replicant-frameworks_native/services/surfaceflinger/DisplayHardware/HWComposer.cpp

592 lines
19 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
// Uncomment this to remove support for HWC_DEVICE_API_VERSION_0_3 and older
#define HWC_REMOVE_DEPRECATED_VERSIONS 1
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <utils/Errors.h>
#include <utils/String8.h>
#include <utils/Thread.h>
#include <utils/Trace.h>
#include <utils/Vector.h>
#include <ui/GraphicBuffer.h>
#include <hardware/hardware.h>
#include <hardware/hwcomposer.h>
#include <cutils/log.h>
#include <cutils/properties.h>
#include "Layer.h" // needed only for debugging
#include "LayerBase.h"
#include "HWComposer.h"
#include "SurfaceFlinger.h"
namespace android {
static bool hwcHasVersion(const hwc_composer_device_1_t* hwc, uint32_t version) {
return hwc->common.version >= version;
}
// ---------------------------------------------------------------------------
struct HWComposer::cb_context {
struct callbacks : public hwc_procs_t {
// these are here to facilitate the transition when adding
// new callbacks (an implementation can check for NULL before
// calling a new callback).
void (*zero[4])(void);
};
callbacks procs;
HWComposer* hwc;
};
// ---------------------------------------------------------------------------
HWComposer::HWComposer(
const sp<SurfaceFlinger>& flinger,
EventHandler& handler,
framebuffer_device_t const* fbDev)
: mFlinger(flinger),
mModule(0), mHwc(0), mNumDisplays(1), mCapacity(0),
mCBContext(new cb_context),
mEventHandler(handler),
mVSyncCount(0), mDebugForceFakeVSync(false)
{
for (size_t i =0 ; i<MAX_DISPLAYS ; i++) {
mLists[i] = 0;
}
char value[PROPERTY_VALUE_MAX];
property_get("debug.sf.no_hw_vsync", value, "0");
mDebugForceFakeVSync = atoi(value);
bool needVSyncThread = true;
int err = hw_get_module(HWC_HARDWARE_MODULE_ID, &mModule);
ALOGW_IF(err, "%s module not found", HWC_HARDWARE_MODULE_ID);
if (err == 0) {
err = hwc_open_1(mModule, &mHwc);
ALOGE_IF(err, "%s device failed to initialize (%s)",
HWC_HARDWARE_COMPOSER, strerror(-err));
if (err == 0) {
if (mHwc->common.version < HWC_DEVICE_API_VERSION_1_0) {
ALOGE("%s device version %#x too old, will not be used",
HWC_HARDWARE_COMPOSER, mHwc->common.version);
hwc_close_1(mHwc);
mHwc = NULL;
}
}
if (mHwc) {
if (mHwc->registerProcs) {
mCBContext->hwc = this;
mCBContext->procs.invalidate = &hook_invalidate;
mCBContext->procs.vsync = &hook_vsync;
memset(mCBContext->procs.zero, 0, sizeof(mCBContext->procs.zero));
mHwc->registerProcs(mHwc, &mCBContext->procs);
}
// these IDs are always reserved
mTokens.markBit(HWC_DISPLAY_PRIMARY);
mTokens.markBit(HWC_DISPLAY_EXTERNAL);
// always turn vsync off when we start
needVSyncThread = false;
mHwc->eventControl(mHwc, 0, HWC_EVENT_VSYNC, 0);
int period;
if (mHwc->query(mHwc, HWC_VSYNC_PERIOD, &period) == NO_ERROR) {
mDisplayData[0].refresh = nsecs_t(period);
}
if (hwcHasVersion(mHwc, HWC_DEVICE_API_VERSION_1_1))
mNumDisplays = HWC_NUM_DISPLAY_TYPES;
