replicant-frameworks_native/services/sensorservice/SensorService.cpp

955 lines
34 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdint.h>
#include <math.h>
#include <sys/types.h>
#include <cutils/properties.h>
#include <utils/SortedVector.h>
#include <utils/KeyedVector.h>
#include <utils/threads.h>
#include <utils/Atomic.h>
#include <utils/Errors.h>
#include <utils/RefBase.h>
#include <utils/Singleton.h>
#include <utils/String16.h>
#include <binder/BinderService.h>
#include <binder/IServiceManager.h>
#include <binder/PermissionCache.h>
#include <gui/ISensorServer.h>
#include <gui/ISensorEventConnection.h>
#include <gui/SensorEventQueue.h>
#include <hardware/sensors.h>
#include <hardware_legacy/power.h>
#include "BatteryService.h"
#include "CorrectedGyroSensor.h"
#include "GravitySensor.h"
#include "LinearAccelerationSensor.h"
#include "OrientationSensor.h"
#include "RotationVectorSensor.h"
#include "SensorFusion.h"
#include "SensorService.h"
namespace android {
// ---------------------------------------------------------------------------
/*
* Notes:
*
* - what about a gyro-corrected magnetic-field sensor?
* - run mag sensor from time to time to force calibration
* - gravity sensor length is wrong (=> drift in linear-acc sensor)
*
*/
const char* SensorService::WAKE_LOCK_NAME = "SensorService";
SensorService::SensorService()
: mInitCheck(NO_INIT)
{
}
void SensorService::onFirstRef()
{
ALOGD("nuSensorService starting...");
SensorDevice& dev(SensorDevice::getInstance());
if (dev.initCheck() == NO_ERROR) {
sensor_t const* list;
ssize_t count = dev.getSensorList(&list);
if (count > 0) {
ssize_t orientationIndex = -1;
bool hasGyro = false;
uint32_t virtualSensorsNeeds =
(1<<SENSOR_TYPE_GRAVITY) |
(1<<SENSOR_TYPE_LINEAR_ACCELERATION) |
(1<<SENSOR_TYPE_ROTATION_VECTOR);
mLastEventSeen.setCapacity(count);
for (ssize_t i=0 ; i<count ; i++) {
registerSensor( new HardwareSensor(list[i]) );
switch (list[i].type) {
case SENSOR_TYPE_ORIENTATION:
orientationIndex = i;
break;
case SENSOR_TYPE_GYROSCOPE:
case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
hasGyro = true;
break;
case SENSOR_TYPE_GRAVITY:
case SENSOR_TYPE_LINEAR_ACCELERATION:
case SENSOR_TYPE_ROTATION_VECTOR:
virtualSensorsNeeds &= ~(1<<list[i].type);
break;
}
}
// it's safe to instantiate the SensorFusion object here
// (it wants to be instantiated after h/w sensors have been
// registered)
const SensorFusion& fusion(SensorFusion::getInstance());
// build the sensor list returned to users
mUserSensorList = mSensorList;
if (hasGyro) {
Sensor aSensor;
// Add Android virtual sensors if they're not already
// available in the HAL
aSensor = registerVirtualSensor( new RotationVectorSensor() );
if (virtualSensorsNeeds & (1<<SENSOR_TYPE_ROTATION_VECTOR)) {
mUserSensorList.add(aSensor);
}
aSensor = registerVirtualSensor( new GravitySensor(list, count) );
if (virtualSensorsNeeds & (1<<SENSOR_TYPE_GRAVITY)) {
mUserSensorList.add(aSensor);
}
aSensor = registerVirtualSensor( new LinearAccelerationSensor(list, count) );
if (virtualSensorsNeeds & (1<<SENSOR_TYPE_LINEAR_ACCELERATION)) {
mUserSensorList.add(aSensor);
}
aSensor = registerVirtualSensor( new OrientationSensor() );
if (virtualSensorsNeeds & (1<<SENSOR_TYPE_ROTATION_VECTOR)) {
// if we are doing our own rotation-vector, also add
// the orientation sensor and remove the HAL provided one.
