FramebufferNativeWindow::dequeueBuffer now waits for the next buffer
to be non-front in addition to being free.
Change-Id: I991f154958cc6b488b1241aba83d1f95a0513b3c
This change updates the uses of ANativeWindow to use the new ANW functions that
accept and return Sync HAL fence file descriptors.
Change-Id: I3ca648b6ac33f7360e86754f924aa072f95242f6
The desc.txt file can now mark parts as 'must finish cleanly' by using
'c' as the part line prefix rather than 'p'. If so indicated, if the
bootanimation is asked to quit it will do so only after waiting to
finish that part.
I considered either making init.c service killing smarter or promoting
bootanim to be a bindable service with a requestExit method. However,
these changes are probably too big/risky given our ship date. So
I used a property as a mailbox between SurfaceFlinger and bootanim.
Bug: 6679877
Change-Id: Id7dca22caa50b450fff25ca94f7242d971034f41
When turning the screen off we could have 2 waiters on the
vsync condition: The main vsync waiter as well as one in
onScreenReleased(). We were only signaling the condition though,
so it it would be possible to wake onScreenReleased() without waking
the main vsync thread which would then be stuck in .wait().
We fix this by just using broadcast() when receiving a vsync event.
We also add a broadcast() to signal when the state of
mUseSoftwareVSync changes. This is important particularly for
the transition from hardware to software vsync because the main
vsync waiter might have observed mUseSoftwareVSync == false
and decided to block indefinitely pending a hardware vsync
signal that will never arrive.
Removed a potentially deadlocking wait for a signal in
onScreenReleased(). The function was trying to wait for the last
vsync event from the hardware to be delivered to clients but there
was no guarantee that another thread would signal it to wake up
again afterwards. (As far as I can tell, the only other other
thread that might wake it up at this point would be a client
application issuing a vsync request.) We don't really need to wait
here anyhow. It's enough to set the mUseSoftwareVSync flag,
wake up the thread loop and go. If there was a pending vsync
timestamp from the hardware, then the thread loop will grab
it and use it then start software vsync on the next iteration.
Bug: 6672102
Change-Id: I7c6abc23bb021d1dfc94f101bd3ce18e3a81a73e
When turning the screen off we could have 2 waiters on the
vsync condition: The main vsync waiter as well as one in
onScreenReleased(). We were only signaling the condition though,
so it it would be possible to wake onScreenReleased() without waking
the main vsync thread which would then be stuck in .wait().
We fix this by just using broadcast() when receiving a vsync event.
We also add a broadcast() to signal when the state of
mUseSoftwareVSync changes. This is important particularly for
the transition from hardware to software vsync because the main
vsync waiter might have observed mUseSoftwareVSync == false
and decided to block indefinitely pending a hardware vsync
signal that will never arrive.
Removed a potentially deadlocking wait for a signal in
onScreenReleased(). The function was trying to wait for the last
vsync event from the hardware to be delivered to clients but there
was no guarantee that another thread would signal it to wake up
again afterwards. (As far as I can tell, the only other other
thread that might wake it up at this point would be a client
application issuing a vsync request.) We don't really need to wait
here anyhow. It's enough to set the mUseSoftwareVSync flag,
wake up the thread loop and go. If there was a pending vsync
timestamp from the hardware, then the thread loop will grab
it and use it then start software vsync on the next iteration.
Bug: 6672102
Change-Id: I7c6abc23bb021d1dfc94f101bd3ce18e3a81a73e
The acquire and release fences aren't yet used; this is just support
for the new version and temporary backwards compatibility for older
versions.
Change-Id: Ia5ccc05a97c86f649042b9a35e11042fa0187e84
HWComposer must abstract the HWC HAL entirely, so that the
HAL can continue to evolve (and break binary compatibility)
without breaking SurfaceFlinger. The HWC data structure had
leaked outside of HWComposer, this is now fixed.
We now have an abstract interface that provide all the
needed functionality, HWCompose provides concrete
implementations of it based on the the HWC version.
Change-Id: I40c4676dc986b682ede5520a1c60efe64037b0bb
SF now has its own implementation of ANW for the
framebuffer and it uses BufferQueue. FramebufferNativeWindow
is now only used by stand-alone apps.
Change-Id: Iddeb24087df62bd92b0f78e391dda9b97ddc859c
The Java implementation of writing the RPC response header
calculates the length of the header including the 4 bytes
specifying the header length but the native implementation
excludes the 4 bytes specifying the length from the header
length.
The native implementation has been aligned to the Java impl.
Change-Id: I325bf272a63152d8fded4cf4e51a906b5a9bfe19