replicant-frameworks_native/services/surfaceflinger/DisplayHardware/HWComposer.cpp

1054 lines
36 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
// Uncomment this to remove support for HWC_DEVICE_API_VERSION_0_3 and older
#define HWC_REMOVE_DEPRECATED_VERSIONS 1
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <utils/Errors.h>
#include <utils/misc.h>
#include <utils/String8.h>
#include <utils/Thread.h>
#include <utils/Trace.h>
#include <utils/Vector.h>
#include <ui/GraphicBuffer.h>
#include <hardware/hardware.h>
#include <hardware/hwcomposer.h>
#include <cutils/log.h>
#include <cutils/properties.h>
#include "Layer.h" // needed only for debugging
#include "LayerBase.h"
#include "HWComposer.h"
#include "SurfaceFlinger.h"
#include <utils/CallStack.h>
namespace android {
#define MIN_HWC_HEADER_VERSION HWC_HEADER_VERSION
static uint32_t hwcApiVersion(const hwc_composer_device_1_t* hwc) {
uint32_t hwcVersion = hwc->common.version;
return hwcVersion & HARDWARE_API_VERSION_2_MAJ_MIN_MASK;
}
static uint32_t hwcHeaderVersion(const hwc_composer_device_1_t* hwc) {
uint32_t hwcVersion = hwc->common.version;
return hwcVersion & HARDWARE_API_VERSION_2_HEADER_MASK;
}
static bool hwcHasApiVersion(const hwc_composer_device_1_t* hwc,
uint32_t version) {
return hwcApiVersion(hwc) >= (version & HARDWARE_API_VERSION_2_MAJ_MIN_MASK);
}
// ---------------------------------------------------------------------------
struct HWComposer::cb_context {
struct callbacks : public hwc_procs_t {
// these are here to facilitate the transition when adding
// new callbacks (an implementation can check for NULL before
// calling a new callback).
void (*zero[4])(void);
};
callbacks procs;
HWComposer* hwc;
};
// ---------------------------------------------------------------------------
HWComposer::HWComposer(
const sp<SurfaceFlinger>& flinger,
EventHandler& handler)
: mFlinger(flinger),
mFbDev(0), mHwc(0), mNumDisplays(1),
mCBContext(new cb_context),
mEventHandler(handler),
mVSyncCount(0), mDebugForceFakeVSync(false)
{
for (size_t i =0 ; i<MAX_DISPLAYS ; i++) {
mLists[i] = 0;
}
char value[PROPERTY_VALUE_MAX];
property_get("debug.sf.no_hw_vsync", value, "0");
mDebugForceFakeVSync = atoi(value);
bool needVSyncThread = true;
// Note: some devices may insist that the FB HAL be opened before HWC.
loadFbHalModule();
loadHwcModule();
if (mFbDev && mHwc && hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) {
// close FB HAL if we don't needed it.
// FIXME: this is temporary until we're not forced to open FB HAL
// before HWC.
framebuffer_close(mFbDev);
mFbDev = NULL;
}
// If we have no HWC, or a pre-1.1 HWC, an FB dev is mandatory.
if ((!mHwc || !hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1))
&& !mFbDev) {
ALOGE("ERROR: failed to open framebuffer, aborting");
abort();
}
// these display IDs are always reserved
for (size_t i=0 ; i<HWC_NUM_DISPLAY_TYPES ; i++) {
mAllocatedDisplayIDs.markBit(i);
}
if (mHwc) {
ALOGI("Using %s version %u.%u", HWC_HARDWARE_COMPOSER,
(hwcApiVersion(mHwc) >> 24) & 0xff,
(hwcApiVersion(mHwc) >> 16) & 0xff);
if (mHwc->registerProcs) {
mCBContext->hwc = this;
mCBContext->procs.invalidate = &hook_invalidate;
mCBContext->procs.vsync = &hook_vsync;
if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1))
mCBContext->procs.hotplug = &hook_hotplug;
else
mCBContext->procs.hotplug = NULL;
memset(mCBContext->procs.zero, 0, sizeof(mCBContext->procs.zero));
mHwc->registerProcs(mHwc, &mCBContext->procs);
}
// don't need a vsync thread if we have a hardware composer