mUserSensorList.replaceAt(aSensor, orientationIndex);
}
// virtual debugging sensors are not added to mUserSensorList
registerVirtualSensor( new CorrectedGyroSensor(list, count) );
registerVirtualSensor( new GyroDriftSensor() );
}
// debugging sensor list
mUserSensorListDebug = mSensorList;
mSocketBufferSize = SOCKET_BUFFER_SIZE_NON_BATCHED;
FILE *fp = fopen("/proc/sys/net/core/wmem_max", "r");
char line[128];
if (fp != NULL && fgets(line, sizeof(line), fp) != NULL) {
line[sizeof(line) - 1] = '\0';
sscanf(line, "%u", &mSocketBufferSize);
if (mSocketBufferSize > MAX_SOCKET_BUFFER_SIZE_BATCHED) {
mSocketBufferSize = MAX_SOCKET_BUFFER_SIZE_BATCHED;
}
}
ALOGD("Max socket buffer size %u", mSocketBufferSize);
if (fp) {
fclose(fp);
}
run("SensorService", PRIORITY_URGENT_DISPLAY);
mInitCheck = NO_ERROR;
}
}
}
Sensor SensorService::registerSensor(SensorInterface* s)
{
sensors_event_t event;
memset(&event, 0, sizeof(event));
const Sensor sensor(s->getSensor());
// add to the sensor list (returned to clients)
mSensorList.add(sensor);
// add to our handle->SensorInterface mapping
mSensorMap.add(sensor.getHandle(), s);
// create an entry in the mLastEventSeen array
mLastEventSeen.add(sensor.getHandle(), event);
return sensor;
}
Sensor SensorService::registerVirtualSensor(SensorInterface* s)
{
Sensor sensor = registerSensor(s);
mVirtualSensorList.add( s );
return sensor;
}
SensorService::~SensorService()
{
for (size_t i=0 ; i<mSensorMap.size() ; i++)
delete mSensorMap.valueAt(i);
}
static const String16 sDump("android.permission.DUMP");
status_t SensorService::dump(int fd, const Vector<String16>& args)
{
String8 result;
if (!PermissionCache::checkCallingPermission(sDump)) {
result.appendFormat("Permission Denial: "
"can't dump SurfaceFlinger from pid=%d, uid=%d\n",
IPCThreadState::self()->getCallingPid(),
IPCThreadState::self()->getCallingUid());
} else {
Mutex::Autolock _l(mLock);
result.append("Sensor List:\n");
for (size_t i=0 ; i<mSensorList.size() ; i++) {
const Sensor& s(mSensorList[i]);
const sensors_event_t& e(mLastEventSeen.valueFor(s.getHandle()));
result.appendFormat(
"%-48s| %-32s | 0x%08x | ",
s.getName().string(),
s.getVendor().string(),
s.getHandle());
if (s.getMinDelay() > 0) {
result.appendFormat(
"maxRate=%7.2fHz | ", 1e6f / s.getMinDelay());
} else {
result.append(s.getMinDelay() == 0
? "on-demand | "
: "one-shot | ");
}
if (s.getFifoMaxEventCount() > 0) {
result.appendFormat("getFifoMaxEventCount=%d events | ", s.getFifoMaxEventCount());
} else {
result.append("no batching support | ");
}
switch (s.getType()) {
case SENSOR_TYPE_ROTATION_VECTOR:
case SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR:
result.appendFormat(
"last=<%5.1f,%5.1f,%5.1f,%5.1f,%5.1f>\n",
e.data[0], e.data[1], e.data[2], e.data[3], e.data[4]);
break;
case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