// create initial empty display contents for display 0
createWorkList(HWC_DISPLAY_PRIMARY, 0);
}
}
if (fbDev) {
if (mDisplayData[HWC_DISPLAY_PRIMARY].refresh == 0) {
mDisplayData[HWC_DISPLAY_PRIMARY].refresh = nsecs_t(1e9 / fbDev->fps);
ALOGW("getting VSYNC period from fb HAL: %lld", mDisplayData[0].refresh);
}
mDisplayData[HWC_DISPLAY_PRIMARY].xdpi = fbDev->xdpi;
mDisplayData[HWC_DISPLAY_PRIMARY].ydpi = fbDev->ydpi;
}
if (mDisplayData[HWC_DISPLAY_PRIMARY].refresh == 0) {
mDisplayData[HWC_DISPLAY_PRIMARY].refresh = nsecs_t(1e9 / 60.0);
ALOGW("getting VSYNC period thin air: %lld", mDisplayData[0].refresh);
}
if (needVSyncThread) {
// we don't have VSYNC support, we need to fake it
mVSyncThread = new VSyncThread(*this);
}
}
HWComposer::~HWComposer() {
mHwc->eventControl(mHwc, 0, EVENT_VSYNC, 0);
for (size_t i = 0; i < MAX_DISPLAYS; i++) {
free(mLists[i]);
}
if (mVSyncThread != NULL) {
mVSyncThread->requestExitAndWait();
}
if (mHwc) {
hwc_close_1(mHwc);
}
delete mCBContext;
}
status_t HWComposer::initCheck() const {
return mHwc ? NO_ERROR : NO_INIT;
}
void HWComposer::hook_invalidate(const struct hwc_procs* procs) {
cb_context* ctx = reinterpret_cast<cb_context*>(
const_cast<hwc_procs_t*>(procs));
ctx->hwc->invalidate();
}
void HWComposer::hook_vsync(const struct hwc_procs* procs, int dpy,
int64_t timestamp) {
cb_context* ctx = reinterpret_cast<cb_context*>(
const_cast<hwc_procs_t*>(procs));
ctx->hwc->vsync(dpy, timestamp);
}
void HWComposer::invalidate() {
mFlinger->repaintEverything();
}
void HWComposer::vsync(int dpy, int64_t timestamp) {
ATRACE_INT("VSYNC", ++mVSyncCount&1);
mEventHandler.onVSyncReceived(dpy, timestamp);
Mutex::Autolock _l(mLock);
mLastHwVSync = timestamp;
}
int32_t HWComposer::allocateDisplayId() {
if (mTokens.isFull()) {
return NO_MEMORY;
}
// FIXME: for now we don't support h/w composition wifi displays
return -1;
int32_t id = mTokens.firstUnmarkedBit();
mTokens.markBit(id);
return id;
}
status_t HWComposer::freeDisplayId(int32_t id) {
if (id < MAX_DISPLAYS) {
return BAD_VALUE;
}
if (!mTokens.hasBit(id)) {
return BAD_INDEX;
}
mTokens.clearBit(id);
return NO_ERROR;
}
nsecs_t HWComposer::getRefreshPeriod() const {
return mDisplayData[0].refresh;
}
nsecs_t HWComposer::getRefreshTimestamp() const {
// this returns the last refresh timestamp.
// if the last one is not available, we estimate it based on
// the refresh period and whatever closest timestamp we have.
Mutex::Autolock _l(mLock);
nsecs_t now = systemTime(CLOCK_MONOTONIC);
return now - ((now - mLastHwVSync) % mDisplayData[0].refresh);
}
float HWComposer::getDpiX() const {
return mDisplayData[HWC_DISPLAY_PRIMARY].xdpi;
}
float HWComposer::getDpiY() const {
return mDisplayData[HWC_DISPLAY_PRIMARY].ydpi;
}
void HWComposer::eventControl(int event, int enabled) {
status_t err = NO_ERROR;
if (mHwc) {
if (!mDebugForceFakeVSync) {
err = mHwc->eventControl(mHwc, 0, event, enabled);
// error here should not happen -- not sure what we should
// do if it does.
