()));
snprintf(buffer, SIZE, "%-48s| %-32s | 0x%08x | maxRate=%7.2fHz | last=<%5.1f,%5.1f,%5.1f>\n",
snprintf(buffer, SIZE,
"%-48s| %-32s | 0x%08x | maxRate=%7.2fHz | "
"last=<%5.1f,%5.1f,%5.1f>\n",
s.getName().string(),
s.getVendor().string(),
s.getHandle(),
@ -141,6 +158,7 @@ status_t SensorService::dump(int fd, const Vector<String16>& args)
e.data[0], e.data[1], e.data[2]);
result.append(buffer);
}
SensorFusion::getInstance().dump(result, buffer, SIZE);
SensorDevice::getInstance().dump(result, buffer, SIZE);
snprintf(buffer, SIZE, "%d active connections\n",
@ -183,13 +201,19 @@ bool SensorService::threadLoop()
// handle virtual sensors
if (count && vcount) {
sensors_event_t const * const event = buffer;
const DefaultKeyedVector<int, SensorInterface*> virtualSensors(
getActiveVirtualSensors());
const size_t activeVirtualSensorCount = virtualSensors.size();
if (activeVirtualSensorCount) {
size_t k = 0;
SensorFusion& fusion(SensorFusion::getInstance());
if (fusion.isEnabled()) {
for (size_t i=0 ; i<size_t(count) ; i++) {
fusion.process(event[i]);
}
}
for (size_t i=0 ; i<size_t(count) ; i++) {
sensors_event_t const * const event = buffer;
for (size_t j=0 ; j<activeVirtualSensorCount ; j++) {
sensors_event_t out;
if (virtualSensors.valueAt(j)->process(&out, event[i])) {

View File

@ -0,0 +1,370 @@
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_MAT_H
#define ANDROID_MAT_H
#include "vec.h"
#include "traits.h"
// -----------------------------------------------------------------------
namespace android {
template <typename TYPE, size_t C, size_t R>
class mat;
namespace helpers {
template <typename TYPE, size_t C, size_t R>
mat<TYPE, C, R>& doAssign(
mat<TYPE, C, R>& lhs,
typename TypeTraits<TYPE>::ParameterType rhs) {
for (size_t i=0 ; i<C ; i++)
for (size_t j=0 ; j<R ; j++)
lhs[i][j] = (i==j) ? rhs : 0;
return lhs;
}
template <typename TYPE, size_t C, size_t R, size_t D>
mat<TYPE, C, R> PURE doMul(
const mat<TYPE, D, R>& lhs,
const mat<TYPE, C, D>& rhs)
{
mat<TYPE, C, R> res;
for (size_t c=0 ; c<C ; c++) {
for (size_t r=0 ; r<R ; r++) {
TYPE v(0);
for (size_t k=0 ; k<D ; k++) {
v += lhs[k][r] * rhs[c][k];
}
res[c][r] = v;
}
}
return res;
}
template <typename TYPE, size_t R, size_t D>
vec<TYPE, R> PURE doMul(
const mat<TYPE, D, R>& lhs,
const vec<TYPE, D>& rhs)
{
vec<TYPE, R> res;
for (size_t r=0 ; r<R ; r++) {
TYPE v(0);
for (size_t k=0 ; k<D ; k++) {
v += lhs[k][r] * rhs[k];
}
res[r] = v;
}
return res;
}
template <typename TYPE, size_t C, size_t R>
mat<TYPE, C, R> PURE doMul(
const vec<TYPE, R>& lhs,
const mat<TYPE, C, 1>& rhs)
{
mat<TYPE, C, R> res;
for (size_t c=0 ; c<C ; c++) {
for (size_t r=0 ; r<R ; r++) {
res[c][r] = lhs[r] * rhs[c][0];
}
}
return res;
}
template <typename TYPE, size_t C, size_t R>
mat<TYPE, C, R> PURE doMul(
const mat<TYPE, C, R>& rhs,
typename TypeTraits<TYPE>::ParameterType v)
{
mat<TYPE, C, R> res;
for (size_t c=0 ; c<C ; c++) {
for (size_t r=0 ; r<R ; r++) {
res[c][r] = rhs[c][r] * v;
}
}
return res;
}
template <typename TYPE, size_t C, size_t R>
mat<TYPE, C, R> PURE doMul(
typename TypeTraits<TYPE>::ParameterType v,
const mat<TYPE, C, R>& rhs)
{
mat<TYPE, C, R> res;
for (size_t c=0 ; c<C ; c++) {
for (size_t r=0 ; r<R ; r++) {
res[c][r] = v * rhs[c][r];
}
}
return res;
}
}; // namespace helpers
// -----------------------------------------------------------------------
template <typename TYPE, size_t C, size_t R>
class mat : public vec< vec<TYPE, R>, C > {
typedef typename TypeTraits<TYPE>::ParameterType pTYPE;
typedef vec< vec<TYPE, R>, C > base;
public:
// STL-like interface.