needVSyncThread = false;
// always turn vsync off when we start
eventControl(HWC_DISPLAY_PRIMARY, HWC_EVENT_VSYNC, 0);
// the number of displays we actually have depends on the
// hw composer version
if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_2)) {
// 1.2 adds support for virtual displays
mNumDisplays = MAX_DISPLAYS;
} else if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) {
// 1.1 adds support for multiple displays
mNumDisplays = HWC_NUM_DISPLAY_TYPES;
} else {
mNumDisplays = 1;
}
}
if (mFbDev) {
ALOG_ASSERT(!(mHwc && hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)),
"should only have fbdev if no hwc or hwc is 1.0");
DisplayData& disp(mDisplayData[HWC_DISPLAY_PRIMARY]);
disp.connected = true;
disp.width = mFbDev->width;
disp.height = mFbDev->height;
disp.format = mFbDev->format;
disp.xdpi = mFbDev->xdpi;
disp.ydpi = mFbDev->ydpi;
if (disp.refresh == 0) {
disp.refresh = nsecs_t(1e9 / mFbDev->fps);
ALOGW("getting VSYNC period from fb HAL: %lld", disp.refresh);
}
if (disp.refresh == 0) {
disp.refresh = nsecs_t(1e9 / 60.0);
ALOGW("getting VSYNC period from thin air: %lld",
mDisplayData[HWC_DISPLAY_PRIMARY].refresh);
}
} else if (mHwc) {
// here we're guaranteed to have at least HWC 1.1
for (size_t i =0 ; i<HWC_NUM_DISPLAY_TYPES ; i++) {
queryDisplayProperties(i);
}
}
if (needVSyncThread) {
// we don't have VSYNC support, we need to fake it
mVSyncThread = new VSyncThread(*this);
}
}
HWComposer::~HWComposer() {
if (mHwc) {
eventControl(HWC_DISPLAY_PRIMARY, HWC_EVENT_VSYNC, 0);
}
if (mVSyncThread != NULL) {
mVSyncThread->requestExitAndWait();
}
if (mHwc) {
hwc_close_1(mHwc);
}
if (mFbDev) {
framebuffer_close(mFbDev);
}
delete mCBContext;
}
// Load and prepare the hardware composer module. Sets mHwc.
void HWComposer::loadHwcModule()
{
hw_module_t const* module;
if (hw_get_module(HWC_HARDWARE_MODULE_ID, &module) != 0) {
ALOGE("%s module not found", HWC_HARDWARE_MODULE_ID);
return;
}
int err = hwc_open_1(module, &mHwc);
if (err) {
ALOGE("%s device failed to initialize (%s)",
HWC_HARDWARE_COMPOSER, strerror(-err));
return;
}
if (!hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_0) ||
hwcHeaderVersion(mHwc) < MIN_HWC_HEADER_VERSION ||
hwcHeaderVersion(mHwc) > HWC_HEADER_VERSION) {
ALOGE("%s device version %#x unsupported, will not be used",
HWC_HARDWARE_COMPOSER, mHwc->common.version);
hwc_close_1(mHwc);
mHwc = NULL;
return;
}
}
// Load and prepare the FB HAL, which uses the gralloc module. Sets mFbDev.
void HWComposer::loadFbHalModule()
{
hw_module_t const* module;
if (hw_get_module(GRALLOC_HARDWARE_MODULE_ID, &module) != 0) {
ALOGE("%s module not found", GRALLOC_HARDWARE_MODULE_ID);
return;
}
int err = framebuffer_open(module, &mFbDev);
if (err) {
ALOGE("framebuffer_open failed (%s)", strerror(-err));
return;
}
}
status_t HWComposer::initCheck() const {
return mHwc ? NO_ERROR : NO_INIT;
}
void HWComposer::hook_invalidate(const struct hwc_procs* procs) {
cb_context* ctx = reinterpret_cast<cb_context*>(
const_cast<hwc_procs_t*>(procs));
ctx->hwc->invalidate();
}
void HWComposer::hook_vsync(const struct hwc_procs* procs, int disp,
int64_t timestamp) {
cb_context* ctx = reinterpret_cast<cb_context*>(
const_cast<hwc_procs_t*>(procs));
ctx->hwc->vsync(disp, timestamp);
}
void HWComposer::hook_hotplug(const struct hwc_procs* procs, int disp,
int connected) {
cb_context* ctx = reinterpret_cast<cb_context*>(
const_cast<hwc_procs_t*>(procs));
ctx->hwc->hotplug(disp, connected);
}
void HWComposer::invalidate() {
mFlinger->repaintEverything();
}