ALOGE_IF(err, "eventControl(%d, %d) failed %s",
event, enabled, strerror(-err));
}
}
if (err == NO_ERROR && mVSyncThread != NULL) {
mVSyncThread->setEnabled(enabled);
}
}
status_t HWComposer::createWorkList(int32_t id, size_t numLayers) {
if (!mTokens.hasBit(id)) {
return BAD_INDEX;
}
// FIXME: handle multiple displays
if (mHwc) {
// TODO: must handle multiple displays here
// mLists[0] is NULL only when this is called from the constructor
if (!mLists[0] || mCapacity < numLayers) {
free(mLists[0]);
size_t size = sizeof(hwc_display_contents_1_t) + numLayers * sizeof(hwc_layer_1_t);
mLists[0] = (hwc_display_contents_1_t*)malloc(size);
mCapacity = numLayers;
}
mLists[0]->flags = HWC_GEOMETRY_CHANGED;
mLists[0]->numHwLayers = numLayers;
mLists[0]->flipFenceFd = -1;
}
return NO_ERROR;
}
status_t HWComposer::prepare() {
int err = mHwc->prepare(mHwc, mNumDisplays,
const_cast<hwc_display_contents_1_t**>(mLists));
if (err == NO_ERROR) {
// here we're just making sure that "skip" layers are set
// to HWC_FRAMEBUFFER and we're also counting how many layers
// we have of each type.
// It would be nice if we could get rid of this entirely, which I
// think is almost possible.
// TODO: must handle multiple displays here
size_t count = getNumLayers(0);
struct hwc_display_contents_1* disp = mLists[0];
mDisplayData[0].hasFbComp = false;
mDisplayData[0].hasOvComp = false;
for (size_t i=0 ; i<count ; i++) {
hwc_layer_1_t* l = &disp->hwLayers[i];
if (l->flags & HWC_SKIP_LAYER) {
l->compositionType = HWC_FRAMEBUFFER;
}
if (l->compositionType == HWC_FRAMEBUFFER)
mDisplayData[HWC_DISPLAY_PRIMARY].hasFbComp = true;
if (l->compositionType == HWC_OVERLAY)
mDisplayData[HWC_DISPLAY_PRIMARY].hasOvComp = true;
}
}
return (status_t)err;
}
bool HWComposer::hasHwcComposition(int32_t id) const {
if (!mTokens.hasBit(id))
return false;
return mDisplayData[id].hasOvComp;
}
bool HWComposer::hasGlesComposition(int32_t id) const {
if (!mTokens.hasBit(id))
return false;
return mDisplayData[id].hasFbComp;
}
status_t HWComposer::commit() {
int err = NO_ERROR;
if (mHwc) {
if (hwcHasVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) {
mLists[0]->dpy = EGL_NO_DISPLAY;
mLists[0]->sur = EGL_NO_SURFACE;
} else {
// On version 1.0, the OpenGL ES target surface is communicated
// by the (dpy, sur) fields
mLists[0]->dpy = eglGetCurrentDisplay();
mLists[0]->sur = eglGetCurrentSurface(EGL_DRAW);
}
err = mHwc->set(mHwc, mNumDisplays, mLists);
if (mLists[0]->flipFenceFd != -1) {
close(mLists[0]->flipFenceFd);
mLists[0]->flipFenceFd = -1;
}
mLists[0]->flags &= ~HWC_GEOMETRY_CHANGED;
}
return (status_t)err;
}
status_t HWComposer::release() const {
if (mHwc) {
mHwc->eventControl(mHwc, 0, HWC_EVENT_VSYNC, 0);
return (status_t)mHwc->blank(mHwc, 0, 1);
}
return NO_ERROR;
}
status_t HWComposer::acquire() const {
if (mHwc) {
return (status_t)mHwc->blank(mHwc, 0, 0);
}
return NO_ERROR;
}
status_t HWComposer::disable() {
if (mHwc) {
mLists[0]->numHwLayers = 0;
int err = mHwc->prepare(mHwc, mNumDisplays, mLists);
return (status_t)err;
}
return NO_ERROR;
}
size_t HWComposer::getNumLayers(int32_t id) const { // FIXME: handle multiple displays
return mHwc ? mLists[0]->numHwLayers : 0;
}
/*
* Helper template to implement a concrete HWCLayer
* This holds the pointer to the concrete hwc layer type
* and implements the "iterable" side of HWCLayer.
