Check requested format for device-specific formats, and assume (as
documented in libhardware/include/hardware/hardware.h) this is opaque
layer so no blending is necessary.
Bug: 3215931
Change-Id: Ib4dff8060ac522d201ff1e74807ac340c17d3fa7
with this change DimLayers will behave just like any other layer,
in particular they'll respect the layer transformations.
Change-Id: Icb4a1275e8bca9e3deb5f57c9f9219aaa69f9877
We were still destroying an ANativeWindow's buffer pretty soon
after it was removed from the window manager. This time
we really wait for the ISurace to go away.
Change-Id: I329273fedaeef76ee92836f6180c2c3808389330
This changes the ANativeWindow API and the two implementations to reset
the window's crop rectangle to be uncropped when the window's buffer
geometry is changed.
Bug: 3359604
Change-Id: I64283dc8382ae687787ec0bebe6a5d5b4a0dcd6b
now that we removed the notion of a "inUse" buffer in surfaceflinger
a lot of code can be simplified / removed.
noteworthy, the whole concept of "unlockClient" wrt. "compositionComplete"
is also gone.
Change-Id: I210413d4c8c0998dae05c8620ebfc895d3e6233d
list the purgatory, which shows windows that have been closed,
but for which the client still has references.
Change-Id: I5168bb88cb328d5d77d71d0871deb9190f493126
We used to guarantee that a layer in SurfaceFlinger would never be
destroyed before all references (to its ISurface) on the client
side would be released. At some point, this guarantee got
relaxed to allow to free gralloc resources sooner. This last
change was incorrect, because:
- in implementations with reference-counting the gralloc resources
wouldn't be released anyways, until all the mapping were gone
- in implementations without ref counting, the client side
would most likely crash or do something bad
- it also caused the SharedBufferStack slot to be reallocated
to another surface, which could be problematic if the client
continued to use the surface after the window manager destroyed it.
So, we essentially reinstate the guarantee that layers won't be
destroyed until after all references to their ISurface are
released.
NOTE: This doesn't entirely fix 3306150 because there is another
problem there where the Browser continues to use a surface after it
has been destroyed.
Change-Id: I305c830dd722b30a6d53cbf3a9c714fd3cf7eb06
the crop as well as buffer orientation can change at every frame, when that happens
we need to reset the hwc HAL (ie: set the GEOMETRY_CHANGED flag).
currently we achieve this by taking the same code path than an actual geometry change
which is a bit more heavy than necessary.
Change-Id: I751f9ed1eeec0c27db7df2e77d5d17c6bcc17a24
This change fixes a horrible hack that I did to allow application
processes to create GraphicBuffer objects by making a binder call to
SurfaceFlinger. This change introduces a new binder interface
specifically for doing this, and does it in such a way that
SurfaceFlinger will maintain a reference to the buffers until the app is
done with them.
Change-Id: Icb240397c6c206d7f69124c1497a829f051cb49b
This change adds a new binder method to the ISurfaceComposer interface.
This IPC is intended to allow SurfaceFlinger clients to allocate gralloc
buffers using SurfaceFlinger as a proxy to gralloc.
Change-Id: Ide9fc283aec5da6268ba62cfed0c3319a50b640d
we were not clearing the screen entirely, which caused garbage when
the screen wasn't entirely covered by windows.
Change-Id: Ie9ab9b94eabfa6cafddf45bb14bc733bdc8d35c0
while we're waiting for the real fix in the gralloc/gpu driver,
this workaround should resolve the issue.
we make sure to call compositionComplete after everytime we do
composition with the GPU (even for the screenshot case), which is
where the buffer locks are released.
Change-Id: I3cb5ad67d48c81a23100172bab77e86a70e29152
if a surface's buffers are reallocated, the current active buffer will
end-up pointing on one of these until a new buffer is retired.
we're now keeping a reference to the actual buffer until we retire a
new one.
Change-Id: Ib1703947e7a0340694d846e0962576318863b935
there was an issue were in some situation SF would call prepare() on hwc
with a NULL handle and never call prepare again.
in this situation, we onw set the SKIP flag to make sure that hwc
won't process this layer and as soon as we receive our first buffer we
trigger a recompute of the visible regions which will end-up calling
prepare() again.
Change-Id: I6b400b2df79712408b9315a9859290c7fcb1609e
There was a leak of Surface tokens when a surface was detached from a UserClient.
We now always detach a surface from its client before attaching to the new one,
this guarantees that its token is freed.
Change-Id: Icfad0b16286ed58155bdfafdf36ab161440aa485
For multiple reason, this effect is not maintainable and was never
used due to its abysmal performance. it'll be resurected when it can be
implemented efficiently.
Change-Id: Id4222c9b86c629275cdec18873ef07be8723b6d2
* commit '05813b0eb92cb1bc79607ee402f14ca1e4b43f6d':
[3253328, 3171580] Treat GONE and INVISIBLE views the same when calculating transparent regions
[3171580] Fix two typos related to fixed-size buffers
mFixedSize was never set, this bug was introduced during some "cleanup", in
practice this could cause some issues when a fixed-size buffer was used and
the window was resized.
Layer::drawForSreenShot() had a typo that had no effect.
mFixedSize was used to determine if filtering was needed, which was a bit too
conservative and created a dependency between filtering and "fixed size" states
which should exist.
Now we enable filtering based on the size of the buffer vs. the size of the layer.
Change-Id: I32044e91b0c944c1b137efdceb3f01dfaa78119d
some of these failures are not fatal and even expected in some cases
so they should not emit a dump in the log in those cases.
Change-Id: Idcfa252e3bfa9d74e27fe4ad8f8623aa01aa9c5e
This change removes an optimization from SurfaceFlinger that skipped
composition when it got window updates that had an empty dirty region.
This optimization caused problems because it would skip the hwcomposer
set call, which could leave the window's previous frame buffer bound to
an overlay plane. When the application subsequently dequeued and tried
to lock its next buffer (which would be the buffer currently bound to
the overlay), the lock call would block until the next hwcomposer set
call (which may never happen).
Change-Id: I563b626a1d52c1f30eb82489eae0ceb4edc79936
Bug: 3138752