typedef TYPE value_type;
typedef TYPE& reference;
typedef TYPE const& const_reference;
typedef size_t size_type;
size_type size() const { return R*C; }
enum { ROWS = R, COLS = C };
// -----------------------------------------------------------------------
// default constructors
mat() { }
mat(const mat& rhs) : base(rhs) { }
mat(const base& rhs) : base(rhs) { }
// -----------------------------------------------------------------------
// conversion constructors
// sets the diagonal to the value, off-diagonal to zero
mat(pTYPE rhs) {
helpers::doAssign(*this, rhs);
}
// -----------------------------------------------------------------------
// Assignment
mat& operator=(const mat& rhs) {
base::operator=(rhs);
return *this;
}
mat& operator=(const base& rhs) {
base::operator=(rhs);
return *this;
}
mat& operator=(pTYPE rhs) {
return helpers::doAssign(*this, rhs);
}
// -----------------------------------------------------------------------
// non-member function declaration and definition
friend inline mat PURE operator + (const mat& lhs, const mat& rhs) {
return helpers::doAdd(
static_cast<const base&>(lhs),
static_cast<const base&>(rhs));
}
friend inline mat PURE operator - (const mat& lhs, const mat& rhs) {
return helpers::doSub(
static_cast<const base&>(lhs),
static_cast<const base&>(rhs));
}
// matrix*matrix
template <size_t D>
friend mat PURE operator * (
const mat<TYPE, D, R>& lhs,
const mat<TYPE, C, D>& rhs) {
return helpers::doMul(lhs, rhs);
}
// matrix*vector
friend vec<TYPE, R> PURE operator * (
const mat& lhs, const vec<TYPE, C>& rhs) {
return helpers::doMul(lhs, rhs);
}
// vector*matrix
friend mat PURE operator * (
const vec<TYPE, R>& lhs, const mat<TYPE, C, 1>& rhs) {
return helpers::doMul(lhs, rhs);
}
// matrix*scalar
friend inline mat PURE operator * (const mat& lhs, pTYPE v) {
return helpers::doMul(lhs, v);
}
// scalar*matrix
friend inline mat PURE operator * (pTYPE v, const mat& rhs) {
return helpers::doMul(v, rhs);
}
// -----------------------------------------------------------------------
// streaming operator to set the columns of the matrix:
// example:
// mat33_t m;
// m << v0 << v1 << v2;
// column_builder<> stores the matrix and knows which column to set
template<size_t PREV_COLUMN>
struct column_builder {
mat& matrix;
column_builder(mat& matrix) : matrix(matrix) { }
};
// operator << is not a method of column_builder<> so we can
// overload it for unauthorized values (partial specialization
// not allowed in class-scope).
