629b987818
This change fixes a bug that caused an extra frame of latency when enabling vsync event callbacks in DispSync. The bug was related to the logic that prevents the two events from firing with very little time between them due to updates to the vsync model. Bug: 11479720 Change-Id: Ie7eaff9e92ffb7b7b6cb4d3d4402c96cbd29af7e
491 lines
14 KiB
C++
491 lines
14 KiB
C++
/*
|
|
* Copyright (C) 2013 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
|
|
|
|
// This is needed for stdint.h to define INT64_MAX in C++
|
|
#define __STDC_LIMIT_MACROS
|
|
|
|
#include <math.h>
|
|
|
|
#include <cutils/log.h>
|
|
|
|
#include <ui/Fence.h>
|
|
|
|
#include <utils/String8.h>
|
|
#include <utils/Thread.h>
|
|
#include <utils/Trace.h>
|
|
#include <utils/Vector.h>
|
|
|
|
#include "DispSync.h"
|
|
#include "EventLog/EventLog.h"
|
|
|
|
namespace android {
|
|
|
|
// Setting this to true enables verbose tracing that can be used to debug
|
|
// vsync event model or phase issues.
|
|
static const bool traceDetailedInfo = false;
|
|
|
|
// This is the threshold used to determine when hardware vsync events are
|
|
// needed to re-synchronize the software vsync model with the hardware. The
|
|
// error metric used is the mean of the squared difference between each
|
|
// present time and the nearest software-predicted vsync.
|
|
static const nsecs_t errorThreshold = 160000000000;
|
|
|
|
// This works around the lack of support for the sync framework on some
|
|
// devices.
|
|
#ifdef RUNNING_WITHOUT_SYNC_FRAMEWORK
|
|
static const bool runningWithoutSyncFramework = true;
|
|
#else
|
|
static const bool runningWithoutSyncFramework = false;
|
|
#endif
|
|
|
|
// This is the offset from the present fence timestamps to the corresponding
|
|
// vsync event.
|
|
static const int64_t presentTimeOffset = PRESENT_TIME_OFFSET_FROM_VSYNC_NS;
|
|
|
|
class DispSyncThread: public Thread {
|
|
public:
|
|
|
|
DispSyncThread():
|
|
mStop(false),
|
|
mPeriod(0),
|
|
mPhase(0),
|
|
mWakeupLatency(0) {
|
|
}
|
|
|
|
virtual ~DispSyncThread() {}
|
|
|
|
void updateModel(nsecs_t period, nsecs_t phase) {
|
|
Mutex::Autolock lock(mMutex);
|
|
mPeriod = period;
|
|
mPhase = phase;
|
|
mCond.signal();
|
|
}
|
|
|
|
void stop() {
|
|
Mutex::Autolock lock(mMutex);
|
|
mStop = true;
|
|
mCond.signal();
|
|
}
|
|
|
|
virtual bool threadLoop() {
|
|
status_t err;
|
|
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
|
|
nsecs_t nextEventTime = 0;
|
|
|
|
while (true) {
|
|
Vector<CallbackInvocation> callbackInvocations;
|
|
|
|
nsecs_t targetTime = 0;
|
|
|
|
{ // Scope for lock
|
|
Mutex::Autolock lock(mMutex);
|
|
|
|
if (mStop) {
|
|
return false;
|
|
}
|
|
|
|
if (mPeriod == 0) {
|
|
err = mCond.wait(mMutex);
|
|
if (err != NO_ERROR) {
|
|
ALOGE("error waiting for new events: %s (%d)",
|
|
strerror(-err), err);
|
|
return false;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
nextEventTime = computeNextEventTimeLocked(now);
|
|
targetTime = nextEventTime;
|
|
|
|
bool isWakeup = false;
|
|
|
|
if (now < targetTime) {
|
|
err = mCond.waitRelative(mMutex, targetTime - now);
|
|
|
|
if (err == TIMED_OUT) {
|
|
isWakeup = true;
|
|
} else if (err != NO_ERROR) {
|
|
ALOGE("error waiting for next event: %s (%d)",
|
|
strerror(-err), err);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
now = systemTime(SYSTEM_TIME_MONOTONIC);
|
|
|
|
if (isWakeup) {
|
|
mWakeupLatency = ((mWakeupLatency * 63) +
|
|
(now - targetTime)) / 64;
|
|
if (mWakeupLatency > 500000) {
|
|
// Don't correct by more than 500 us
|
|
mWakeupLatency = 500000;
|
|
}
|
|
if (traceDetailedInfo) {
|
|
ATRACE_INT64("DispSync:WakeupLat", now - nextEventTime);
|
|
ATRACE_INT64("DispSync:AvgWakeupLat", mWakeupLatency);
|
|
}
|
|
}
|
|
|
|
callbackInvocations = gatherCallbackInvocationsLocked(now);
|
|
}
|
|
|
|
if (callbackInvocations.size() > 0) {
|
|
fireCallbackInvocations(callbackInvocations);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
status_t addEventListener(nsecs_t phase, const sp<DispSync::Callback>& callback) {
|
|
Mutex::Autolock lock(mMutex);
|
|
|
|
for (size_t i = 0; i < mEventListeners.size(); i++) {
|
|
if (mEventListeners[i].mCallback == callback) {
|
|
return BAD_VALUE;
|
|
}
|
|
}
|
|
|
|
EventListener listener;
|
|
listener.mPhase = phase;
|
|
listener.mCallback = callback;
|
|
|
|
// We want to allow the firstmost future event to fire without
|
|
// allowing any past events to fire. Because
|
|
// computeListenerNextEventTimeLocked filters out events within a half
|
|
// a period of the last event time, we need to initialize the last
|
|
// event time to a half a period in the past.
