replicant-frameworks_native/services/surfaceflinger/DisplayHardware/VirtualDisplaySurface.cpp

532 lines
20 KiB
C++
Raw Normal View History

/*
* Copyright 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// #define LOG_NDEBUG 0
#include "VirtualDisplaySurface.h"
#include "HWComposer.h"
// ---------------------------------------------------------------------------
namespace android {
// ---------------------------------------------------------------------------
#if defined(FORCE_HWC_COPY_FOR_VIRTUAL_DISPLAYS)
static const bool sForceHwcCopy = true;
#else
static const bool sForceHwcCopy = false;
#endif
#define VDS_LOGE(msg, ...) ALOGE("[%s] "msg, \
mDisplayName.string(), ##__VA_ARGS__)
#define VDS_LOGW_IF(cond, msg, ...) ALOGW_IF(cond, "[%s] "msg, \
mDisplayName.string(), ##__VA_ARGS__)
#define VDS_LOGV(msg, ...) ALOGV("[%s] "msg, \
mDisplayName.string(), ##__VA_ARGS__)
static const char* dbgCompositionTypeStr(DisplaySurface::CompositionType type) {
switch (type) {
case DisplaySurface::COMPOSITION_UNKNOWN: return "UNKNOWN";
case DisplaySurface::COMPOSITION_GLES: return "GLES";
case DisplaySurface::COMPOSITION_HWC: return "HWC";
case DisplaySurface::COMPOSITION_MIXED: return "MIXED";
default: return "<INVALID>";
}
}
VirtualDisplaySurface::VirtualDisplaySurface(HWComposer& hwc, int32_t dispId,
const sp<IGraphicBufferProducer>& sink,
const sp<BufferQueue>& bq,
const String8& name)
: ConsumerBase(bq),
mHwc(hwc),
mDisplayId(dispId),
mDisplayName(name),
mOutputUsage(GRALLOC_USAGE_HW_COMPOSER),
mProducerSlotSource(0),
mDbgState(DBG_STATE_IDLE),
mDbgLastCompositionType(COMPOSITION_UNKNOWN)
{
mSource[SOURCE_SINK] = sink;
mSource[SOURCE_SCRATCH] = bq;
resetPerFrameState();
int sinkWidth, sinkHeight;
sink->query(NATIVE_WINDOW_WIDTH, &sinkWidth);
sink->query(NATIVE_WINDOW_HEIGHT, &sinkHeight);
// Pick the buffer format to request from the sink when not rendering to it
// with GLES. If the consumer needs CPU access, use the default format
// set by the consumer. Otherwise allow gralloc to decide the format based
// on usage bits.
int sinkUsage;
sink->query(NATIVE_WINDOW_CONSUMER_USAGE_BITS, &sinkUsage);
if (sinkUsage & (GRALLOC_USAGE_SW_READ_MASK | GRALLOC_USAGE_SW_WRITE_MASK)) {
int sinkFormat;
sink->query(NATIVE_WINDOW_FORMAT, &sinkFormat);
mDefaultOutputFormat = sinkFormat;
} else {
mDefaultOutputFormat = HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED;
}
mOutputFormat = mDefaultOutputFormat;
ConsumerBase::mName = String8::format("VDS: %s", mDisplayName.string());
mConsumer->setConsumerName(ConsumerBase::mName);
mConsumer->setConsumerUsageBits(GRALLOC_USAGE_HW_COMPOSER);
mConsumer->setDefaultBufferSize(sinkWidth, sinkHeight);
mConsumer->setDefaultMaxBufferCount(2);
}
VirtualDisplaySurface::~VirtualDisplaySurface() {
}
status_t VirtualDisplaySurface::beginFrame() {
if (mDisplayId < 0)
return NO_ERROR;
VDS_LOGW_IF(mDbgState != DBG_STATE_IDLE,
"Unexpected beginFrame() in %s state", dbgStateStr());
mDbgState = DBG_STATE_BEGUN;
uint32_t transformHint, numPendingBuffers;
mQueueBufferOutput.deflate(&mSinkBufferWidth, &mSinkBufferHeight,
&transformHint, &numPendingBuffers);
return refreshOutputBuffer();
}
status_t VirtualDisplaySurface::prepareFrame(CompositionType compositionType) {
if (mDisplayId < 0)
return NO_ERROR;
VDS_LOGW_IF(mDbgState != DBG_STATE_BEGUN,
"Unexpected prepareFrame() in %s state", dbgStateStr());
mDbgState = DBG_STATE_PREPARED;
mCompositionType = compositionType;
if (sForceHwcCopy && mCompositionType == COMPOSITION_GLES) {
// Some hardware can do RGB->YUV conversion more efficiently in hardware
// controlled by HWC than in hardware controlled by the video encoder.