// we just set the column and return the next column_builder<>
template<size_t PREV_COLUMN>
friend column_builder<PREV_COLUMN+1> operator << (
const column_builder<PREV_COLUMN>& lhs,
const vec<TYPE, R>& rhs) {
lhs.matrix[PREV_COLUMN+1] = rhs;
return column_builder<PREV_COLUMN+1>(lhs.matrix);
}
// we return void here so we get a compile-time error if the
// user tries to set too many columns
friend void operator << (
const column_builder<C-2>& lhs,
const vec<TYPE, R>& rhs) {
lhs.matrix[C-1] = rhs;
}
// this is where the process starts. we set the first columns and
// return the next column_builder<>
column_builder<0> operator << (const vec<TYPE, R>& rhs) {
(*this)[0] = rhs;
return column_builder<0>(*this);
}
};
// Specialize column matrix so they're exactly equivalent to a vector
template <typename TYPE, size_t R>
class mat<TYPE, 1, R> : public vec<TYPE, R> {
typedef vec<TYPE, R> base;
public:
// STL-like interface.
typedef TYPE value_type;
typedef TYPE& reference;
typedef TYPE const& const_reference;
typedef size_t size_type;
size_type size() const { return R; }
enum { ROWS = R, COLS = 1 };
mat() { }
mat(const base& rhs) : base(rhs) { }
mat(const mat& rhs) : base(rhs) { }
mat(const TYPE& rhs) { helpers::doAssign(*this, rhs); }
mat& operator=(const mat& rhs) { base::operator=(rhs); return *this; }
mat& operator=(const base& rhs) { base::operator=(rhs); return *this; }
mat& operator=(const TYPE& rhs) { return helpers::doAssign(*this, rhs); }
// we only have one column, so ignore the index
const base& operator[](size_t) const { return *this; }
base& operator[](size_t) { return *this; }
void operator << (const vec<TYPE, R>& rhs) { base::operator[](0) = rhs; }
};
// -----------------------------------------------------------------------
// matrix functions
// transpose. this handles matrices of matrices
inline int PURE transpose(int v) { return v; }
inline float PURE transpose(float v) { return v; }
inline double PURE transpose(double v) { return v; }
// Transpose a matrix
template <typename TYPE, size_t C, size_t R>
mat<TYPE, R, C> PURE transpose(const mat<TYPE, C, R>& m) {
mat<TYPE, R, C> r;
for (size_t i=0 ; i<R ; i++)
for (size_t j=0 ; j<C ; j++)
r[i][j] = transpose(m[j][i]);
return r;
}
// Transpose a vector
template <
template<typename T, size_t S> class VEC,
typename TYPE,
size_t SIZE
>
mat<TYPE, SIZE, 1> PURE transpose(const VEC<TYPE, SIZE>& v) {
mat<TYPE, SIZE, 1> r;
for (size_t i=0 ; i<SIZE ; i++)
r[i][0] = transpose(v[i]);
return r;
}
// -----------------------------------------------------------------------
// "dumb" matrix inversion
template<typename T, size_t N>
mat<T, N, N> PURE invert(const mat<T, N, N>& src) {
T t;
size_t swap;
mat<T, N, N> tmp(src);
mat<T, N, N> inverse(1);
for (size_t i=0 ; i<N ; i++) {
// look for largest element in column
swap = i;
for (size_t j=i+1 ; j<N ; j++) {
if (fabs(tmp[j][i]) > fabs(tmp[i][i])) {
swap = j;
}
}
if (swap != i) {
/* swap rows. */
for (size_t k=0 ; k<N ; k++) {
t = tmp[i][k];
