replicant-frameworks_native/libs/gui/SurfaceTexture.cpp

1087 lines
35 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "SurfaceTexture"
//#define LOG_NDEBUG 0
#define GL_GLEXT_PROTOTYPES
#define EGL_EGLEXT_PROTOTYPES
#include <EGL/egl.h>
#include <EGL/eglext.h>
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#include <gui/SurfaceTexture.h>
#include <hardware/hardware.h>
#include <surfaceflinger/ISurfaceComposer.h>
#include <surfaceflinger/SurfaceComposerClient.h>
#include <surfaceflinger/IGraphicBufferAlloc.h>
#include <utils/Log.h>
#include <utils/String8.h>
#define ALLOW_DEQUEUE_CURRENT_BUFFER false
namespace android {
// Transform matrices
static float mtxIdentity[16] = {
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1,
};
static float mtxFlipH[16] = {
-1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
1, 0, 0, 1,
};
static float mtxFlipV[16] = {
1, 0, 0, 0,
0, -1, 0, 0,
0, 0, 1, 0,
0, 1, 0, 1,
};
static float mtxRot90[16] = {
0, 1, 0, 0,
-1, 0, 0, 0,
0, 0, 1, 0,
1, 0, 0, 1,
};
static float mtxRot180[16] = {
-1, 0, 0, 0,
0, -1, 0, 0,
0, 0, 1, 0,
1, 1, 0, 1,
};
static float mtxRot270[16] = {
0, -1, 0, 0,
1, 0, 0, 0,
0, 0, 1, 0,
0, 1, 0, 1,
};
static void mtxMul(float out[16], const float a[16], const float b[16]);
SurfaceTexture::SurfaceTexture(GLuint tex, bool allowSynchronousMode) :
mDefaultWidth(1),
mDefaultHeight(1),
mPixelFormat(PIXEL_FORMAT_RGBA_8888),
mBufferCount(MIN_ASYNC_BUFFER_SLOTS),
mClientBufferCount(0),
mServerBufferCount(MIN_ASYNC_BUFFER_SLOTS),
mCurrentTexture(INVALID_BUFFER_SLOT),
mCurrentTransform(0),
mCurrentTimestamp(0),
mNextTransform(0),
mNextScalingMode(NATIVE_WINDOW_SCALING_MODE_FREEZE),
mTexName(tex),
mSynchronousMode(false),
mAllowSynchronousMode(allowSynchronousMode),
mConnectedApi(NO_CONNECTED_API),
mAbandoned(false) {
LOGV("SurfaceTexture::SurfaceTexture");
sp<ISurfaceComposer> composer(ComposerService::getComposerService());
mGraphicBufferAlloc = composer->createGraphicBufferAlloc();
mNextCrop.makeInvalid();
memcpy(mCurrentTransformMatrix, mtxIdentity, sizeof(mCurrentTransformMatrix));
}
SurfaceTexture::~SurfaceTexture() {
LOGV("SurfaceTexture::~SurfaceTexture");
freeAllBuffersLocked();
}
status_t SurfaceTexture::setBufferCountServerLocked(int bufferCount) {
if (bufferCount > NUM_BUFFER_SLOTS)
return BAD_VALUE;
// special-case, nothing to do
if (bufferCount == mBufferCount)
return OK;
if (!mClientBufferCount &&
bufferCount >= mBufferCount) {
// easy, we just have more buffers
mBufferCount = bufferCount;
mServerBufferCount = bufferCount;
mDequeueCondition.signal();
} else {
// we're here because we're either
// - reducing the number of available buffers
// - or there is a client-buffer-count in effect
// less than 2 buffers is never allowed
if (bufferCount < 2)
return BAD_VALUE;
// when there is non client-buffer-count in effect, the client is not
// allowed to dequeue more than one buffer at a time,
// so the next time they dequeue a buffer, we know that they don't
// own one. the actual resizing will happen during the next
// dequeueBuffer.
mServerBufferCount = bufferCount;
}
return OK;
}
status_t SurfaceTexture::setBufferCountServer(int bufferCount) {
Mutex::Autolock lock(mMutex);
return setBufferCountServerLocked(bufferCount);
}
status_t SurfaceTexture::setBufferCount(int bufferCount) {
LOGV("SurfaceTexture::setBufferCount");
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
LOGE("setBufferCount: SurfaceTexture has been abandoned!");
return NO_INIT;
}
if (bufferCount > NUM_BUFFER_SLOTS) {
LOGE("setBufferCount: bufferCount larger than slots available");
return BAD_VALUE;
}
// Error out if the user has dequeued buffers
for (int i=0 ; i<mBufferCount ; i++) {
if (mSlots[i].mBufferState == BufferSlot::DEQUEUED) {
LOGE("setBufferCount: client owns some buffers");
return -EINVAL;
}
}
const int minBufferSlots = mSynchronousMode ?