result.appendFormat(
"last=<%5.1f,%5.1f,%5.1f,%5.1f,%5.1f,%5.1f>\n",
e.data[0], e.data[1], e.data[2], e.data[3], e.data[4], e.data[5]);
break;
case SENSOR_TYPE_GAME_ROTATION_VECTOR:
result.appendFormat(
"last=<%5.1f,%5.1f,%5.1f,%5.1f>\n",
e.data[0], e.data[1], e.data[2], e.data[3]);
break;
case SENSOR_TYPE_SIGNIFICANT_MOTION:
case SENSOR_TYPE_STEP_DETECTOR:
result.appendFormat( "last=<%f>\n", e.data[0]);
break;
case SENSOR_TYPE_STEP_COUNTER:
result.appendFormat( "last=<%llu>\n", e.u64.step_counter);
break;
default:
// default to 3 values
result.appendFormat(
"last=<%5.1f,%5.1f,%5.1f>\n",
e.data[0], e.data[1], e.data[2]);
break;
}
}
SensorFusion::getInstance().dump(result);
SensorDevice::getInstance().dump(result);
result.append("Active sensors:\n");
for (size_t i=0 ; i<mActiveSensors.size() ; i++) {
int handle = mActiveSensors.keyAt(i);
result.appendFormat("%s (handle=0x%08x, connections=%d)\n",
getSensorName(handle).string(),
handle,
mActiveSensors.valueAt(i)->getNumConnections());
}
result.appendFormat("%u Max Socket Buffer size\n", mSocketBufferSize);
result.appendFormat("%d active connections\n", mActiveConnections.size());
for (size_t i=0 ; i < mActiveConnections.size() ; i++) {
sp<SensorEventConnection> connection(mActiveConnections[i].promote());
if (connection != 0) {
result.appendFormat("Connection Number: %d \n", i);
connection->dump(result);
}
}
}
write(fd, result.string(), result.size());
return NO_ERROR;
}
void SensorService::cleanupAutoDisabledSensor(const sp<SensorEventConnection>& connection,
sensors_event_t const* buffer, const int count) {
SensorInterface* sensor;
status_t err = NO_ERROR;
for (int i=0 ; i<count ; i++) {
int handle = buffer[i].sensor;
int type = buffer[i].type;
if (type == SENSOR_TYPE_SIGNIFICANT_MOTION) {
if (connection->hasSensor(handle)) {
sensor = mSensorMap.valueFor(handle);
if (sensor != NULL) {
sensor->autoDisable(connection.get(), handle);
}
cleanupWithoutDisable(connection, handle);
}
}
}
}
bool SensorService::threadLoop()
{
ALOGD("nuSensorService thread starting...");
// each virtual sensor could generate an event per "real" event, that's why we need
// to size numEventMax much smaller than MAX_RECEIVE_BUFFER_EVENT_COUNT.
// in practice, this is too aggressive, but guaranteed to be enough.
const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT;
const size_t numEventMax = minBufferSize / (1 + mVirtualSensorList.size());
sensors_event_t buffer[minBufferSize];
sensors_event_t scratch[minBufferSize];
SensorDevice& device(SensorDevice::getInstance());
const size_t vcount = mVirtualSensorList.size();
ssize_t count;
bool wakeLockAcquired = false;
const int halVersion = device.getHalDeviceVersion();
do {
count = device.poll(buffer, numEventMax);
if (count<0) {
ALOGE("sensor poll failed (%s)", strerror(-count));
break;
}
// Poll has returned. Hold a wakelock.