// Forcing GLES-composed frames to go through an extra copy by the HWC
// allows the format conversion to happen there, rather than passing RGB
// directly to the consumer.
//
// On the other hand, when the consumer prefers RGB or can consume RGB
// inexpensively, this forces an unnecessary copy.
mCompositionType = COMPOSITION_MIXED;
}
if (mCompositionType != mDbgLastCompositionType) {
VDS_LOGV("prepareFrame: composition type changed to %s",
dbgCompositionTypeStr(mCompositionType));
mDbgLastCompositionType = mCompositionType;
}
if (mCompositionType != COMPOSITION_GLES &&
(mOutputFormat != mDefaultOutputFormat ||
mOutputUsage != GRALLOC_USAGE_HW_COMPOSER)) {
// We must have just switched from GLES-only to MIXED or HWC
// composition. Stop using the format and usage requested by the GLES
// driver; they may be suboptimal when HWC is writing to the output
// buffer. For example, if the output is going to a video encoder, and
// HWC can write directly to YUV, some hardware can skip a
// memory-to-memory RGB-to-YUV conversion step.
//
// If we just switched *to* GLES-only mode, we'll change the
// format/usage and get a new buffer when the GLES driver calls
// dequeueBuffer().
mOutputFormat = mDefaultOutputFormat;
mOutputUsage = GRALLOC_USAGE_HW_COMPOSER;
refreshOutputBuffer();
}
return NO_ERROR;
}
status_t VirtualDisplaySurface::compositionComplete() {
return NO_ERROR;
}
status_t VirtualDisplaySurface::advanceFrame() {
if (mDisplayId < 0)
return NO_ERROR;
if (mCompositionType == COMPOSITION_HWC) {
VDS_LOGW_IF(mDbgState != DBG_STATE_PREPARED,
"Unexpected advanceFrame() in %s state on HWC frame",
dbgStateStr());
} else {
VDS_LOGW_IF(mDbgState != DBG_STATE_GLES_DONE,
"Unexpected advanceFrame() in %s state on GLES/MIXED frame",
dbgStateStr());
}
mDbgState = DBG_STATE_HWC;
if (mOutputProducerSlot < 0 ||
(mCompositionType != COMPOSITION_HWC && mFbProducerSlot < 0)) {
// Last chance bailout if something bad happened earlier. For example,
// in a GLES configuration, if the sink disappears then dequeueBuffer
// will fail, the GLES driver won't queue a buffer, but SurfaceFlinger
// will soldier on. So we end up here without a buffer. There should
// be lots of scary messages in the log just before this.
VDS_LOGE("advanceFrame: no buffer, bailing out");
return NO_MEMORY;
}
sp<GraphicBuffer> fbBuffer = mFbProducerSlot >= 0 ?
mProducerBuffers[mFbProducerSlot] : sp<GraphicBuffer>(NULL);
sp<GraphicBuffer> outBuffer = mProducerBuffers[mOutputProducerSlot];
VDS_LOGV("advanceFrame: fb=%d(%p) out=%d(%p)",
mFbProducerSlot, fbBuffer.get(),
mOutputProducerSlot, outBuffer.get());
// At this point we know the output buffer acquire fence,
// so update HWC state with it.