MIN_SYNC_BUFFER_SLOTS : MIN_ASYNC_BUFFER_SLOTS;
if (bufferCount == 0) {
mClientBufferCount = 0;
bufferCount = (mServerBufferCount >= minBufferSlots) ?
mServerBufferCount : minBufferSlots;
return setBufferCountServerLocked(bufferCount);
}
if (bufferCount < minBufferSlots) {
LOGE("setBufferCount: requested buffer count (%d) is less than "
"minimum (%d)", bufferCount, minBufferSlots);
return BAD_VALUE;
}
// here we're guaranteed that the client doesn't have dequeued buffers
// and will release all of its buffer references.
freeAllBuffersLocked();
mBufferCount = bufferCount;
mClientBufferCount = bufferCount;
mCurrentTexture = INVALID_BUFFER_SLOT;
mQueue.clear();
mDequeueCondition.signal();
return OK;
}
status_t SurfaceTexture::setDefaultBufferSize(uint32_t w, uint32_t h)
{
if (!w || !h) {
LOGE("setDefaultBufferSize: dimensions cannot be 0 (w=%d, h=%d)", w, h);
return BAD_VALUE;
}
Mutex::Autolock lock(mMutex);
mDefaultWidth = w;
mDefaultHeight = h;
return OK;
}
status_t SurfaceTexture::requestBuffer(int slot, sp<GraphicBuffer>* buf) {
LOGV("SurfaceTexture::requestBuffer");
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
LOGE("requestBuffer: SurfaceTexture has been abandoned!");
return NO_INIT;
}
if (slot < 0 || mBufferCount <= slot) {
LOGE("requestBuffer: slot index out of range [0, %d]: %d",
mBufferCount, slot);
return BAD_VALUE;
}
mSlots[slot].mRequestBufferCalled = true;
*buf = mSlots[slot].mGraphicBuffer;
return NO_ERROR;
}
status_t SurfaceTexture::dequeueBuffer(int *outBuf, uint32_t w, uint32_t h,
uint32_t format, uint32_t usage) {
LOGV("SurfaceTexture::dequeueBuffer");
if ((w && !h) || (!w && h)) {
LOGE("dequeueBuffer: invalid size: w=%u, h=%u", w, h);
return BAD_VALUE;
}
Mutex::Autolock lock(mMutex);
status_t returnFlags(OK);
int found, foundSync;
int dequeuedCount = 0;
bool tryAgain = true;
while (tryAgain) {
if (mAbandoned) {
LOGE("dequeueBuffer: SurfaceTexture has been abandoned!");
return NO_INIT;
}
// We need to wait for the FIFO to drain if the number of buffer
// needs to change.
//
// The condition "number of buffers needs to change" is true if
// - the client doesn't care about how many buffers there are
// - AND the actual number of buffer is different from what was
// set in the last setBufferCountServer()
// - OR -
// setBufferCountServer() was set to a value incompatible with
// the synchronization mode (for instance because the sync mode
// changed since)
//
// As long as this condition is true AND the FIFO is not empty, we
// wait on mDequeueCondition.
const int minBufferCountNeeded = mSynchronousMode ?
MIN_SYNC_BUFFER_SLOTS : MIN_ASYNC_BUFFER_SLOTS;
const bool numberOfBuffersNeedsToChange = !mClientBufferCount &&
((mServerBufferCount != mBufferCount) ||
(mServerBufferCount < minBufferCountNeeded));
if (!mQueue.isEmpty() && numberOfBuffersNeedsToChange) {
// wait for the FIFO to drain
mDequeueCondition.wait(mMutex);
// NOTE: we continue here because we need to reevaluate our
// whole state (eg: we could be abandoned or disconnected)
continue;
}
if (numberOfBuffersNeedsToChange) {
// here we're guaranteed that mQueue is empty
freeAllBuffersLocked();
mBufferCount = mServerBufferCount;
if (mBufferCount < minBufferCountNeeded)
mBufferCount = minBufferCountNeeded;
mCurrentTexture = INVALID_BUFFER_SLOT;
returnFlags |= ISurfaceTexture::RELEASE_ALL_BUFFERS;
}
// look for a free buffer to give to the client
found = INVALID_BUFFER_SLOT;
foundSync = INVALID_BUFFER_SLOT;
dequeuedCount = 0;
for (int i = 0; i < mBufferCount; i++) {
const int state = mSlots[i].mBufferState;
if (state == BufferSlot::DEQUEUED) {
dequeuedCount++;
}
// if buffer is FREE it CANNOT be current
LOGW_IF((state == BufferSlot::FREE) && (mCurrentTexture==i),
"dequeueBuffer: buffer %d is both FREE and current!", i);
if (ALLOW_DEQUEUE_CURRENT_BUFFER) {
if (state == BufferSlot::FREE || i == mCurrentTexture) {
foundSync = i;
if (i != mCurrentTexture) {
found = i;
break;
}
}
} else {
if (state == BufferSlot::FREE) {
foundSync = i;
found = i;
break;
}
}
}
// clients are not allowed to dequeue more than one buffer
// if they didn't set a buffer count.