void HWComposer::vsync(int disp, int64_t timestamp) {
ATRACE_INT("VSYNC", ++mVSyncCount&1);
mEventHandler.onVSyncReceived(disp, timestamp);
Mutex::Autolock _l(mLock);
mLastHwVSync = timestamp;
}
void HWComposer::hotplug(int disp, int connected) {
if (disp == HWC_DISPLAY_PRIMARY || disp >= HWC_NUM_DISPLAY_TYPES) {
ALOGE("hotplug event received for invalid display: disp=%d connected=%d",
disp, connected);
return;
}
queryDisplayProperties(disp);
mEventHandler.onHotplugReceived(disp, bool(connected));
}
static const uint32_t DISPLAY_ATTRIBUTES[] = {
HWC_DISPLAY_VSYNC_PERIOD,
HWC_DISPLAY_WIDTH,
HWC_DISPLAY_HEIGHT,
HWC_DISPLAY_DPI_X,
HWC_DISPLAY_DPI_Y,
HWC_DISPLAY_NO_ATTRIBUTE,
};
#define NUM_DISPLAY_ATTRIBUTES (sizeof(DISPLAY_ATTRIBUTES) / sizeof(DISPLAY_ATTRIBUTES)[0])
// http://developer.android.com/reference/android/util/DisplayMetrics.html
#define ANDROID_DENSITY_TV 213
#define ANDROID_DENSITY_XHIGH 320
status_t HWComposer::queryDisplayProperties(int disp) {
LOG_ALWAYS_FATAL_IF(!mHwc || !hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1));
// use zero as default value for unspecified attributes
int32_t values[NUM_DISPLAY_ATTRIBUTES - 1];
memset(values, 0, sizeof(values));
uint32_t config;
size_t numConfigs = 1;
status_t err = mHwc->getDisplayConfigs(mHwc, disp, &config, &numConfigs);
if (err != NO_ERROR) {
// this can happen if an unpluggable display is not connected
mDisplayData[disp].connected = false;
return err;
}
err = mHwc->getDisplayAttributes(mHwc, disp, config, DISPLAY_ATTRIBUTES, values);
if (err != NO_ERROR) {
// we can't get this display's info. turn it off.
mDisplayData[disp].connected = false;
return err;
}
int32_t w = 0, h = 0;
for (size_t i = 0; i < NUM_DISPLAY_ATTRIBUTES - 1; i++) {
switch (DISPLAY_ATTRIBUTES[i]) {
case HWC_DISPLAY_VSYNC_PERIOD:
mDisplayData[disp].refresh = nsecs_t(values[i]);
break;
case HWC_DISPLAY_WIDTH:
mDisplayData[disp].width = values[i];
break;
case HWC_DISPLAY_HEIGHT:
mDisplayData[disp].height = values[i];
break;
case HWC_DISPLAY_DPI_X:
mDisplayData[disp].xdpi = values[i] / 1000.0f;
break;
case HWC_DISPLAY_DPI_Y:
mDisplayData[disp].ydpi = values[i] / 1000.0f;
break;
default:
ALOG_ASSERT(false, "unknown display attribute[%d] %#x",
i, DISPLAY_ATTRIBUTES[i]);
break;
}
}
// FIXME: what should we set the format to?
mDisplayData[disp].format = HAL_PIXEL_FORMAT_RGBA_8888;
mDisplayData[disp].connected = true;
if (mDisplayData[disp].xdpi == 0.0f || mDisplayData[disp].ydpi == 0.0f) {
// is there anything smarter we can do?
if (h >= 1080) {
mDisplayData[disp].xdpi = ANDROID_DENSITY_XHIGH;
mDisplayData[disp].ydpi = ANDROID_DENSITY_XHIGH;
} else {
mDisplayData[disp].xdpi = ANDROID_DENSITY_TV;
mDisplayData[disp].ydpi = ANDROID_DENSITY_TV;
}
}
return NO_ERROR;
}
int32_t HWComposer::allocateDisplayId() {
if (mAllocatedDisplayIDs.count() >= mNumDisplays) {
return NO_MEMORY;
}
int32_t id = mAllocatedDisplayIDs.firstUnmarkedBit();
mAllocatedDisplayIDs.markBit(id);
return id;
}
status_t HWComposer::freeDisplayId(int32_t id) {
if (id < HWC_NUM_DISPLAY_TYPES) {
// cannot free the reserved IDs
return BAD_VALUE;
}
if (uint32_t(id)>31 || !mAllocatedDisplayIDs.hasBit(id)) {
return BAD_INDEX;
}
mAllocatedDisplayIDs.clearBit(id);
return NO_ERROR;
}
nsecs_t HWComposer::getRefreshPeriod(int disp) const {
return mDisplayData[disp].refresh;
}
nsecs_t HWComposer::getRefreshTimestamp(int disp) const {
// this returns the last refresh timestamp.
// if the last one is not available, we estimate it based on
// the refresh period and whatever closest timestamp we have.