// Todo(): add a flag to the sensors definitions to indicate
// the sensors which can wake up the AP
for (int i = 0; i < count; i++) {
if (buffer[i].type == SENSOR_TYPE_SIGNIFICANT_MOTION) {
acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_NAME);
wakeLockAcquired = true;
break;
}
}
recordLastValue(buffer, count);
// handle virtual sensors
if (count && vcount) {
sensors_event_t const * const event = buffer;
const DefaultKeyedVector<int, SensorInterface*> virtualSensors(
getActiveVirtualSensors());
const size_t activeVirtualSensorCount = virtualSensors.size();
if (activeVirtualSensorCount) {
size_t k = 0;
SensorFusion& fusion(SensorFusion::getInstance());
if (fusion.isEnabled()) {
for (size_t i=0 ; i<size_t(count) ; i++) {
fusion.process(event[i]);
}
}
for (size_t i=0 ; i<size_t(count) && k<minBufferSize ; i++) {
for (size_t j=0 ; j<activeVirtualSensorCount ; j++) {
if (count + k >= minBufferSize) {
ALOGE("buffer too small to hold all events: "
"count=%u, k=%u, size=%u",
count, k, minBufferSize);
break;
}
sensors_event_t out;
SensorInterface* si = virtualSensors.valueAt(j);
if (si->process(&out, event[i])) {
buffer[count + k] = out;
k++;
}
}
}
if (k) {
// record the last synthesized values
recordLastValue(&buffer[count], k);
count += k;
// sort the buffer by time-stamps
sortEventBuffer(buffer, count);
}
}
}
// handle backward compatibility for RotationVector sensor
if (halVersion < SENSORS_DEVICE_API_VERSION_1_0) {
for (int i = 0; i < count; i++) {
if (buffer[i].type == SENSOR_TYPE_ROTATION_VECTOR) {
// All the 4 components of the quaternion should be available
// No heading accuracy. Set it to -1
buffer[i].data[4] = -1;
}
}
}
// send our events to clients...
const SortedVector< wp<SensorEventConnection> > activeConnections(
getActiveConnections());
size_t numConnections = activeConnections.size();
for (size_t i=0 ; i<numConnections ; i++) {
sp<SensorEventConnection> connection(
activeConnections[i].promote());
if (connection != 0) {
connection->sendEvents(buffer, count, scratch);
// Some sensors need to be auto disabled after the trigger
cleanupAutoDisabledSensor(connection, buffer, count);
}
}
// We have read the data, upper layers should hold the wakelock.
if (wakeLockAcquired) release_wake_lock(WAKE_LOCK_NAME);
} while (count >= 0 || Thread::exitPending());
ALOGW("Exiting SensorService::threadLoop => aborting...");
abort();
return false;
}
void SensorService::recordLastValue(
const sensors_event_t* buffer, size_t count) {
Mutex::Autolock _l(mLock);
const sensors_event_t* last = NULL;
for (size_t i = 0; i < count; i++) {
const sensors_event_t* event = &buffer[i];
if (event->type != SENSOR_TYPE_META_DATA) {
if (last && event->sensor != last->sensor) {
mLastEventSeen.editValueFor(last->sensor) = *last;
}
last = event;
}
}
if (last) {
mLastEventSeen.editValueFor(last->sensor) = *last;
}
}
void SensorService::sortEventBuffer(sensors_event_t* buffer, size_t count)
{
struct compar {
static int cmp(void const* lhs, void const* rhs) {
sensors_event_t const* l = static_cast<sensors_event_t const*>(lhs);
sensors_event_t const* r = static_cast<sensors_event_t const*>(rhs);
return l->timestamp - r->timestamp;
}
};
qsort(buffer, count, sizeof(sensors_event_t), compar::cmp);
}
SortedVector< wp<SensorService::SensorEventConnection> >
SensorService::getActiveConnections() const
{
Mutex::Autolock _l(mLock);
return mActiveConnections;
}
DefaultKeyedVector<int, SensorInterface*>
SensorService::getActiveVirtualSensors() const
{
Mutex::Autolock _l(mLock);
return mActiveVirtualSensors;
}
String8 SensorService::getSensorName(int handle) const {
size_t count = mUserSensorList.size();
for (size_t i=0 ; i<count ; i++) {
const Sensor& sensor(mUserSensorList[i]);
if (sensor.getHandle() == handle) {
return sensor.getName();
}
}
String8 result("unknown");
return result;
}
bool SensorService::isVirtualSensor(int handle) const {
SensorInterface* sensor = mSensorMap.valueFor(handle);