if (!mClientBufferCount && dequeuedCount) {
return -EINVAL;
}
// See whether a buffer has been queued since the last setBufferCount so
// we know whether to perform the MIN_UNDEQUEUED_BUFFERS check below.
bool bufferHasBeenQueued = mCurrentTexture != INVALID_BUFFER_SLOT;
if (bufferHasBeenQueued) {
// make sure the client is not trying to dequeue more buffers
// than allowed.
const int avail = mBufferCount - (dequeuedCount+1);
if (avail < (MIN_UNDEQUEUED_BUFFERS-int(mSynchronousMode))) {
LOGE("dequeueBuffer: MIN_UNDEQUEUED_BUFFERS=%d exceeded (dequeued=%d)",
MIN_UNDEQUEUED_BUFFERS-int(mSynchronousMode),
dequeuedCount);
return -EBUSY;
}
}
// we're in synchronous mode and didn't find a buffer, we need to wait
// for some buffers to be consumed
tryAgain = mSynchronousMode && (foundSync == INVALID_BUFFER_SLOT);
if (tryAgain) {
mDequeueCondition.wait(mMutex);
}
}
if (mSynchronousMode && found == INVALID_BUFFER_SLOT) {
// foundSync guaranteed to be != INVALID_BUFFER_SLOT
found = foundSync;
}
if (found == INVALID_BUFFER_SLOT) {
return -EBUSY;
}
const int buf = found;
*outBuf = found;
const bool useDefaultSize = !w && !h;
if (useDefaultSize) {
// use the default size
w = mDefaultWidth;
h = mDefaultHeight;
}
const bool updateFormat = (format != 0);
if (!updateFormat) {
// keep the current (or default) format
format = mPixelFormat;
}
// buffer is now in DEQUEUED (but can also be current at the same time,
// if we're in synchronous mode)
mSlots[buf].mBufferState = BufferSlot::DEQUEUED;
const sp<GraphicBuffer>& buffer(mSlots[buf].mGraphicBuffer);
if ((buffer == NULL) ||
(uint32_t(buffer->width) != w) ||
(uint32_t(buffer->height) != h) ||
(uint32_t(buffer->format) != format) ||
((uint32_t(buffer->usage) & usage) != usage))
{
usage |= GraphicBuffer::USAGE_HW_TEXTURE;
status_t error;
sp<GraphicBuffer> graphicBuffer(
mGraphicBufferAlloc->createGraphicBuffer(
w, h, format, usage, &error));
if (graphicBuffer == 0) {
LOGE("dequeueBuffer: SurfaceComposer::createGraphicBuffer failed");
return error;
}
if (updateFormat) {
mPixelFormat = format;
}
mSlots[buf].mGraphicBuffer = graphicBuffer;
mSlots[buf].mRequestBufferCalled = false;
if (mSlots[buf].mEglImage != EGL_NO_IMAGE_KHR) {
eglDestroyImageKHR(mSlots[buf].mEglDisplay, mSlots[buf].mEglImage);
mSlots[buf].mEglImage = EGL_NO_IMAGE_KHR;
mSlots[buf].mEglDisplay = EGL_NO_DISPLAY;
}
returnFlags |= ISurfaceTexture::BUFFER_NEEDS_REALLOCATION;
}
return returnFlags;
}
status_t SurfaceTexture::setSynchronousMode(bool enabled) {
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
LOGE("setSynchronousMode: SurfaceTexture has been abandoned!");
return NO_INIT;
}
status_t err = OK;
if (!mAllowSynchronousMode && enabled)
return err;
if (!enabled) {
// going to asynchronous mode, drain the queue
err = drainQueueLocked();
if (err != NO_ERROR)
return err;
}
if (mSynchronousMode != enabled) {
// - if we're going to asynchronous mode, the queue is guaranteed to be
// empty here
// - if the client set the number of buffers, we're guaranteed that
// we have at least 3 (because we don't allow less)
mSynchronousMode = enabled;
mDequeueCondition.signal();
}
return err;
}
status_t SurfaceTexture::queueBuffer(int buf, int64_t timestamp,
uint32_t* outWidth, uint32_t* outHeight, uint32_t* outTransform) {
LOGV("SurfaceTexture::queueBuffer");
sp<FrameAvailableListener> listener;
{ // scope for the lock
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