Mutex::Autolock _l(mLock);
nsecs_t now = systemTime(CLOCK_MONOTONIC);
return now - ((now - mLastHwVSync) % mDisplayData[disp].refresh);
}
sp<Fence> HWComposer::getDisplayFence(int disp) const {
return mDisplayData[disp].lastDisplayFence;
}
uint32_t HWComposer::getWidth(int disp) const {
return mDisplayData[disp].width;
}
uint32_t HWComposer::getHeight(int disp) const {
return mDisplayData[disp].height;
}
uint32_t HWComposer::getFormat(int disp) const {
return mDisplayData[disp].format;
}
float HWComposer::getDpiX(int disp) const {
return mDisplayData[disp].xdpi;
}
float HWComposer::getDpiY(int disp) const {
return mDisplayData[disp].ydpi;
}
bool HWComposer::isConnected(int disp) const {
return mDisplayData[disp].connected;
}
void HWComposer::eventControl(int disp, int event, int enabled) {
if (uint32_t(disp)>31 || !mAllocatedDisplayIDs.hasBit(disp)) {
ALOGD("eventControl ignoring event %d on unallocated disp %d (en=%d)",
event, disp, enabled);
return;
}
if (event != EVENT_VSYNC) {
ALOGW("eventControl got unexpected event %d (disp=%d en=%d)",
event, disp, enabled);
return;
}
status_t err = NO_ERROR;
if (mHwc && !mDebugForceFakeVSync) {
// NOTE: we use our own internal lock here because we have to call
// into the HWC with the lock held, and we want to make sure
// that even if HWC blocks (which it shouldn't), it won't
// affect other threads.
Mutex::Autolock _l(mEventControlLock);
const int32_t eventBit = 1UL << event;
const int32_t newValue = enabled ? eventBit : 0;
const int32_t oldValue = mDisplayData[disp].events & eventBit;
if (newValue != oldValue) {
ATRACE_CALL();
err = mHwc->eventControl(mHwc, disp, event, enabled);
if (!err) {
int32_t& events(mDisplayData[disp].events);
events = (events & ~eventBit) | newValue;
}
}
// error here should not happen -- not sure what we should
// do if it does.
ALOGE_IF(err, "eventControl(%d, %d) failed %s",
event, enabled, strerror(-err));
}
if (err == NO_ERROR && mVSyncThread != NULL) {
mVSyncThread->setEnabled(enabled);
}
}
status_t HWComposer::createWorkList(int32_t id, size_t numLayers) {
if (uint32_t(id)>31 || !mAllocatedDisplayIDs.hasBit(id)) {
return BAD_INDEX;
}
if (mHwc) {
DisplayData& disp(mDisplayData[id]);
if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) {
// we need space for the HWC_FRAMEBUFFER_TARGET
numLayers++;
}
if (disp.capacity < numLayers || disp.list == NULL) {
size_t size = sizeof(hwc_display_contents_1_t)
+ numLayers * sizeof(hwc_layer_1_t);
free(disp.list);
disp.list = (hwc_display_contents_1_t*)malloc(size);
disp.capacity = numLayers;
}
if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) {
disp.framebufferTarget = &disp.list->hwLayers[numLayers - 1];
memset(disp.framebufferTarget, 0, sizeof(hwc_layer_1_t));
const hwc_rect_t r = { 0, 0, (int) disp.width, (int) disp.height };
disp.framebufferTarget->compositionType = HWC_FRAMEBUFFER_TARGET;
disp.framebufferTarget->hints = 0;
disp.framebufferTarget->flags = 0;
disp.framebufferTarget->handle = disp.fbTargetHandle;
disp.framebufferTarget->transform = 0;
disp.framebufferTarget->blending = HWC_BLENDING_PREMULT;
disp.framebufferTarget->sourceCrop = r;
disp.framebufferTarget->displayFrame = r;
disp.framebufferTarget->visibleRegionScreen.numRects = 1;
disp.framebufferTarget->visibleRegionScreen.rects =
&disp.framebufferTarget->displayFrame;
disp.framebufferTarget->acquireFenceFd = -1;
disp.framebufferTarget->releaseFenceFd = -1;
}
disp.list->retireFenceFd = -1;
disp.list->flags = HWC_GEOMETRY_CHANGED;
disp.list->numHwLayers = numLayers;
}
return NO_ERROR;
}
status_t HWComposer::setFramebufferTarget(int32_t id,
const sp<Fence>& acquireFence, const sp<GraphicBuffer>& buf) {
if (uint32_t(id)>31 || !mAllocatedDisplayIDs.hasBit(id)) {
return BAD_INDEX;
}
DisplayData& disp(mDisplayData[id]);
if (!disp.framebufferTarget) {
// this should never happen, but apparently eglCreateWindowSurface()
// triggers a Surface::queueBuffer() on some
// devices (!?) -- log and ignore.