tmp[i][k] = tmp[swap][k];
tmp[swap][k] = t;
t = inverse[i][k];
inverse[i][k] = inverse[swap][k];
inverse[swap][k] = t;
}
}
t = 1 / tmp[i][i];
for (size_t k=0 ; k<N ; k++) {
tmp[i][k] *= t;
inverse[i][k] *= t;
}
for (size_t j=0 ; j<N ; j++) {
if (j != i) {
t = tmp[j][i];
for (size_t k=0 ; k<N ; k++) {
tmp[j][k] -= tmp[i][k] * t;
inverse[j][k] -= inverse[i][k] * t;
}
}
}
}
return inverse;
}
// -----------------------------------------------------------------------
typedef mat<float, 2, 2> mat22_t;
typedef mat<float, 3, 3> mat33_t;
typedef mat<float, 4, 4> mat44_t;
// -----------------------------------------------------------------------
}; // namespace android
#endif /* ANDROID_MAT_H */

View File

@ -0,0 +1,118 @@
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_TRAITS_H
#define ANDROID_TRAITS_H
// -----------------------------------------------------------------------
// Typelists
namespace android {
// end-of-list marker
class NullType {};
// type-list node
template <typename T, typename U>
struct TypeList {
typedef T Head;
typedef U Tail;
};
// helpers to build typelists
#define TYPELIST_1(T1) TypeList<T1, NullType>
#define TYPELIST_2(T1, T2) TypeList<T1, TYPELIST_1(T2)>
#define TYPELIST_3(T1, T2, T3) TypeList<T1, TYPELIST_2(T2, T3)>
#define TYPELIST_4(T1, T2, T3, T4) TypeList<T1, TYPELIST_3(T2, T3, T4)>
// typelists algorithms
namespace TL {
template <typename TList, typename T> struct IndexOf;
template <typename T>
struct IndexOf<NullType, T> {
enum { value = -1 };
};
template <typename T, typename Tail>
struct IndexOf<TypeList<T, Tail>, T> {
enum { value = 0 };
};
template <typename Head, typename Tail, typename T>
struct IndexOf<TypeList<Head, Tail>, T> {
private:
enum { temp = IndexOf<Tail, T>::value };
public:
enum { value = temp == -1 ? -1 : 1 + temp };
};
}; // namespace TL
// type selection based on a boolean
template <bool flag, typename T, typename U>
struct Select {
typedef T Result;
};
template <typename T, typename U>
struct Select<false, T, U> {
typedef U Result;
};
// -----------------------------------------------------------------------
// Type traits
template <typename T>
class TypeTraits {
typedef TYPELIST_4(
unsigned char, unsigned short,
unsigned int, unsigned long int) UnsignedInts;
typedef TYPELIST_4(
signed char, signed short,
signed int, signed long int) SignedInts;
typedef TYPELIST_1(
bool) OtherInts;
typedef TYPELIST_3(
float, double, long double) Floats;
template<typename U> struct PointerTraits {
enum { result = false };
typedef NullType PointeeType;
};
template<typename U> struct PointerTraits<U*> {
enum { result = true };
typedef U PointeeType;
};
public:
enum { isStdUnsignedInt = TL::IndexOf<UnsignedInts, T>::value >= 0 };
enum { isStdSignedInt = TL::IndexOf<SignedInts, T>::value >= 0 };
enum { isStdIntegral = TL::IndexOf<OtherInts, T>::value >= 0 || isStdUnsignedInt || isStdSignedInt };
enum { isStdFloat = TL::IndexOf<Floats, T>::value >= 0 };
enum { isPointer = PointerTraits<T>::result };