LOGE("queueBuffer: SurfaceTexture has been abandoned!");
return NO_INIT;
}
if (buf < 0 || buf >= mBufferCount) {
LOGE("queueBuffer: slot index out of range [0, %d]: %d",
mBufferCount, buf);
return -EINVAL;
} else if (mSlots[buf].mBufferState != BufferSlot::DEQUEUED) {
LOGE("queueBuffer: slot %d is not owned by the client (state=%d)",
buf, mSlots[buf].mBufferState);
return -EINVAL;
} else if (buf == mCurrentTexture) {
LOGE("queueBuffer: slot %d is current!", buf);
return -EINVAL;
} else if (!mSlots[buf].mRequestBufferCalled) {
LOGE("queueBuffer: slot %d was enqueued without requesting a "
"buffer", buf);
return -EINVAL;
}
if (mSynchronousMode) {
// In synchronous mode we queue all buffers in a FIFO.
mQueue.push_back(buf);
// Synchronous mode always signals that an additional frame should
// be consumed.
listener = mFrameAvailableListener;
} else {
// In asynchronous mode we only keep the most recent buffer.
if (mQueue.empty()) {
mQueue.push_back(buf);
// Asynchronous mode only signals that a frame should be
// consumed if no previous frame was pending. If a frame were
// pending then the consumer would have already been notified.
listener = mFrameAvailableListener;
} else {
Fifo::iterator front(mQueue.begin());
// buffer currently queued is freed
mSlots[*front].mBufferState = BufferSlot::FREE;
// and we record the new buffer index in the queued list
*front = buf;
}
}
mSlots[buf].mBufferState = BufferSlot::QUEUED;
mSlots[buf].mCrop = mNextCrop;
mSlots[buf].mTransform = mNextTransform;
mSlots[buf].mScalingMode = mNextScalingMode;
mSlots[buf].mTimestamp = timestamp;
mDequeueCondition.signal();
*outWidth = mDefaultWidth;
*outHeight = mDefaultHeight;
*outTransform = 0;
} // scope for the lock
// call back without lock held
if (listener != 0) {
listener->onFrameAvailable();
}
return OK;
}
void SurfaceTexture::cancelBuffer(int buf) {
LOGV("SurfaceTexture::cancelBuffer");
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
LOGW("cancelBuffer: SurfaceTexture has been abandoned!");
return;
}
if (buf < 0 || buf >= mBufferCount) {
LOGE("cancelBuffer: slot index out of range [0, %d]: %d",
mBufferCount, buf);
return;
} else if (mSlots[buf].mBufferState != BufferSlot::DEQUEUED) {
LOGE("cancelBuffer: slot %d is not owned by the client (state=%d)",
buf, mSlots[buf].mBufferState);
return;
}
mSlots[buf].mBufferState = BufferSlot::FREE;
mDequeueCondition.signal();
}
status_t SurfaceTexture::setCrop(const Rect& crop) {
LOGV("SurfaceTexture::setCrop");
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
LOGE("setCrop: SurfaceTexture has been abandoned!");
return NO_INIT;
}
mNextCrop = crop;
return OK;
}
status_t SurfaceTexture::setTransform(uint32_t transform) {
LOGV("SurfaceTexture::setTransform");
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
LOGE("setTransform: SurfaceTexture has been abandoned!");
return NO_INIT;
}
mNextTransform = transform;
return OK;
}
status_t SurfaceTexture::connect(int api,
uint32_t* outWidth, uint32_t* outHeight, uint32_t* outTransform) {
LOGV("SurfaceTexture::connect(this=%p, %d)", this, api);
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
LOGE("connect: SurfaceTexture has been abandoned!");
return NO_INIT;
}
int err = NO_ERROR;
switch (api) {
case NATIVE_WINDOW_API_EGL:
case NATIVE_WINDOW_API_CPU:
case NATIVE_WINDOW_API_MEDIA:
case NATIVE_WINDOW_API_CAMERA:
if (mConnectedApi != NO_CONNECTED_API) {
LOGE("connect: already connected (cur=%d, req=%d)",
mConnectedApi, api);
err = -EINVAL;