*/
template<typename CONCRETE, typename HWCTYPE>
class Iterable : public HWComposer::HWCLayer {
protected:
HWCTYPE* const mLayerList;
HWCTYPE* mCurrentLayer;
Iterable(HWCTYPE* layer) : mLayerList(layer), mCurrentLayer(layer) { }
inline HWCTYPE const * getLayer() const { return mCurrentLayer; }
inline HWCTYPE* getLayer() { return mCurrentLayer; }
virtual ~Iterable() { }
private:
// returns a copy of ourselves
virtual HWComposer::HWCLayer* dup() {
return new CONCRETE( static_cast<const CONCRETE&>(*this) );
}
virtual status_t setLayer(size_t index) {
mCurrentLayer = &mLayerList[index];
return NO_ERROR;
}
};
/*
* Concrete implementation of HWCLayer for HWC_DEVICE_API_VERSION_1_0.
* This implements the HWCLayer side of HWCIterableLayer.
*/
class HWCLayerVersion1 : public Iterable<HWCLayerVersion1, hwc_layer_1_t> {
public:
HWCLayerVersion1(hwc_layer_1_t* layer)
: Iterable<HWCLayerVersion1, hwc_layer_1_t>(layer) { }
virtual int32_t getCompositionType() const {
return getLayer()->compositionType;
}
virtual uint32_t getHints() const {
return getLayer()->hints;
}
virtual int getAndResetReleaseFenceFd() {
int fd = getLayer()->releaseFenceFd;
getLayer()->releaseFenceFd = -1;
return fd;
}
virtual void setAcquireFenceFd(int fenceFd) {
getLayer()->acquireFenceFd = fenceFd;
}
virtual void setDefaultState() {
getLayer()->compositionType = HWC_FRAMEBUFFER;
getLayer()->hints = 0;
getLayer()->flags = HWC_SKIP_LAYER;
getLayer()->transform = 0;
getLayer()->blending = HWC_BLENDING_NONE;
getLayer()->visibleRegionScreen.numRects = 0;
getLayer()->visibleRegionScreen.rects = NULL;
getLayer()->acquireFenceFd = -1;
getLayer()->releaseFenceFd = -1;
}
virtual void setSkip(bool skip) {
if (skip) {
getLayer()->flags |= HWC_SKIP_LAYER;
} else {
getLayer()->flags &= ~HWC_SKIP_LAYER;
}
}
virtual void setBlending(uint32_t blending) {
getLayer()->blending = blending;
}
virtual void setTransform(uint32_t transform) {
getLayer()->transform = transform;
}
virtual void setFrame(const Rect& frame) {
reinterpret_cast<Rect&>(getLayer()->displayFrame) = frame;
}
virtual void setCrop(const Rect& crop) {
reinterpret_cast<Rect&>(getLayer()->sourceCrop) = crop;
}
virtual void setVisibleRegionScreen(const Region& reg) {
getLayer()->visibleRegionScreen.rects =
reinterpret_cast<hwc_rect_t const *>(
reg.getArray(&getLayer()->visibleRegionScreen.numRects));
}
virtual void setBuffer(const sp<GraphicBuffer>& buffer) {
if (buffer == 0 || buffer->handle == 0) {
getLayer()->compositionType = HWC_FRAMEBUFFER;
getLayer()->flags |= HWC_SKIP_LAYER;
getLayer()->handle = 0;
} else {
getLayer()->handle = buffer->handle;
}
}
};
/*
* returns an iterator initialized at a given index in the layer list
*/
HWComposer::LayerListIterator HWComposer::getLayerIterator(int32_t id, size_t index) {
if (!mTokens.hasBit(id))
return LayerListIterator();
// FIXME: handle multiple displays
if (!mHwc || index > mLists[0]->numHwLayers)
return LayerListIterator();
return LayerListIterator(new HWCLayerVersion1(mLists[0]->hwLayers), index);
}
/*
* returns an iterator on the beginning of the layer list
*/
HWComposer::LayerListIterator HWComposer::begin(int32_t id) {