mHwc.setOutputBuffer(mDisplayId, mOutputFence, outBuffer);
status_t result = NO_ERROR;
if (fbBuffer != NULL) {
result = mHwc.fbPost(mDisplayId, mFbFence, fbBuffer);
}
return result;
}
void VirtualDisplaySurface::onFrameCommitted() {
if (mDisplayId < 0)
return;
VDS_LOGW_IF(mDbgState != DBG_STATE_HWC,
"Unexpected onFrameCommitted() in %s state", dbgStateStr());
mDbgState = DBG_STATE_IDLE;
sp<Fence> fbFence = mHwc.getAndResetReleaseFence(mDisplayId);
if (mCompositionType == COMPOSITION_MIXED && mFbProducerSlot >= 0) {
// release the scratch buffer back to the pool
Mutex::Autolock lock(mMutex);
int sslot = mapProducer2SourceSlot(SOURCE_SCRATCH, mFbProducerSlot);
VDS_LOGV("onFrameCommitted: release scratch sslot=%d", sslot);
addReleaseFenceLocked(sslot, mProducerBuffers[mFbProducerSlot], fbFence);
releaseBufferLocked(sslot, mProducerBuffers[mFbProducerSlot],
EGL_NO_DISPLAY, EGL_NO_SYNC_KHR);
}
if (mOutputProducerSlot >= 0) {
int sslot = mapProducer2SourceSlot(SOURCE_SINK, mOutputProducerSlot);
QueueBufferOutput qbo;
sp<Fence> outFence = mHwc.getLastRetireFence(mDisplayId);
VDS_LOGV("onFrameCommitted: queue sink sslot=%d", sslot);
status_t result = mSource[SOURCE_SINK]->queueBuffer(sslot,
QueueBufferInput(
systemTime(), false /* isAutoTimestamp */,
Rect(mSinkBufferWidth, mSinkBufferHeight),
NATIVE_WINDOW_SCALING_MODE_FREEZE, 0 /* transform */,
true /* async*/,
outFence),
&qbo);
if (result == NO_ERROR) {
updateQueueBufferOutput(qbo);
}
}
resetPerFrameState();
}
void VirtualDisplaySurface::dump(String8&) const {
}
status_t VirtualDisplaySurface::requestBuffer(int pslot,
sp<GraphicBuffer>* outBuf) {
VDS_LOGW_IF(mDbgState != DBG_STATE_GLES,
"Unexpected requestBuffer pslot=%d in %s state",
pslot, dbgStateStr());
*outBuf = mProducerBuffers[pslot];
return NO_ERROR;
}
status_t VirtualDisplaySurface::setBufferCount(int bufferCount) {
return mSource[SOURCE_SINK]->setBufferCount(bufferCount);
}
status_t VirtualDisplaySurface::dequeueBuffer(Source source,
uint32_t format, uint32_t usage, int* sslot, sp<Fence>* fence) {
// Don't let a slow consumer block us
bool async = (source == SOURCE_SINK);
status_t result = mSource[source]->dequeueBuffer(sslot, fence, async,
mSinkBufferWidth, mSinkBufferHeight, format, usage);
if (result < 0)
return result;
int pslot = mapSource2ProducerSlot(source, *sslot);
VDS_LOGV("dequeueBuffer(%s): sslot=%d pslot=%d result=%d",
dbgSourceStr(source), *sslot, pslot, result);
uint32_t sourceBit = static_cast<uint32_t>(source) << pslot;
if ((mProducerSlotSource & (1u << pslot)) != sourceBit) {
// This slot was previously dequeued from the other source; must
// re-request the buffer.
result |= BUFFER_NEEDS_REALLOCATION;
mProducerSlotSource &= ~(1u << pslot);
mProducerSlotSource |= sourceBit;
}
if (result & RELEASE_ALL_BUFFERS) {
for (uint32_t i = 0; i < BufferQueue::NUM_BUFFER_SLOTS; i++) {
if ((mProducerSlotSource & (1u << i)) == sourceBit)
mProducerBuffers[i].clear();
}
}
if (result & BUFFER_NEEDS_REALLOCATION) {
mSource[source]->requestBuffer(*sslot, &mProducerBuffers[pslot]);
VDS_LOGV("dequeueBuffer(%s): buffers[%d]=%p fmt=%d usage=%#x",
dbgSourceStr(source), pslot, mProducerBuffers[pslot].get(),
mProducerBuffers[pslot]->getPixelFormat(),
mProducerBuffers[pslot]->getUsage());
}
return result;
}
status_t VirtualDisplaySurface::dequeueBuffer(int* pslot, sp<Fence>* fence, bool async,
uint32_t w, uint32_t h, uint32_t format, uint32_t usage) {
VDS_LOGW_IF(mDbgState != DBG_STATE_PREPARED,
"Unexpected dequeueBuffer() in %s state", dbgStateStr());
mDbgState = DBG_STATE_GLES;
VDS_LOGW_IF(!async, "EGL called dequeueBuffer with !async despite eglSwapInterval(0)");
VDS_LOGV("dequeueBuffer %dx%d fmt=%d usage=%#x", w, h, format, usage);
status_t result = NO_ERROR;
Source source = fbSourceForCompositionType(mCompositionType);
if (source == SOURCE_SINK) {
if (mOutputProducerSlot < 0) {
// Last chance bailout if something bad happened earlier. For example,
// in a GLES configuration, if the sink disappears then dequeueBuffer
// will fail, the GLES driver won't queue a buffer, but SurfaceFlinger
// will soldier on. So we end up here without a buffer. There should
// be lots of scary messages in the log just before this.