} else {
mConnectedApi = api;
*outWidth = mDefaultWidth;
*outHeight = mDefaultHeight;
*outTransform = 0;
}
break;
default:
err = -EINVAL;
break;
}
return err;
}
status_t SurfaceTexture::disconnect(int api) {
LOGV("SurfaceTexture::disconnect(this=%p, %d)", this, api);
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
LOGE("connect: SurfaceTexture has been abandoned!");
return NO_INIT;
}
int err = NO_ERROR;
switch (api) {
case NATIVE_WINDOW_API_EGL:
case NATIVE_WINDOW_API_CPU:
case NATIVE_WINDOW_API_MEDIA:
case NATIVE_WINDOW_API_CAMERA:
if (mConnectedApi == api) {
drainQueueAndFreeBuffersLocked();
mConnectedApi = NO_CONNECTED_API;
mDequeueCondition.signal();
} else {
LOGE("disconnect: connected to another api (cur=%d, req=%d)",
mConnectedApi, api);
err = -EINVAL;
}
break;
default:
err = -EINVAL;
break;
}
return err;
}
status_t SurfaceTexture::setScalingMode(int mode) {
LOGV("SurfaceTexture::setScalingMode(%d)", mode);
switch (mode) {
case NATIVE_WINDOW_SCALING_MODE_FREEZE:
case NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW:
break;
default:
return BAD_VALUE;
}
Mutex::Autolock lock(mMutex);
mNextScalingMode = mode;
return OK;
}
status_t SurfaceTexture::updateTexImage() {
LOGV("SurfaceTexture::updateTexImage");
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
LOGE("calling updateTexImage() on an abandoned SurfaceTexture");
return NO_INIT;
}
// In asynchronous mode the list is guaranteed to be one buffer
// deep, while in synchronous mode we use the oldest buffer.
if (!mQueue.empty()) {
Fifo::iterator front(mQueue.begin());
int buf = *front;
// Update the GL texture object.
EGLImageKHR image = mSlots[buf].mEglImage;
if (image == EGL_NO_IMAGE_KHR) {
EGLDisplay dpy = eglGetCurrentDisplay();
if (mSlots[buf].mGraphicBuffer == 0) {
LOGE("buffer at slot %d is null", buf);
return BAD_VALUE;
}
image = createImage(dpy, mSlots[buf].mGraphicBuffer);
mSlots[buf].mEglImage = image;
mSlots[buf].mEglDisplay = dpy;
if (image == EGL_NO_IMAGE_KHR) {
// NOTE: if dpy was invalid, createImage() is guaranteed to
// fail. so we'd end up here.
return -EINVAL;
}
}
GLint error;
while ((error = glGetError()) != GL_NO_ERROR) {
LOGW("updateTexImage: clearing GL error: %#04x", error);
}
glBindTexture(GL_TEXTURE_EXTERNAL_OES, mTexName);
glEGLImageTargetTexture2DOES(GL_TEXTURE_EXTERNAL_OES, (GLeglImageOES)image);
bool failed = false;
while ((error = glGetError()) != GL_NO_ERROR) {
LOGE("error binding external texture image %p (slot %d): %#04x",
image, buf, error);
failed = true;
}
if (failed) {
return -EINVAL;
}
if (mCurrentTexture != INVALID_BUFFER_SLOT) {
// The current buffer becomes FREE if it was still in the queued
// state. If it has already been given to the client
// (synchronous mode), then it stays in DEQUEUED state.
if (mSlots[mCurrentTexture].mBufferState == BufferSlot::QUEUED)
mSlots[mCurrentTexture].mBufferState = BufferSlot::FREE;
}
// Update the SurfaceTexture state.
mCurrentTexture = buf;
mCurrentTextureBuf = mSlots[buf].mGraphicBuffer;
mCurrentCrop = mSlots[buf].mCrop;
mCurrentTransform = mSlots[buf].mTransform;
mCurrentScalingMode = mSlots[buf].mScalingMode;
mCurrentTimestamp = mSlots[buf].mTimestamp;
computeCurrentTransformMatrix();
// Now that we've passed the point at which failures can happen,
// it's safe to remove the buffer from the front of the queue.
mQueue.erase(front);
mDequeueCondition.signal();
} else {
// We always bind the texture even if we don't update its contents.