return sensor->isVirtual();
}
Vector<Sensor> SensorService::getSensorList()
{
char value[PROPERTY_VALUE_MAX];
property_get("debug.sensors", value, "0");
if (atoi(value)) {
return mUserSensorListDebug;
}
return mUserSensorList;
}
sp<ISensorEventConnection> SensorService::createSensorEventConnection()
{
uid_t uid = IPCThreadState::self()->getCallingUid();
sp<SensorEventConnection> result(new SensorEventConnection(this, uid));
return result;
}
void SensorService::cleanupConnection(SensorEventConnection* c)
{
Mutex::Autolock _l(mLock);
const wp<SensorEventConnection> connection(c);
size_t size = mActiveSensors.size();
ALOGD_IF(DEBUG_CONNECTIONS, "%d active sensors", size);
for (size_t i=0 ; i<size ; ) {
int handle = mActiveSensors.keyAt(i);
if (c->hasSensor(handle)) {
ALOGD_IF(DEBUG_CONNECTIONS, "%i: disabling handle=0x%08x", i, handle);
SensorInterface* sensor = mSensorMap.valueFor( handle );
ALOGE_IF(!sensor, "mSensorMap[handle=0x%08x] is null!", handle);
if (sensor) {
sensor->activate(c, false);
}
}
SensorRecord* rec = mActiveSensors.valueAt(i);
ALOGE_IF(!rec, "mActiveSensors[%d] is null (handle=0x%08x)!", i, handle);
ALOGD_IF(DEBUG_CONNECTIONS,
"removing connection %p for sensor[%d].handle=0x%08x",
c, i, handle);
if (rec && rec->removeConnection(connection)) {
ALOGD_IF(DEBUG_CONNECTIONS, "... and it was the last connection");
mActiveSensors.removeItemsAt(i, 1);
mActiveVirtualSensors.removeItem(handle);
delete rec;
size--;
} else {
i++;
}
}
mActiveConnections.remove(connection);
BatteryService::cleanup(c->getUid());
}
status_t SensorService::enable(const sp<SensorEventConnection>& connection,
int handle, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs, int reservedFlags)
{
if (mInitCheck != NO_ERROR)
return mInitCheck;
SensorInterface* sensor = mSensorMap.valueFor(handle);
if (sensor == NULL) {
return BAD_VALUE;
}
Mutex::Autolock _l(mLock);
SensorRecord* rec = mActiveSensors.valueFor(handle);
if (rec == 0) {
rec = new SensorRecord(connection);
mActiveSensors.add(handle, rec);
if (sensor->isVirtual()) {
mActiveVirtualSensors.add(handle, sensor);
}
} else {
if (rec->addConnection(connection)) {
// this sensor is already activated, but we are adding a
// connection that uses it. Immediately send down the last
// known value of the requested sensor if it's not a
// "continuous" sensor.
if (sensor->getSensor().getMinDelay() == 0) {
sensors_event_t scratch;
sensors_event_t& event(mLastEventSeen.editValueFor(handle));
if (event.version == sizeof(sensors_event_t)) {
connection->sendEvents(&event, 1);
}
}
}
}
if (connection->addSensor(handle)) {
BatteryService::enableSensor(connection->getUid(), handle);
// the sensor was added (which means it wasn't already there)
// so, see if this connection becomes active
if (mActiveConnections.indexOf(connection) < 0) {
mActiveConnections.add(connection);
}
} else {
ALOGW("sensor %08x already enabled in connection %p (ignoring)",
handle, connection.get());
}
nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs();
if (samplingPeriodNs < minDelayNs) {
samplingPeriodNs = minDelayNs;
}
ALOGD_IF(DEBUG_CONNECTIONS, "Calling batch handle==%d flags=%d rate=%lld timeout== %lld",
handle, reservedFlags, samplingPeriodNs, maxBatchReportLatencyNs);
status_t err = sensor->batch(connection.get(), handle, reservedFlags, samplingPeriodNs,
maxBatchReportLatencyNs);
if (err == NO_ERROR) {
connection->setFirstFlushPending(handle, true);
status_t err_flush = sensor->flush(connection.get(), handle);
// Flush may return error if the sensor is not activated or the underlying h/w sensor does
// not support flush.
if (err_flush != NO_ERROR) {
connection->setFirstFlushPending(handle, false);
}
}
if (err == NO_ERROR) {
ALOGD_IF(DEBUG_CONNECTIONS, "Calling activate on %d", handle);
err = sensor->activate(connection.get(), true);
}
if (err != NO_ERROR) {
// batch/activate has failed, reset our state.