ALOGE("HWComposer: framebufferTarget is null");
// CallStack stack;
// stack.update();
// stack.dump("");
return NO_ERROR;
}
int acquireFenceFd = -1;
if (acquireFence->isValid()) {
acquireFenceFd = acquireFence->dup();
}
// ALOGD("fbPost: handle=%p, fence=%d", buf->handle, acquireFenceFd);
disp.fbTargetHandle = buf->handle;
disp.framebufferTarget->handle = disp.fbTargetHandle;
disp.framebufferTarget->acquireFenceFd = acquireFenceFd;
return NO_ERROR;
}
status_t HWComposer::prepare() {
for (size_t i=0 ; i<mNumDisplays ; i++) {
DisplayData& disp(mDisplayData[i]);
if (disp.framebufferTarget) {
// make sure to reset the type to HWC_FRAMEBUFFER_TARGET
// DO NOT reset the handle field to NULL, because it's possible
// that we have nothing to redraw (eg: eglSwapBuffers() not called)
// in which case, we should continue to use the same buffer.
LOG_FATAL_IF(disp.list == NULL);
disp.framebufferTarget->compositionType = HWC_FRAMEBUFFER_TARGET;
}
if (!disp.connected && disp.list != NULL) {
ALOGW("WARNING: disp %d: connected, non-null list, layers=%d",
i, disp.list->numHwLayers);
}
mLists[i] = disp.list;
if (mLists[i]) {
if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_2)) {
mLists[i]->outbuf = NULL;
mLists[i]->outbufAcquireFenceFd = -1;
} else if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) {
// garbage data to catch improper use
mLists[i]->dpy = (hwc_display_t)0xDEADBEEF;
mLists[i]->sur = (hwc_surface_t)0xDEADBEEF;
} else {
mLists[i]->dpy = EGL_NO_DISPLAY;
mLists[i]->sur = EGL_NO_SURFACE;
}
}
}
int err = mHwc->prepare(mHwc, mNumDisplays, mLists);
ALOGE_IF(err, "HWComposer: prepare failed (%s)", strerror(-err));
if (err == NO_ERROR) {
// here we're just making sure that "skip" layers are set
// to HWC_FRAMEBUFFER and we're also counting how many layers
// we have of each type.
for (size_t i=0 ; i<mNumDisplays ; i++) {
DisplayData& disp(mDisplayData[i]);
disp.hasFbComp = false;
disp.hasOvComp = false;
if (disp.list) {
for (size_t i=0 ; i<disp.list->numHwLayers ; i++) {
hwc_layer_1_t& l = disp.list->hwLayers[i];
//ALOGD("prepare: %d, type=%d, handle=%p",
// i, l.compositionType, l.handle);
if (l.flags & HWC_SKIP_LAYER) {
l.compositionType = HWC_FRAMEBUFFER;
}
if (l.compositionType == HWC_FRAMEBUFFER) {
disp.hasFbComp = true;
}
if (l.compositionType == HWC_OVERLAY) {
disp.hasOvComp = true;
}
}
}
}
}
return (status_t)err;
}
bool HWComposer::hasHwcComposition(int32_t id) const {
if (uint32_t(id)>31 || !mAllocatedDisplayIDs.hasBit(id))
return false;
return mDisplayData[id].hasOvComp;
}
bool HWComposer::hasGlesComposition(int32_t id) const {
if (uint32_t(id)>31 || !mAllocatedDisplayIDs.hasBit(id))
return false;
return mDisplayData[id].hasFbComp;
}
int HWComposer::getAndResetReleaseFenceFd(int32_t id) {
if (uint32_t(id)>31 || !mAllocatedDisplayIDs.hasBit(id))
return BAD_INDEX;
int fd = INVALID_OPERATION;
if (mHwc && hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) {
const DisplayData& disp(mDisplayData[id]);
if (disp.framebufferTarget) {
fd = disp.framebufferTarget->releaseFenceFd;
disp.framebufferTarget->acquireFenceFd = -1;
disp.framebufferTarget->releaseFenceFd = -1;
}
}
return fd;
}
status_t HWComposer::commit() {
int err = NO_ERROR;
if (mHwc) {
if (!hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) {
// On version 1.0, the OpenGL ES target surface is communicated
// by the (dpy, sur) fields and we are guaranteed to have only
// a single display.