enum { isStdArith = isStdIntegral || isStdFloat };
// best parameter type for given type
typedef typename Select<isStdArith || isPointer, T, const T&>::Result ParameterType;
};
// -----------------------------------------------------------------------
}; // namespace android
#endif /* ANDROID_TRAITS_H */

View File

@ -0,0 +1,420 @@
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_VEC_H
#define ANDROID_VEC_H
#include <math.h>
#include <stdint.h>
#include <stddef.h>
#include "traits.h"
// -----------------------------------------------------------------------
#define PURE __attribute__((pure))
namespace android {
// -----------------------------------------------------------------------
// non-inline helpers
template <typename TYPE, size_t SIZE>
class vec;
template <typename TYPE, size_t SIZE>
class vbase;
namespace helpers {
template <typename T> inline T min(T a, T b) { return a<b ? a : b; }
template <typename T> inline T max(T a, T b) { return a>b ? a : b; }
template < template<typename T, size_t S> class VEC,
typename TYPE, size_t SIZE, size_t S>
vec<TYPE, SIZE>& doAssign(
vec<TYPE, SIZE>& lhs, const VEC<TYPE, S>& rhs) {
const size_t minSize = min(SIZE, S);
const size_t maxSize = max(SIZE, S);
for (size_t i=0 ; i<minSize ; i++)
lhs[i] = rhs[i];
for (size_t i=minSize ; i<maxSize ; i++)
lhs[i] = 0;
return lhs;
}
template <
template<typename T, size_t S> class VLHS,
template<typename T, size_t S> class VRHS,
typename TYPE,
size_t SIZE
>
VLHS<TYPE, SIZE> PURE doAdd(
const VLHS<TYPE, SIZE>& lhs,
const VRHS<TYPE, SIZE>& rhs) {
VLHS<TYPE, SIZE> r;
for (size_t i=0 ; i<SIZE ; i++)
r[i] = lhs[i] + rhs[i];
return r;
}
template <
template<typename T, size_t S> class VLHS,
template<typename T, size_t S> class VRHS,
typename TYPE,
size_t SIZE
>
VLHS<TYPE, SIZE> PURE doSub(
const VLHS<TYPE, SIZE>& lhs,
const VRHS<TYPE, SIZE>& rhs) {
VLHS<TYPE, SIZE> r;
for (size_t i=0 ; i<SIZE ; i++)
r[i] = lhs[i] - rhs[i];
return r;
}
template <
template<typename T, size_t S> class VEC,
typename TYPE,
size_t SIZE
>
VEC<TYPE, SIZE> PURE doMulScalar(
const VEC<TYPE, SIZE>& lhs,
typename TypeTraits<TYPE>::ParameterType rhs) {
VEC<TYPE, SIZE> r;
for (size_t i=0 ; i<SIZE ; i++)
r[i] = lhs[i] * rhs;
return r;
}
template <
template<typename T, size_t S> class VEC,
typename TYPE,
size_t SIZE
>
VEC<TYPE, SIZE> PURE doScalarMul(
typename TypeTraits<TYPE>::ParameterType lhs,
const VEC<TYPE, SIZE>& rhs) {
VEC<TYPE, SIZE> r;
for (size_t i=0 ; i<SIZE ; i++)
r[i] = lhs * rhs[i];
return r;
}
}; // namespace helpers
// -----------------------------------------------------------------------
// Below we define the mathematical operators for vectors.
// We use template template arguments so we can generically
// handle the case where the right-hand-size and left-hand-side are
// different vector types (but with same value_type and size).
// This is needed for performance when using ".xy{z}" element access
// on vec<>. Without this, an extra conversion to vec<> would be needed.
