the core screenshot function now can capture the screen at any lower resolution
performing bilinear filtering.
we also now have some client code to interface with the screenshot service.
it's now possible to request a screenshot at a lower resolution.
Change-Id: I33689bba98507ab928d0898b21596d0d2fe4b953
screenshots are taken using ISurfaceComposer::captureScreen() which returns
the size of the screenshot and an IMemoryHeap containing the data.
screenshots have limitations:
- they will always fail if a secure window is up on screen
- require GL_OES_framebuffer_object extension
- in some situation, video planes won't been captured
Change-Id: I741c68a2d2984fb139039301c3349e6780e2cd58
This change adds a process-global cache of previously deserialized Surface
objects so that if a Surface object wrapping the same ISurface gets received
again the same Surface can be used. This is important because the 'tail'
pointer in the SharedBufferClient is stored only on the client side, and needs
to be the same for all the Surface objects wrapping an ISurface instance. This
solves the problem by making there only be one Surface object wrapping an
ISurface per process.
Change-Id: I4bf0b8787885c56277622fca053022d2bb638902
Not yet hooked up to anything in the NDK, but requires renaming
the existing android_native_window_t type everywhere.
Change-Id: Iffee6ea39c93b8b34e20fb69e4d2c7c837e5ea2e
Surfaces can now be parcelized and sent to remote
processes. When a surface crosses a process
boundary, it looses its connection with the
current process and gets attached to the new one.
Change-Id: I39c7b055bcd3ea1162ef2718d3d4b866bf7c81c0
this is called for each relayout() and used to create a full Surface (cpp)
which in turn did some heavy work (including an IPC with surfaceflinger),
most of the time to destroy it immediatelly when the returned surface
(the one in the parcel) was the same.
we now more intelligentely read from the parcel and construct the new
object only if needed.
Change-Id: Idfd40d9ac96ffc6d4ae5fd99bcc0773e131e2267
SurfaceComposerClient now only exist on the WindowManager side,
the client side uses the new SurfaceClient class, which only
exposes what a client needs.
also instead of keeping mappings from IBinder to SurfaceComposerClients
we have a SurfaceClient per Surface (referring to the same IBinder), this
is made possible by the fact that SurfaceClient is very light.
Change-Id: I6a1f7015424f07871632a25ed6a502c55abfcfa6
the new native_window_set_buffers_geometry allows
to specify a size and format for all buffers to be
dequeued. the buffer will be scalled to the window's
size.
Change-Id: I2c378b85c88d29cdd827a5f319d5c704d79ba381
this method can be used to change the number of buffers
associated to a native window. the default is two.
Change-Id: I608b959e6b29d77f95edb23c31dc9b099a758f2f
the reason for the above change is that waitForCondition() had become
large over time, mainly to handle error cases, using inlines to
evaluate the condition doesn't buys us much anymore while it increases
code size.
Change-Id: I2595d850832628954b900ab8bb1796c863447bc7
this is used in a few places to get access to the android.view.Surface
native surface. use a macro instead. Also rename the field to mNativeSurface.
Change-Id: I1c6dea14abd6b8b1392c7f97b304115999355094
the framebuffer implementation doesn't do anything special with this
but the surfaceflinger implementation makes sure the surface is not used
by two APIs simultaneously.
Change-Id: Id4ca8ef7093d68846abc2ac814327cc40a64b66b