cleanupWithoutDisableLocked(connection, handle);
}
return err;
}
status_t SensorService::disable(const sp<SensorEventConnection>& connection,
int handle)
{
if (mInitCheck != NO_ERROR)
return mInitCheck;
Mutex::Autolock _l(mLock);
status_t err = cleanupWithoutDisableLocked(connection, handle);
if (err == NO_ERROR) {
SensorInterface* sensor = mSensorMap.valueFor(handle);
err = sensor ? sensor->activate(connection.get(), false) : status_t(BAD_VALUE);
}
return err;
}
status_t SensorService::cleanupWithoutDisable(
const sp<SensorEventConnection>& connection, int handle) {
Mutex::Autolock _l(mLock);
return cleanupWithoutDisableLocked(connection, handle);
}
status_t SensorService::cleanupWithoutDisableLocked(
const sp<SensorEventConnection>& connection, int handle) {
SensorRecord* rec = mActiveSensors.valueFor(handle);
if (rec) {
// see if this connection becomes inactive
if (connection->removeSensor(handle)) {
BatteryService::disableSensor(connection->getUid(), handle);
}
if (connection->hasAnySensor() == false) {
mActiveConnections.remove(connection);
}
// see if this sensor becomes inactive
if (rec->removeConnection(connection)) {
mActiveSensors.removeItem(handle);
mActiveVirtualSensors.removeItem(handle);
delete rec;
}
return NO_ERROR;
}
return BAD_VALUE;
}
status_t SensorService::setEventRate(const sp<SensorEventConnection>& connection,
int handle, nsecs_t ns)
{
if (mInitCheck != NO_ERROR)
return mInitCheck;
SensorInterface* sensor = mSensorMap.valueFor(handle);
if (!sensor)
return BAD_VALUE;
if (ns < 0)
return BAD_VALUE;
nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs();
if (ns < minDelayNs) {
ns = minDelayNs;
}
return sensor->setDelay(connection.get(), handle, ns);
}
status_t SensorService::flushSensor(const sp<SensorEventConnection>& connection,
int handle) {
if (mInitCheck != NO_ERROR) return mInitCheck;
SensorInterface* sensor = mSensorMap.valueFor(handle);
if (sensor == NULL) {
return BAD_VALUE;
}
if (sensor->getSensor().getType() == SENSOR_TYPE_SIGNIFICANT_MOTION) {
ALOGE("flush called on Significant Motion sensor");
return INVALID_OPERATION;
}
return sensor->flush(connection.get(), handle);
}
// ---------------------------------------------------------------------------
SensorService::SensorRecord::SensorRecord(
const sp<SensorEventConnection>& connection)
{
mConnections.add(connection);
}
bool SensorService::SensorRecord::addConnection(
const sp<SensorEventConnection>& connection)
{
if (mConnections.indexOf(connection) < 0) {
mConnections.add(connection);
return true;
}
return false;
}
bool SensorService::SensorRecord::removeConnection(
const wp<SensorEventConnection>& connection)
{
ssize_t index = mConnections.indexOf(connection);
if (index >= 0) {
mConnections.removeItemsAt(index, 1);
}
return mConnections.size() ? false : true;
}
// ---------------------------------------------------------------------------
SensorService::SensorEventConnection::SensorEventConnection(
const sp<SensorService>& service, uid_t uid)
: mService(service), mUid(uid)
{
const SensorDevice& device(SensorDevice::getInstance());
if (device.getHalDeviceVersion() >= SENSORS_DEVICE_API_VERSION_1_1) {
// Increase socket buffer size to 1MB for batching capabilities.