return getLayerIterator(id, 0);
}
/*
* returns an iterator on the end of the layer list
*/
HWComposer::LayerListIterator HWComposer::end(int32_t id) {
return getLayerIterator(id, getNumLayers(id));
}
void HWComposer::dump(String8& result, char* buffer, size_t SIZE,
const Vector< sp<LayerBase> >& visibleLayersSortedByZ) const {
if (mHwc) {
result.append("Hardware Composer state:\n");
result.appendFormat(" mDebugForceFakeVSync=%d\n",
mDebugForceFakeVSync);
result.appendFormat(" numHwLayers=%u, flags=%08x\n",
mLists[0]->numHwLayers, mLists[0]->flags);
result.append(
" type | handle | hints | flags | tr | blend | format | source crop | frame name \n"
"----------+----------+----------+----------+----+-------+----------+---------------------------+--------------------------------\n");
// " ________ | ________ | ________ | ________ | __ | _____ | ________ | [_____,_____,_____,_____] | [_____,_____,_____,_____]
for (size_t i=0 ; i<mLists[0]->numHwLayers ; i++) {
hwc_layer_1_t const* lp= &mLists[0]->hwLayers[i];
const sp<LayerBase> layer(visibleLayersSortedByZ[i]);
int32_t format = -1;
if (layer->getLayer() != NULL) {
const sp<GraphicBuffer>& buffer(layer->getLayer()->getActiveBuffer());
if (buffer != NULL) {
format = buffer->getPixelFormat();
}
}
const hwc_layer_1_t& l(*lp);
result.appendFormat(
" %8s | %08x | %08x | %08x | %02x | %05x | %08x | [%5d,%5d,%5d,%5d] | [%5d,%5d,%5d,%5d] %s\n",
l.compositionType ? "OVERLAY" : "FB",
intptr_t(l.handle), l.hints, l.flags, l.transform, l.blending, format,
l.sourceCrop.left, l.sourceCrop.top, l.sourceCrop.right, l.sourceCrop.bottom,
l.displayFrame.left, l.displayFrame.top, l.displayFrame.right, l.displayFrame.bottom,
layer->getName().string());
}
}
if (mHwc && mHwc->dump) {
mHwc->dump(mHwc, buffer, SIZE);
result.append(buffer);
}
}
// ---------------------------------------------------------------------------
HWComposer::VSyncThread::VSyncThread(HWComposer& hwc)
: mHwc(hwc), mEnabled(false),
mNextFakeVSync(0),
mRefreshPeriod(hwc.getRefreshPeriod())
{
}
void HWComposer::VSyncThread::setEnabled(bool enabled) {
Mutex::Autolock _l(mLock);
mEnabled = enabled;
mCondition.signal();
}
void HWComposer::VSyncThread::onFirstRef() {
run("VSyncThread", PRIORITY_URGENT_DISPLAY + PRIORITY_MORE_FAVORABLE);
}
bool HWComposer::VSyncThread::threadLoop() {
{ // scope for lock
Mutex::Autolock _l(mLock);
while (!mEnabled) {
mCondition.wait(mLock);
}
}
const nsecs_t period = mRefreshPeriod;
const nsecs_t now = systemTime(CLOCK_MONOTONIC);
nsecs_t next_vsync = mNextFakeVSync;
nsecs_t sleep = next_vsync - now;
if (sleep < 0) {
// we missed, find where the next vsync should be
sleep = (period - ((now - next_vsync) % period));
next_vsync = now + sleep;
}
mNextFakeVSync = next_vsync + period;
struct timespec spec;
spec.tv_sec = next_vsync / 1000000000;
spec.tv_nsec = next_vsync % 1000000000;
int err;
do {
err = clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &spec, NULL);
} while (err<0 && errno == EINTR);
if (err == 0) {
mHwc.mEventHandler.onVSyncReceived(0, next_vsync);
}
return true;
}
// ---------------------------------------------------------------------------
}; // namespace android