mLists[0]->dpy = eglGetCurrentDisplay();
mLists[0]->sur = eglGetCurrentSurface(EGL_DRAW);
}
err = mHwc->set(mHwc, mNumDisplays, mLists);
for (size_t i=0 ; i<mNumDisplays ; i++) {
DisplayData& disp(mDisplayData[i]);
disp.lastDisplayFence = disp.lastRetireFence;
disp.lastRetireFence = Fence::NO_FENCE;
if (disp.list) {
if (disp.list->retireFenceFd != -1) {
disp.lastRetireFence = new Fence(disp.list->retireFenceFd);
disp.list->retireFenceFd = -1;
}
disp.list->flags &= ~HWC_GEOMETRY_CHANGED;
}
}
}
return (status_t)err;
}
status_t HWComposer::release(int disp) {
LOG_FATAL_IF(disp >= HWC_NUM_DISPLAY_TYPES);
if (mHwc) {
eventControl(disp, HWC_EVENT_VSYNC, 0);
return (status_t)mHwc->blank(mHwc, disp, 1);
}
return NO_ERROR;
}
status_t HWComposer::acquire(int disp) {
LOG_FATAL_IF(disp >= HWC_NUM_DISPLAY_TYPES);
if (mHwc) {
return (status_t)mHwc->blank(mHwc, disp, 0);
}
return NO_ERROR;
}
void HWComposer::disconnectDisplay(int disp) {
LOG_ALWAYS_FATAL_IF(disp < 0 || disp == HWC_DISPLAY_PRIMARY);
if (disp >= HWC_NUM_DISPLAY_TYPES) {
// nothing to do for these yet
return;
}
DisplayData& dd(mDisplayData[disp]);
if (dd.list != NULL) {
free(dd.list);
dd.list = NULL;
dd.framebufferTarget = NULL; // points into dd.list
dd.fbTargetHandle = NULL;
}
}
int HWComposer::getVisualID() const {
if (mHwc && hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) {
// FIXME: temporary hack until HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED
// is supported by the implementation. we can only be in this case
// if we have HWC 1.1
return HAL_PIXEL_FORMAT_RGBA_8888;
//return HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED;
} else {
return mFbDev->format;
}
}
bool HWComposer::supportsFramebufferTarget() const {
return (mHwc && hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1));
}
int HWComposer::fbPost(int32_t id,
const sp<Fence>& acquireFence, const sp<GraphicBuffer>& buffer) {
if (mHwc && hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) {
return setFramebufferTarget(id, acquireFence, buffer);
} else {
acquireFence->waitForever(1000, "HWComposer::fbPost");
return mFbDev->post(mFbDev, buffer->handle);
}
}
int HWComposer::fbCompositionComplete() {
if (mHwc && hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1))
return NO_ERROR;
if (mFbDev->compositionComplete) {
return mFbDev->compositionComplete(mFbDev);
} else {
return INVALID_OPERATION;
}
}
void HWComposer::fbDump(String8& result) {
if (mFbDev && mFbDev->common.version >= 1 && mFbDev->dump) {
const size_t SIZE = 4096;
char buffer[SIZE];
mFbDev->dump(mFbDev, buffer, SIZE);
result.append(buffer);
}
}
/*
* Helper template to implement a concrete HWCLayer
* This holds the pointer to the concrete hwc layer type
* and implements the "iterable" side of HWCLayer.
*/
template<typename CONCRETE, typename HWCTYPE>
class Iterable : public HWComposer::HWCLayer {
protected:
HWCTYPE* const mLayerList;
HWCTYPE* mCurrentLayer;
Iterable(HWCTYPE* layer) : mLayerList(layer), mCurrentLayer(layer) { }
inline HWCTYPE const * getLayer() const { return mCurrentLayer; }
inline HWCTYPE* getLayer() { return mCurrentLayer; }
virtual ~Iterable() { }
private:
// returns a copy of ourselves
virtual HWComposer::HWCLayer* dup() {
return new CONCRETE( static_cast<const CONCRETE&>(*this) );
}
virtual status_t setLayer(size_t index) {
mCurrentLayer = &mLayerList[index];
return NO_ERROR;
}
};
/*
* Concrete implementation of HWCLayer for HWC_DEVICE_API_VERSION_1_0.
* This implements the HWCLayer side of HWCIterableLayer.