mChannel = new BitTube(service->mSocketBufferSize);
} else {
mChannel = new BitTube(SOCKET_BUFFER_SIZE_NON_BATCHED);
}
}
SensorService::SensorEventConnection::~SensorEventConnection()
{
ALOGD_IF(DEBUG_CONNECTIONS, "~SensorEventConnection(%p)", this);
mService->cleanupConnection(this);
}
void SensorService::SensorEventConnection::onFirstRef()
{
}
void SensorService::SensorEventConnection::dump(String8& result) {
Mutex::Autolock _l(mConnectionLock);
for (size_t i = 0; i < mSensorInfo.size(); ++i) {
const FlushInfo& flushInfo = mSensorInfo.valueAt(i);
result.appendFormat("\t %s | status: %s | pending flush events %d\n",
mService->getSensorName(mSensorInfo.keyAt(i)).string(),
flushInfo.mFirstFlushPending ? "First flush pending" :
"active",
flushInfo.mPendingFlushEventsToSend);
}
}
bool SensorService::SensorEventConnection::addSensor(int32_t handle) {
Mutex::Autolock _l(mConnectionLock);
if (mSensorInfo.indexOfKey(handle) < 0) {
mSensorInfo.add(handle, FlushInfo());
return true;
}
return false;
}
bool SensorService::SensorEventConnection::removeSensor(int32_t handle) {
Mutex::Autolock _l(mConnectionLock);
if (mSensorInfo.removeItem(handle) >= 0) {
return true;
}
return false;
}
bool SensorService::SensorEventConnection::hasSensor(int32_t handle) const {
Mutex::Autolock _l(mConnectionLock);
return mSensorInfo.indexOfKey(handle) >= 0;
}
bool SensorService::SensorEventConnection::hasAnySensor() const {
Mutex::Autolock _l(mConnectionLock);
return mSensorInfo.size() ? true : false;
}
void SensorService::SensorEventConnection::setFirstFlushPending(int32_t handle,
bool value) {
Mutex::Autolock _l(mConnectionLock);
ssize_t index = mSensorInfo.indexOfKey(handle);
if (index >= 0) {
FlushInfo& flushInfo = mSensorInfo.editValueAt(index);
flushInfo.mFirstFlushPending = value;
}
}
status_t SensorService::SensorEventConnection::sendEvents(
sensors_event_t const* buffer, size_t numEvents,
sensors_event_t* scratch)
{
// filter out events not for this connection
size_t count = 0;
if (scratch) {
Mutex::Autolock _l(mConnectionLock);
size_t i=0;
while (i<numEvents) {
int32_t curr = buffer[i].sensor;
if (buffer[i].type == SENSOR_TYPE_META_DATA) {
ALOGD_IF(DEBUG_CONNECTIONS, "flush complete event sensor==%d ",
buffer[i].meta_data.sensor);
// Setting curr to the correct sensor to ensure the sensor events per connection are
// filtered correctly. buffer[i].sensor is zero for meta_data events.
curr = buffer[i].meta_data.sensor;
}
ssize_t index = mSensorInfo.indexOfKey(curr);
if (index >= 0 && mSensorInfo[index].mFirstFlushPending == true &&
buffer[i].type == SENSOR_TYPE_META_DATA) {
// This is the first flush before activate is called. Events can now be sent for
// this sensor on this connection.
ALOGD_IF(DEBUG_CONNECTIONS, "First flush event for sensor==%d ",
buffer[i].meta_data.sensor);
mSensorInfo.editValueAt(index).mFirstFlushPending = false;
}
if (index >= 0 && mSensorInfo[index].mFirstFlushPending == false) {
do {
scratch[count++] = buffer[i++];
} while ((i<numEvents) && ((buffer[i].sensor == curr) ||
(buffer[i].type == SENSOR_TYPE_META_DATA &&
buffer[i].meta_data.sensor == curr)));
} else {
i++;
}
}
} else {
scratch = const_cast<sensors_event_t *>(buffer);
count = numEvents;
}
// Send pending flush events (if any) before sending events from the cache.