VDS_LOGE("dequeueBuffer: no buffer, bailing out");
return NO_MEMORY;
}
// We already dequeued the output buffer. If the GLES driver wants
// something incompatible, we have to cancel and get a new one. This
// will mean that HWC will see a different output buffer between
// prepare and set, but since we're in GLES-only mode already it
// shouldn't matter.
usage |= GRALLOC_USAGE_HW_COMPOSER;
const sp<GraphicBuffer>& buf = mProducerBuffers[mOutputProducerSlot];
if ((usage & ~buf->getUsage()) != 0 ||
(format != 0 && format != (uint32_t)buf->getPixelFormat()) ||
(w != 0 && w != mSinkBufferWidth) ||
(h != 0 && h != mSinkBufferHeight)) {
VDS_LOGV("dequeueBuffer: dequeueing new output buffer: "
"want %dx%d fmt=%d use=%#x, "
"have %dx%d fmt=%d use=%#x",
w, h, format, usage,
mSinkBufferWidth, mSinkBufferHeight,
buf->getPixelFormat(), buf->getUsage());
mOutputFormat = format;
mOutputUsage = usage;
result = refreshOutputBuffer();
if (result < 0)
return result;
}
}
if (source == SOURCE_SINK) {
*pslot = mOutputProducerSlot;
*fence = mOutputFence;
} else {
int sslot;
result = dequeueBuffer(source, format, usage, &sslot, fence);
if (result >= 0) {
*pslot = mapSource2ProducerSlot(source, sslot);
}
}
return result;
}
status_t VirtualDisplaySurface::queueBuffer(int pslot,
const QueueBufferInput& input, QueueBufferOutput* output) {
VDS_LOGW_IF(mDbgState != DBG_STATE_GLES,
"Unexpected queueBuffer(pslot=%d) in %s state", pslot,
dbgStateStr());
mDbgState = DBG_STATE_GLES_DONE;
VDS_LOGV("queueBuffer pslot=%d", pslot);
status_t result;
if (mCompositionType == COMPOSITION_MIXED) {
// Queue the buffer back into the scratch pool
QueueBufferOutput scratchQBO;
int sslot = mapProducer2SourceSlot(SOURCE_SCRATCH, pslot);
result = mSource[SOURCE_SCRATCH]->queueBuffer(sslot, input, &scratchQBO);
if (result != NO_ERROR)
return result;
// Now acquire the buffer from the scratch pool -- should be the same
// slot and fence as we just queued.