glBindTexture(GL_TEXTURE_EXTERNAL_OES, mTexName);
}
return OK;
}
bool SurfaceTexture::isExternalFormat(uint32_t format)
{
switch (format) {
// supported YUV formats
case HAL_PIXEL_FORMAT_YV12:
// Legacy/deprecated YUV formats
case HAL_PIXEL_FORMAT_YCbCr_422_SP:
case HAL_PIXEL_FORMAT_YCrCb_420_SP:
case HAL_PIXEL_FORMAT_YCbCr_422_I:
return true;
}
// Any OEM format needs to be considered
if (format>=0x100 && format<=0x1FF)
return true;
return false;
}
GLenum SurfaceTexture::getCurrentTextureTarget() const {
return GL_TEXTURE_EXTERNAL_OES;
}
void SurfaceTexture::getTransformMatrix(float mtx[16]) {
Mutex::Autolock lock(mMutex);
memcpy(mtx, mCurrentTransformMatrix, sizeof(mCurrentTransformMatrix));
}
void SurfaceTexture::computeCurrentTransformMatrix() {
LOGV("SurfaceTexture::computeCurrentTransformMatrix");
float xform[16];
for (int i = 0; i < 16; i++) {
xform[i] = mtxIdentity[i];
}
if (mCurrentTransform & NATIVE_WINDOW_TRANSFORM_FLIP_H) {
float result[16];
mtxMul(result, xform, mtxFlipH);
for (int i = 0; i < 16; i++) {
xform[i] = result[i];
}
}
if (mCurrentTransform & NATIVE_WINDOW_TRANSFORM_FLIP_V) {
float result[16];
mtxMul(result, xform, mtxFlipV);
for (int i = 0; i < 16; i++) {
xform[i] = result[i];
}
}
if (mCurrentTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
float result[16];
mtxMul(result, xform, mtxRot90);
for (int i = 0; i < 16; i++) {
xform[i] = result[i];
}
}
sp<GraphicBuffer>& buf(mSlots[mCurrentTexture].mGraphicBuffer);
float tx, ty, sx, sy;
if (!mCurrentCrop.isEmpty()) {
// In order to prevent bilinear sampling at the of the crop rectangle we
// may need to shrink it by 2 texels in each direction. Normally this
// would just need to take 1/2 a texel off each end, but because the
// chroma channels will likely be subsampled we need to chop off a whole
// texel. This will cause artifacts if someone does nearest sampling
// with 1:1 pixel:texel ratio, but it's impossible to simultaneously
// accomodate the bilinear and nearest sampling uses.
//
// If nearest sampling turns out to be a desirable usage of these
// textures then we could add the ability to switch a SurfaceTexture to
// nearest-mode. Preferably, however, the image producers (video
// decoder, camera, etc.) would simply not use a crop rectangle (or at
// least not tell the framework about it) so that the GPU can do the
// correct edge behavior.
int xshrink = 0, yshrink = 0;
if (mCurrentCrop.left > 0) {
tx = float(mCurrentCrop.left + 1) / float(buf->getWidth());
xshrink++;
} else {
tx = 0.0f;
}
if (mCurrentCrop.right < int32_t(buf->getWidth())) {
xshrink++;
}
if (mCurrentCrop.bottom < int32_t(buf->getHeight())) {
ty = (float(buf->getHeight() - mCurrentCrop.bottom) + 1.0f) /
float(buf->getHeight());
yshrink++;
} else {
ty = 0.0f;
}
if (mCurrentCrop.top > 0) {
yshrink++;
}
sx = float(mCurrentCrop.width() - xshrink) / float(buf->getWidth());
sy = float(mCurrentCrop.height() - yshrink) / float(buf->getHeight());
} else {
tx = 0.0f;
ty = 0.0f;
sx = 1.0f;
sy = 1.0f;
}
float crop[16] = {
sx, 0, 0, 0,
0, sy, 0, 0,
0, 0, 1, 0,
tx, ty, 0, 1,
};
float mtxBeforeFlipV[16];
mtxMul(mtxBeforeFlipV, crop, xform);
// SurfaceFlinger expects the top of its window textures to be at a Y
// coordinate of 0, so SurfaceTexture must behave the same way. We don't
// want to expose this to applications, however, so we must add an
// additional vertical flip to the transform after all the other transforms.