{
ASensorEvent flushCompleteEvent;
flushCompleteEvent.type = SENSOR_TYPE_META_DATA;
flushCompleteEvent.sensor = 0;
Mutex::Autolock _l(mConnectionLock);
// Loop through all the sensors for this connection and check if there are any pending
// flush complete events to be sent.
for (size_t i = 0; i < mSensorInfo.size(); ++i) {
FlushInfo& flushInfo = mSensorInfo.editValueAt(i);
while (flushInfo.mPendingFlushEventsToSend > 0) {
flushCompleteEvent.meta_data.sensor = mSensorInfo.keyAt(i);
ssize_t size = SensorEventQueue::write(mChannel, &flushCompleteEvent, 1);
if (size < 0) {
// ALOGW("dropping %d events on the floor", count);
countFlushCompleteEventsLocked(scratch, count);
return size;
}
ALOGD_IF(DEBUG_CONNECTIONS, "sent dropped flush complete event==%d ",
flushCompleteEvent.meta_data.sensor);
flushInfo.mPendingFlushEventsToSend--;
}
}
}
// Early return if there are no events for this connection.
if (count == 0) {
return status_t(NO_ERROR);
}
// NOTE: ASensorEvent and sensors_event_t are the same type
ssize_t size = SensorEventQueue::write(mChannel,
reinterpret_cast<ASensorEvent const*>(scratch), count);
if (size == -EAGAIN) {
// the destination doesn't accept events anymore, it's probably
// full. For now, we just drop the events on the floor.
// ALOGW("dropping %d events on the floor", count);
Mutex::Autolock _l(mConnectionLock);
countFlushCompleteEventsLocked(scratch, count);
return size;
}
return size < 0 ? status_t(size) : status_t(NO_ERROR);
}
void SensorService::SensorEventConnection::countFlushCompleteEventsLocked(
sensors_event_t* scratch, const int numEventsDropped) {
ALOGD_IF(DEBUG_CONNECTIONS, "dropping %d events ", numEventsDropped);
// Count flushComplete events in the events that are about to the dropped. These will be sent
// separately before the next batch of events.
for (int j = 0; j < numEventsDropped; ++j) {
if (scratch[j].type == SENSOR_TYPE_META_DATA) {
FlushInfo& flushInfo = mSensorInfo.editValueFor(scratch[j].meta_data.sensor);
flushInfo.mPendingFlushEventsToSend++;
ALOGD_IF(DEBUG_CONNECTIONS, "increment pendingFlushCount %d",
flushInfo.mPendingFlushEventsToSend);
}
}
return;
}
2011-10-21 01:42:02 +00:00
sp<BitTube> SensorService::SensorEventConnection::getSensorChannel() const
{
return mChannel;
}
status_t SensorService::SensorEventConnection::enableDisable(
int handle, bool enabled, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs,
int reservedFlags)
{
status_t err;
if (enabled) {
err = mService->enable(this, handle, samplingPeriodNs, maxBatchReportLatencyNs,
reservedFlags);
} else {
err = mService->disable(this, handle);
}
return err;
}
status_t SensorService::SensorEventConnection::setEventRate(
int handle, nsecs_t samplingPeriodNs)
{
return mService->setEventRate(this, handle, samplingPeriodNs);
}
status_t SensorService::SensorEventConnection::flush() {
SensorDevice& dev(SensorDevice::getInstance());
const int halVersion = dev.getHalDeviceVersion();
Mutex::Autolock _l(mConnectionLock);
status_t err(NO_ERROR);
// Loop through all sensors for this connection and call flush on each of them.
for (size_t i = 0; i < mSensorInfo.size(); ++i) {
const int handle = mSensorInfo.keyAt(i);
if (halVersion < SENSORS_DEVICE_API_VERSION_1_1 || mService->isVirtualSensor(handle)) {
// For older devices just increment pending flush count which will send a trivial
// flush complete event.
FlushInfo& flushInfo = mSensorInfo.editValueFor(handle);
flushInfo.mPendingFlushEventsToSend++;
} else {
status_t err_flush = mService->flushSensor(this, handle);
if (err_flush != NO_ERROR) {
ALOGE("Flush error handle=%d %s", handle, strerror(-err_flush));
}
err = (err_flush != NO_ERROR) ? err_flush : err;
}
}
return err;
}
// ---------------------------------------------------------------------------
}; // namespace android