//
// example:
// vec4_t a;
// vec3_t b;
// vec3_t c = a.xyz + b;
//
// "a.xyz + b" is a mixed-operation between a vbase<> and a vec<>, requiring
// a conversion of vbase<> to vec<>. The template gunk below avoids this,
// by allowing the addition on these different vector types directly
//
template <
template<typename T, size_t S> class VLHS,
template<typename T, size_t S> class VRHS,
typename TYPE,
size_t SIZE
>
inline VLHS<TYPE, SIZE> PURE operator + (
const VLHS<TYPE, SIZE>& lhs,
const VRHS<TYPE, SIZE>& rhs) {
return helpers::doAdd(lhs, rhs);
}
template <
template<typename T, size_t S> class VLHS,
template<typename T, size_t S> class VRHS,
typename TYPE,
size_t SIZE
>
inline VLHS<TYPE, SIZE> PURE operator - (
const VLHS<TYPE, SIZE>& lhs,
const VRHS<TYPE, SIZE>& rhs) {
return helpers::doSub(lhs, rhs);
}
template <
template<typename T, size_t S> class VEC,
typename TYPE,
size_t SIZE
>
inline VEC<TYPE, SIZE> PURE operator * (
const VEC<TYPE, SIZE>& lhs,
typename TypeTraits<TYPE>::ParameterType rhs) {
return helpers::doMulScalar(lhs, rhs);
}
template <
template<typename T, size_t S> class VEC,
typename TYPE,
size_t SIZE
>
inline VEC<TYPE, SIZE> PURE operator * (
typename TypeTraits<TYPE>::ParameterType lhs,
const VEC<TYPE, SIZE>& rhs) {
return helpers::doScalarMul(lhs, rhs);
}
template <
template<typename T, size_t S> class VLHS,
template<typename T, size_t S> class VRHS,
typename TYPE,
size_t SIZE
>
TYPE PURE dot_product(
const VLHS<TYPE, SIZE>& lhs,
const VRHS<TYPE, SIZE>& rhs) {
TYPE r(0);
for (size_t i=0 ; i<SIZE ; i++)
r += lhs[i] * rhs[i];
return r;
}
template <
template<typename T, size_t S> class V,
typename TYPE,
size_t SIZE
>
TYPE PURE length(const V<TYPE, SIZE>& v) {
return sqrt(dot_product(v, v));
}
template <
template<typename T, size_t S> class VLHS,
template<typename T, size_t S> class VRHS,
typename TYPE
>
VLHS<TYPE, 3> PURE cross_product(
const VLHS<TYPE, 3>& u,
const VRHS<TYPE, 3>& v) {
VLHS<TYPE, 3> r;
r.x = u.y*v.z - u.z*v.y;
r.y = u.z*v.x - u.x*v.z;
r.z = u.x*v.y - u.y*v.x;
return r;
}
template <typename TYPE, size_t SIZE>
vec<TYPE, SIZE> PURE operator - (const vec<TYPE, SIZE>& lhs) {
vec<TYPE, SIZE> r;
for (size_t i=0 ; i<SIZE ; i++)
r[i] = -lhs[i];
return r;
}
// -----------------------------------------------------------------------
// This our basic vector type, it just implements the data storage
// and accessors.
template <typename TYPE, size_t SIZE>
struct vbase {
TYPE v[SIZE];
inline const TYPE& operator[](size_t i) const { return v[i]; }
inline TYPE& operator[](size_t i) { return v[i]; }
};
template<> struct vbase<float, 2> {
union {
float v[2];
struct { float x, y; };
struct { float s, t; };
};
inline const float& operator[](size_t i) const { return v[i]; }
inline float& operator[](size_t i) { return v[i]; }
};
template<> struct vbase<float, 3> {
union {
float v[3];
struct { float x, y, z; };
struct { float s, t, r; };
vbase<float, 2> xy;
vbase<float, 2> st;
};
inline const float& operator[](size_t i) const { return v[i]; }
inline float& operator[](size_t i) { return v[i]; }
};
template<> struct vbase<float, 4> {
union {
float v[4];
struct { float x, y, z, w; };
struct { float s, t, r, q; };
vbase<float, 3> xyz;
vbase<float, 3> str;
vbase<float, 2> xy;
vbase<float, 2> st;
};
inline const float& operator[](size_t i) const { return v[i]; }
inline float& operator[](size_t i) { return v[i]; }
};
// -----------------------------------------------------------------------
template <typename TYPE, size_t SIZE>
class vec : public vbase<TYPE, SIZE>
{
typedef typename TypeTraits<TYPE>::ParameterType pTYPE;
typedef vbase<TYPE, SIZE> base;
public:
// STL-like interface.