Mutex::Autolock lock(mMutex);
BufferQueue::BufferItem item;
result = acquireBufferLocked(&item, 0);
if (result != NO_ERROR)
return result;
VDS_LOGW_IF(item.mBuf != sslot,
"queueBuffer: acquired sslot %d from SCRATCH after queueing sslot %d",
item.mBuf, sslot);
mFbProducerSlot = mapSource2ProducerSlot(SOURCE_SCRATCH, item.mBuf);
mFbFence = mSlots[item.mBuf].mFence;
} else {
LOG_FATAL_IF(mCompositionType != COMPOSITION_GLES,
"Unexpected queueBuffer in state %s for compositionType %s",
dbgStateStr(), dbgCompositionTypeStr(mCompositionType));
// Extract the GLES release fence for HWC to acquire
int64_t timestamp;
bool isAutoTimestamp;
Rect crop;
int scalingMode;
uint32_t transform;
bool async;
input.deflate(&timestamp, &isAutoTimestamp, &crop, &scalingMode,
&transform, &async, &mFbFence);
mFbProducerSlot = pslot;
mOutputFence = mFbFence;
}
*output = mQueueBufferOutput;
return NO_ERROR;
}
void VirtualDisplaySurface::cancelBuffer(int pslot, const sp<Fence>& fence) {
VDS_LOGW_IF(mDbgState != DBG_STATE_GLES,
"Unexpected cancelBuffer(pslot=%d) in %s state", pslot,
dbgStateStr());
VDS_LOGV("cancelBuffer pslot=%d", pslot);
Source source = fbSourceForCompositionType(mCompositionType);
return mSource[source]->cancelBuffer(
mapProducer2SourceSlot(source, pslot), fence);
}
int VirtualDisplaySurface::query(int what, int* value) {
return mSource[SOURCE_SINK]->query(what, value);
}
status_t VirtualDisplaySurface::connect(const sp<IBinder>& token,
int api, bool producerControlledByApp,
QueueBufferOutput* output) {
QueueBufferOutput qbo;
status_t result = mSource[SOURCE_SINK]->connect(token, api, producerControlledByApp, &qbo);
if (result == NO_ERROR) {
updateQueueBufferOutput(qbo);
*output = mQueueBufferOutput;
}
return result;
}
status_t VirtualDisplaySurface::disconnect(int api) {
return mSource[SOURCE_SINK]->disconnect(api);
}
void VirtualDisplaySurface::updateQueueBufferOutput(
const QueueBufferOutput& qbo) {
uint32_t w, h, transformHint, numPendingBuffers;
qbo.deflate(&w, &h, &transformHint, &numPendingBuffers);
mQueueBufferOutput.inflate(w, h, 0, numPendingBuffers);
}
void VirtualDisplaySurface::resetPerFrameState() {
mCompositionType = COMPOSITION_UNKNOWN;
mSinkBufferWidth = 0;
mSinkBufferHeight = 0;
mFbFence = Fence::NO_FENCE;
mOutputFence = Fence::NO_FENCE;
mOutputProducerSlot = -1;
mFbProducerSlot = -1;
}
status_t VirtualDisplaySurface::refreshOutputBuffer() {
if (mOutputProducerSlot >= 0) {
mSource[SOURCE_SINK]->cancelBuffer(
mapProducer2SourceSlot(SOURCE_SINK, mOutputProducerSlot),
mOutputFence);
}
int sslot;
status_t result = dequeueBuffer(SOURCE_SINK, mOutputFormat, mOutputUsage,
&sslot, &mOutputFence);
if (result < 0)
return result;
mOutputProducerSlot = mapSource2ProducerSlot(SOURCE_SINK, sslot);
// On GLES-only frames, we don't have the right output buffer acquire fence
// until after GLES calls queueBuffer(). So here we just set the buffer
// (for use in HWC prepare) but not the fence; we'll call this again with
// the proper fence once we have it.
result = mHwc.setOutputBuffer(mDisplayId, Fence::NO_FENCE,
mProducerBuffers[mOutputProducerSlot]);
return result;
}
// This slot mapping function is its own inverse, so two copies are unnecessary.
// Both are kept to make the intent clear where the function is called, and for
// the (unlikely) chance that we switch to a different mapping function.
int VirtualDisplaySurface::mapSource2ProducerSlot(Source source, int sslot) {
if (source == SOURCE_SCRATCH) {
return BufferQueue::NUM_BUFFER_SLOTS - sslot - 1;
} else {
return sslot;
}
}
int VirtualDisplaySurface::mapProducer2SourceSlot(Source source, int pslot) {
return mapSource2ProducerSlot(source, pslot);
}
VirtualDisplaySurface::Source
VirtualDisplaySurface::fbSourceForCompositionType(CompositionType type) {
return type == COMPOSITION_MIXED ? SOURCE_SCRATCH : SOURCE_SINK;
}
const char* VirtualDisplaySurface::dbgStateStr() const {
switch (mDbgState) {
case DBG_STATE_IDLE: return "IDLE";
case DBG_STATE_PREPARED: return "PREPARED";
case DBG_STATE_GLES: return "GLES";
case DBG_STATE_GLES_DONE: return "GLES_DONE";
case DBG_STATE_HWC: return "HWC";
default: return "INVALID";
}
}
const char* VirtualDisplaySurface::dbgSourceStr(Source s) {
switch (s) {
case SOURCE_SINK: return "SINK";
case SOURCE_SCRATCH: return "SCRATCH";
default: return "INVALID";
}
}
// ---------------------------------------------------------------------------
} // namespace android
// ---------------------------------------------------------------------------