*/
class HWCLayerVersion1 : public Iterable<HWCLayerVersion1, hwc_layer_1_t> {
struct hwc_composer_device_1* mHwc;
public:
HWCLayerVersion1(struct hwc_composer_device_1* hwc, hwc_layer_1_t* layer)
: Iterable<HWCLayerVersion1, hwc_layer_1_t>(layer), mHwc(hwc) { }
virtual int32_t getCompositionType() const {
return getLayer()->compositionType;
}
virtual uint32_t getHints() const {
return getLayer()->hints;
}
virtual int getAndResetReleaseFenceFd() {
int fd = getLayer()->releaseFenceFd;
getLayer()->releaseFenceFd = -1;
return fd;
}
virtual void setAcquireFenceFd(int fenceFd) {
getLayer()->acquireFenceFd = fenceFd;
}
virtual void setPerFrameDefaultState() {
//getLayer()->compositionType = HWC_FRAMEBUFFER;
}
virtual void setPlaneAlpha(uint8_t alpha) {
if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_2)) {
getLayer()->planeAlpha = alpha;
} else {
if (alpha < 0xFF) {
getLayer()->flags |= HWC_SKIP_LAYER;
}
}
}
virtual void setDefaultState() {
hwc_layer_1_t* const l = getLayer();
l->compositionType = HWC_FRAMEBUFFER;
l->hints = 0;
l->flags = HWC_SKIP_LAYER;
l->handle = 0;
l->transform = 0;
l->blending = HWC_BLENDING_NONE;
l->visibleRegionScreen.numRects = 0;
l->visibleRegionScreen.rects = NULL;
l->acquireFenceFd = -1;
l->releaseFenceFd = -1;
l->planeAlpha = 0xFF;
}
virtual void setSkip(bool skip) {
if (skip) {
getLayer()->flags |= HWC_SKIP_LAYER;
} else {
getLayer()->flags &= ~HWC_SKIP_LAYER;
}
}
virtual void setBlending(uint32_t blending) {
getLayer()->blending = blending;
}
virtual void setTransform(uint32_t transform) {
getLayer()->transform = transform;
}
virtual void setFrame(const Rect& frame) {
reinterpret_cast<Rect&>(getLayer()->displayFrame) = frame;
}
virtual void setCrop(const Rect& crop) {
reinterpret_cast<Rect&>(getLayer()->sourceCrop) = crop;
}
virtual void setVisibleRegionScreen(const Region& reg) {
// Region::getSharedBuffer creates a reference to the underlying
// SharedBuffer of this Region, this reference is freed
// in onDisplayed()
hwc_region_t& visibleRegion = getLayer()->visibleRegionScreen;
SharedBuffer const* sb = reg.getSharedBuffer(&visibleRegion.numRects);
visibleRegion.rects = reinterpret_cast<hwc_rect_t const *>(sb->data());
}
virtual void setBuffer(const sp<GraphicBuffer>& buffer) {
if (buffer == 0 || buffer->handle == 0) {
getLayer()->compositionType = HWC_FRAMEBUFFER;
getLayer()->flags |= HWC_SKIP_LAYER;
getLayer()->handle = 0;
} else {
getLayer()->handle = buffer->handle;
}
}
virtual void onDisplayed() {
hwc_region_t& visibleRegion = getLayer()->visibleRegionScreen;
SharedBuffer const* sb = SharedBuffer::bufferFromData(visibleRegion.rects);
if (sb) {
sb->release();
// not technically needed but safer
visibleRegion.numRects = 0;
visibleRegion.rects = NULL;
}
getLayer()->acquireFenceFd = -1;
}
};
/*
* returns an iterator initialized at a given index in the layer list
*/
HWComposer::LayerListIterator HWComposer::getLayerIterator(int32_t id, size_t index) {
if (uint32_t(id)>31 || !mAllocatedDisplayIDs.hasBit(id)) {
return LayerListIterator();
}
const DisplayData& disp(mDisplayData[id]);
if (!mHwc || !disp.list || index > disp.list->numHwLayers) {
return LayerListIterator();
}
return LayerListIterator(new HWCLayerVersion1(mHwc, disp.list->hwLayers), index);
}
/*
* returns an iterator on the beginning of the layer list
*/
HWComposer::LayerListIterator HWComposer::begin(int32_t id) {
return getLayerIterator(id, 0);
}
/*
* returns an iterator on the end of the layer list
*/
HWComposer::LayerListIterator HWComposer::end(int32_t id) {
size_t numLayers = 0;
if (uint32_t(id) <= 31 && mAllocatedDisplayIDs.hasBit(id)) {
const DisplayData& disp(mDisplayData[id]);
if (mHwc && disp.list) {
numLayers = disp.list->numHwLayers;
if (hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) {
// with HWC 1.1, the last layer is always the HWC_FRAMEBUFFER_TARGET,
// which we ignore when iterating through the layer list.