typedef TYPE value_type;
typedef TYPE& reference;
typedef TYPE const& const_reference;
typedef size_t size_type;
typedef TYPE* iterator;
typedef TYPE const* const_iterator;
iterator begin() { return base::v; }
iterator end() { return base::v + SIZE; }
const_iterator begin() const { return base::v; }
const_iterator end() const { return base::v + SIZE; }
size_type size() const { return SIZE; }
// -----------------------------------------------------------------------
// default constructors
vec() { }
vec(const vec& rhs) : base(rhs) { }
vec(const base& rhs) : base(rhs) { }
// -----------------------------------------------------------------------
// conversion constructors
vec(pTYPE rhs) {
for (size_t i=0 ; i<SIZE ; i++)
base::operator[](i) = rhs;
}
template < template<typename T, size_t S> class VEC, size_t S>
explicit vec(const VEC<TYPE, S>& rhs) {
helpers::doAssign(*this, rhs);
}
explicit vec(TYPE const* array) {
for (size_t i=0 ; i<SIZE ; i++)
base::operator[](i) = array[i];
}
// -----------------------------------------------------------------------
// Assignment
vec& operator = (const vec& rhs) {
base::operator=(rhs);
return *this;
}
vec& operator = (const base& rhs) {
base::operator=(rhs);
return *this;
}
vec& operator = (pTYPE rhs) {
for (size_t i=0 ; i<SIZE ; i++)
base::operator[](i) = rhs;
return *this;
}
template < template<typename T, size_t S> class VEC, size_t S>
vec& operator = (const VEC<TYPE, S>& rhs) {
return helpers::doAssign(*this, rhs);
}
// -----------------------------------------------------------------------
// operation-assignment
vec& operator += (const vec& rhs);
vec& operator -= (const vec& rhs);
vec& operator *= (pTYPE rhs);
// -----------------------------------------------------------------------
// non-member function declaration and definition
// NOTE: we declare the non-member function as friend inside the class
// so that they are known to the compiler when the class is instantiated.
// This helps the compiler doing template argument deduction when the
// passed types are not identical. Essentially this helps with
// type conversion so that you can multiply a vec<float> by an scalar int
// (for instance).
friend inline vec PURE operator + (const vec& lhs, const vec& rhs) {
return helpers::doAdd(lhs, rhs);
}
friend inline vec PURE operator - (const vec& lhs, const vec& rhs) {
return helpers::doSub(lhs, rhs);
}
friend inline vec PURE operator * (const vec& lhs, pTYPE v) {
return helpers::doMulScalar(lhs, v);
}
friend inline vec PURE operator * (pTYPE v, const vec& rhs) {
return helpers::doScalarMul(v, rhs);
}
friend inline TYPE PURE dot_product(const vec& lhs, const vec& rhs) {
return android::dot_product(lhs, rhs);
}
};
// -----------------------------------------------------------------------
template <typename TYPE, size_t SIZE>
vec<TYPE, SIZE>& vec<TYPE, SIZE>::operator += (const vec<TYPE, SIZE>& rhs) {
vec<TYPE, SIZE>& lhs(*this);
for (size_t i=0 ; i<SIZE ; i++)
lhs[i] += rhs[i];
return lhs;
}
template <typename TYPE, size_t SIZE>
vec<TYPE, SIZE>& vec<TYPE, SIZE>::operator -= (const vec<TYPE, SIZE>& rhs) {
vec<TYPE, SIZE>& lhs(*this);
for (size_t i=0 ; i<SIZE ; i++)
lhs[i] -= rhs[i];
return lhs;
}
template <typename TYPE, size_t SIZE>
vec<TYPE, SIZE>& vec<TYPE, SIZE>::operator *= (vec<TYPE, SIZE>::pTYPE rhs) {
vec<TYPE, SIZE>& lhs(*this);
for (size_t i=0 ; i<SIZE ; i++)
lhs[i] *= rhs;
return lhs;
}
// -----------------------------------------------------------------------
typedef vec<float, 2> vec2_t;
typedef vec<float, 3> vec3_t;
typedef vec<float, 4> vec4_t;
// -----------------------------------------------------------------------
}; // namespace android
#endif /* ANDROID_VEC_H */