mtxMul(mCurrentTransformMatrix, mtxFlipV, mtxBeforeFlipV);
}
nsecs_t SurfaceTexture::getTimestamp() {
LOGV("SurfaceTexture::getTimestamp");
Mutex::Autolock lock(mMutex);
return mCurrentTimestamp;
}
void SurfaceTexture::setFrameAvailableListener(
const sp<FrameAvailableListener>& listener) {
LOGV("SurfaceTexture::setFrameAvailableListener");
Mutex::Autolock lock(mMutex);
mFrameAvailableListener = listener;
}
void SurfaceTexture::freeBufferLocked(int i) {
mSlots[i].mGraphicBuffer = 0;
mSlots[i].mBufferState = BufferSlot::FREE;
if (mSlots[i].mEglImage != EGL_NO_IMAGE_KHR) {
eglDestroyImageKHR(mSlots[i].mEglDisplay, mSlots[i].mEglImage);
mSlots[i].mEglImage = EGL_NO_IMAGE_KHR;
mSlots[i].mEglDisplay = EGL_NO_DISPLAY;
}
}
void SurfaceTexture::freeAllBuffersLocked() {
LOGW_IF(!mQueue.isEmpty(),
"freeAllBuffersLocked called but mQueue is not empty");
mCurrentTexture = INVALID_BUFFER_SLOT;
for (int i = 0; i < NUM_BUFFER_SLOTS; i++) {
freeBufferLocked(i);
}
}
void SurfaceTexture::freeAllBuffersExceptHeadLocked() {
LOGW_IF(!mQueue.isEmpty(),
"freeAllBuffersExceptCurrentLocked called but mQueue is not empty");
int head = -1;
if (!mQueue.empty()) {
Fifo::iterator front(mQueue.begin());
head = *front;
}
mCurrentTexture = INVALID_BUFFER_SLOT;
for (int i = 0; i < NUM_BUFFER_SLOTS; i++) {
if (i != head) {
freeBufferLocked(i);
}
}
}
status_t SurfaceTexture::drainQueueLocked() {
while (mSynchronousMode && !mQueue.isEmpty()) {
mDequeueCondition.wait(mMutex);
if (mAbandoned) {
LOGE("drainQueueLocked: SurfaceTexture has been abandoned!");
return NO_INIT;
}
if (mConnectedApi == NO_CONNECTED_API) {
LOGE("drainQueueLocked: SurfaceTexture is not connected!");
return NO_INIT;
}
}
return NO_ERROR;
}
status_t SurfaceTexture::drainQueueAndFreeBuffersLocked() {
status_t err = drainQueueLocked();
if (err == NO_ERROR) {
if (mSynchronousMode) {
freeAllBuffersLocked();
} else {
freeAllBuffersExceptHeadLocked();
}
}
return err;
}
EGLImageKHR SurfaceTexture::createImage(EGLDisplay dpy,
const sp<GraphicBuffer>& graphicBuffer) {
EGLClientBuffer cbuf = (EGLClientBuffer)graphicBuffer->getNativeBuffer();
EGLint attrs[] = {
EGL_IMAGE_PRESERVED_KHR, EGL_TRUE,
EGL_NONE,
};
EGLImageKHR image = eglCreateImageKHR(dpy, EGL_NO_CONTEXT,
EGL_NATIVE_BUFFER_ANDROID, cbuf, attrs);
if (image == EGL_NO_IMAGE_KHR) {
EGLint error = eglGetError();
LOGE("error creating EGLImage: %#x", error);
}
return image;
}
sp<GraphicBuffer> SurfaceTexture::getCurrentBuffer() const {
Mutex::Autolock lock(mMutex);
return mCurrentTextureBuf;
}
Rect SurfaceTexture::getCurrentCrop() const {
Mutex::Autolock lock(mMutex);
return mCurrentCrop;
}
uint32_t SurfaceTexture::getCurrentTransform() const {
Mutex::Autolock lock(mMutex);
return mCurrentTransform;
}
uint32_t SurfaceTexture::getCurrentScalingMode() const {
Mutex::Autolock lock(mMutex);
return mCurrentScalingMode;
}
int SurfaceTexture::query(int what, int* outValue)
{
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
LOGE("query: SurfaceTexture has been abandoned!");
return NO_INIT;
}
int value;
switch (what) {
case NATIVE_WINDOW_WIDTH:
value = mDefaultWidth;
break;
case NATIVE_WINDOW_HEIGHT:
value = mDefaultHeight;
break;
case NATIVE_WINDOW_FORMAT:
value = mPixelFormat;
break;
case NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS:
value = mSynchronousMode ?