ALOGE_IF(!numLayers, "mDisplayData[%d].list->numHwLayers is 0", id);
if (numLayers) {
numLayers--;
}
}
}
}
return getLayerIterator(id, numLayers);
}
void HWComposer::dump(String8& result, char* buffer, size_t SIZE) const {
if (mHwc) {
result.appendFormat("Hardware Composer state (version %8x):\n", hwcApiVersion(mHwc));
result.appendFormat(" mDebugForceFakeVSync=%d\n", mDebugForceFakeVSync);
for (size_t i=0 ; i<mNumDisplays ; i++) {
const DisplayData& disp(mDisplayData[i]);
const Vector< sp<LayerBase> >& visibleLayersSortedByZ =
mFlinger->getLayerSortedByZForHwcDisplay(i);
if (disp.connected) {
result.appendFormat(
" Display[%d] : %ux%u, xdpi=%f, ydpi=%f, refresh=%lld\n",
i, disp.width, disp.height, disp.xdpi, disp.ydpi, disp.refresh);
}
if (disp.list && disp.connected) {
result.appendFormat(
" numHwLayers=%u, flags=%08x\n",
disp.list->numHwLayers, disp.list->flags);
result.append(
" type | handle | hints | flags | tr | blend | format | source crop | frame name \n"
"------------+----------+----------+----------+----+-------+----------+---------------------------+--------------------------------\n");
// " __________ | ________ | ________ | ________ | __ | _____ | ________ | [_____,_____,_____,_____] | [_____,_____,_____,_____]
for (size_t i=0 ; i<disp.list->numHwLayers ; i++) {
const hwc_layer_1_t&l = disp.list->hwLayers[i];
int32_t format = -1;
String8 name("unknown");
if (i < visibleLayersSortedByZ.size()) {
const sp<LayerBase>& layer(visibleLayersSortedByZ[i]);
if (layer->getLayer() != NULL) {
const sp<GraphicBuffer>& buffer(
layer->getLayer()->getActiveBuffer());
if (buffer != NULL) {
format = buffer->getPixelFormat();
}
}
name = layer->getName();
}
int type = l.compositionType;
if (type == HWC_FRAMEBUFFER_TARGET) {
name = "HWC_FRAMEBUFFER_TARGET";
format = disp.format;
}
static char const* compositionTypeName[] = {
"GLES",
"HWC",
"BACKGROUND",
"FB TARGET",
"UNKNOWN"};
if (type >= NELEM(compositionTypeName))
type = NELEM(compositionTypeName) - 1;
result.appendFormat(
" %10s | %08x | %08x | %08x | %02x | %05x | %08x | [%5d,%5d,%5d,%5d] | [%5d,%5d,%5d,%5d] %s\n",
compositionTypeName[type],
intptr_t(l.handle), l.hints, l.flags, l.transform, l.blending, format,
l.sourceCrop.left, l.sourceCrop.top, l.sourceCrop.right, l.sourceCrop.bottom,
l.displayFrame.left, l.displayFrame.top, l.displayFrame.right, l.displayFrame.bottom,
name.string());
}
}
}
}
if (mHwc && mHwc->dump) {
mHwc->dump(mHwc, buffer, SIZE);
result.append(buffer);
}
}
// ---------------------------------------------------------------------------
HWComposer::VSyncThread::VSyncThread(HWComposer& hwc)
: mHwc(hwc), mEnabled(false),
mNextFakeVSync(0),
mRefreshPeriod(hwc.getRefreshPeriod(HWC_DISPLAY_PRIMARY))
{
}
void HWComposer::VSyncThread::setEnabled(bool enabled) {
Mutex::Autolock _l(mLock);
if (mEnabled != enabled) {
mEnabled = enabled;
mCondition.signal();
}
}
void HWComposer::VSyncThread::onFirstRef() {
run("VSyncThread", PRIORITY_URGENT_DISPLAY + PRIORITY_MORE_FAVORABLE);
}
bool HWComposer::VSyncThread::threadLoop() {
{ // scope for lock
Mutex::Autolock _l(mLock);
while (!mEnabled) {
mCondition.wait(mLock);
}
}
const nsecs_t period = mRefreshPeriod;
const nsecs_t now = systemTime(CLOCK_MONOTONIC);
nsecs_t next_vsync = mNextFakeVSync;
nsecs_t sleep = next_vsync - now;
if (sleep < 0) {
// we missed, find where the next vsync should be
sleep = (period - ((now - next_vsync) % period));
next_vsync = now + sleep;
}
mNextFakeVSync = next_vsync + period;
struct timespec spec;
spec.tv_sec = next_vsync / 1000000000;
spec.tv_nsec = next_vsync % 1000000000;
int err;
do {
err = clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &spec, NULL);
} while (err<0 && errno == EINTR);
if (err == 0) {
mHwc.mEventHandler.onVSyncReceived(0, next_vsync);
}
return true;
}
// ---------------------------------------------------------------------------
}; // namespace android