(MIN_UNDEQUEUED_BUFFERS-1) : MIN_UNDEQUEUED_BUFFERS;
break;
default:
return BAD_VALUE;
}
outValue[0] = value;
return NO_ERROR;
}
void SurfaceTexture::abandon() {
Mutex::Autolock lock(mMutex);
mQueue.clear();
mAbandoned = true;
mCurrentTextureBuf.clear();
freeAllBuffersLocked();
mDequeueCondition.signal();
}
void SurfaceTexture::dump(String8& result) const
{
char buffer[1024];
dump(result, "", buffer, 1024);
}
void SurfaceTexture::dump(String8& result, const char* prefix,
char* buffer, size_t SIZE) const
{
Mutex::Autolock _l(mMutex);
snprintf(buffer, SIZE,
"%smBufferCount=%d, mSynchronousMode=%d, default-size=[%dx%d], "
"mPixelFormat=%d, mTexName=%d\n",
prefix, mBufferCount, mSynchronousMode, mDefaultWidth, mDefaultHeight,
mPixelFormat, mTexName);
result.append(buffer);
String8 fifo;
int fifoSize = 0;
Fifo::const_iterator i(mQueue.begin());
while (i != mQueue.end()) {
snprintf(buffer, SIZE, "%02d ", *i++);
fifoSize++;
fifo.append(buffer);
}
snprintf(buffer, SIZE,
"%scurrent: {crop=[%d,%d,%d,%d], transform=0x%02x, current=%d}\n"
"%snext : {crop=[%d,%d,%d,%d], transform=0x%02x, FIFO(%d)={%s}}\n"
,
prefix, mCurrentCrop.left,
mCurrentCrop.top, mCurrentCrop.right, mCurrentCrop.bottom,
mCurrentTransform, mCurrentTexture,
prefix, mNextCrop.left, mNextCrop.top, mNextCrop.right, mNextCrop.bottom,
mCurrentTransform, fifoSize, fifo.string()
);
result.append(buffer);
struct {
const char * operator()(int state) const {
switch (state) {
case BufferSlot::DEQUEUED: return "DEQUEUED";
case BufferSlot::QUEUED: return "QUEUED";
case BufferSlot::FREE: return "FREE";
default: return "Unknown";
}
}
} stateName;
for (int i=0 ; i<mBufferCount ; i++) {
const BufferSlot& slot(mSlots[i]);
snprintf(buffer, SIZE,
"%s%s[%02d] "
"state=%-8s, crop=[%d,%d,%d,%d], "
"transform=0x%02x, timestamp=%lld",
prefix, (i==mCurrentTexture)?">":" ", i,
stateName(slot.mBufferState),
slot.mCrop.left, slot.mCrop.top, slot.mCrop.right, slot.mCrop.bottom,
slot.mTransform, slot.mTimestamp
);
result.append(buffer);
const sp<GraphicBuffer>& buf(slot.mGraphicBuffer);
if (buf != NULL) {
snprintf(buffer, SIZE,
", %p [%4ux%4u:%4u,%3X]",
buf->handle, buf->width, buf->height, buf->stride, buf->format);
result.append(buffer);
}
result.append("\n");
}
}
static void mtxMul(float out[16], const float a[16], const float b[16]) {
out[0] = a[0]*b[0] + a[4]*b[1] + a[8]*b[2] + a[12]*b[3];
out[1] = a[1]*b[0] + a[5]*b[1] + a[9]*b[2] + a[13]*b[3];
out[2] = a[2]*b[0] + a[6]*b[1] + a[10]*b[2] + a[14]*b[3];
out[3] = a[3]*b[0] + a[7]*b[1] + a[11]*b[2] + a[15]*b[3];
out[4] = a[0]*b[4] + a[4]*b[5] + a[8]*b[6] + a[12]*b[7];
out[5] = a[1]*b[4] + a[5]*b[5] + a[9]*b[6] + a[13]*b[7];
out[6] = a[2]*b[4] + a[6]*b[5] + a[10]*b[6] + a[14]*b[7];
out[7] = a[3]*b[4] + a[7]*b[5] + a[11]*b[6] + a[15]*b[7];
out[8] = a[0]*b[8] + a[4]*b[9] + a[8]*b[10] + a[12]*b[11];
out[9] = a[1]*b[8] + a[5]*b[9] + a[9]*b[10] + a[13]*b[11];
out[10] = a[2]*b[8] + a[6]*b[9] + a[10]*b[10] + a[14]*b[11];
out[11] = a[3]*b[8] + a[7]*b[9] + a[11]*b[10] + a[15]*b[11];
out[12] = a[0]*b[12] + a[4]*b[13] + a[8]*b[14] + a[12]*b[15];
out[13] = a[1]*b[12] + a[5]*b[13] + a[9]*b[14] + a[13]*b[15];
out[14] = a[2]*b[12] + a[6]*b[13] + a[10]*b[14] + a[14]*b[15];
out[15] = a[3]*b[12] + a[7]*b[13] + a[11]*b[14] + a[15]*b[15];
}
}; // namespace android