|
|
listener.mLastEventTime = systemTime(SYSTEM_TIME_MONOTONIC) - mPeriod / 2;
|
|
|
|
mEventListeners.push(listener);
|
|
|
|
mCond.signal();
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t removeEventListener(const sp<DispSync::Callback>& callback) {
|
|
Mutex::Autolock lock(mMutex);
|
|
|
|
for (size_t i = 0; i < mEventListeners.size(); i++) {
|
|
if (mEventListeners[i].mCallback == callback) {
|
|
mEventListeners.removeAt(i);
|
|
mCond.signal();
|
|
return NO_ERROR;
|
|
}
|
|
}
|
|
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
// This method is only here to handle the runningWithoutSyncFramework
|
|
// case.
|
|
bool hasAnyEventListeners() {
|
|
Mutex::Autolock lock(mMutex);
|
|
return !mEventListeners.empty();
|
|
}
|
|
|
|
private:
|
|
|
|
struct EventListener {
|
|
nsecs_t mPhase;
|
|
nsecs_t mLastEventTime;
|
|
sp<DispSync::Callback> mCallback;
|
|
};
|
|
|
|
struct CallbackInvocation {
|
|
sp<DispSync::Callback> mCallback;
|
|
nsecs_t mEventTime;
|
|
};
|
|
|
|
nsecs_t computeNextEventTimeLocked(nsecs_t now) {
|
|
nsecs_t nextEventTime = INT64_MAX;
|
|
for (size_t i = 0; i < mEventListeners.size(); i++) {
|
|
nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i],
|
|
now);
|
|
|
|
if (t < nextEventTime) {
|
|
nextEventTime = t;
|
|
}
|
|
}
|
|
|
|
return nextEventTime;
|
|
}
|
|
|
|
Vector<CallbackInvocation> gatherCallbackInvocationsLocked(nsecs_t now) {
|
|
Vector<CallbackInvocation> callbackInvocations;
|
|
nsecs_t ref = now - mPeriod;
|
|
|
|
for (size_t i = 0; i < mEventListeners.size(); i++) {
|
|
nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i],
|
|
ref);
|
|
|
|
if (t < now) {
|
|
CallbackInvocation ci;
|
|
ci.mCallback = mEventListeners[i].mCallback;
|
|
ci.mEventTime = t;
|
|
callbackInvocations.push(ci);
|
|
mEventListeners.editItemAt(i).mLastEventTime = t;
|
|
}
|
|
}
|
|
|
|
return callbackInvocations;
|
|
}
|
|
|
|
nsecs_t computeListenerNextEventTimeLocked(const EventListener& listener,
|
|
nsecs_t ref) {
|
|
|
|
nsecs_t lastEventTime = listener.mLastEventTime;
|
|
if (ref < lastEventTime) {
|
|
ref = lastEventTime;
|
|
}
|
|
|
|
nsecs_t phase = mPhase + listener.mPhase;
|
|
nsecs_t t = (((ref - phase) / mPeriod) + 1) * mPeriod + phase;
|
|
|
|
if (t - listener.mLastEventTime < mPeriod / 2) {
|
|
t += mPeriod;
|
|
}
|
|
|
|
return t;
|
|
}
|
|
|
|
void fireCallbackInvocations(const Vector<CallbackInvocation>& callbacks) {
|
|
for (size_t i = 0; i < callbacks.size(); i++) {
|
|
callbacks[i].mCallback->onDispSyncEvent(callbacks[i].mEventTime);
|
|
}
|
|
}
|
|
|
|
bool mStop;
|
|
|
|
nsecs_t mPeriod;
|
|
nsecs_t mPhase;
|
|
nsecs_t mWakeupLatency;
|
|
|
|
Vector<EventListener> mEventListeners;
|
|
|
|
Mutex mMutex;
|
|
Condition mCond;
|
|
};
|
|
|
|
class ZeroPhaseTracer : public DispSync::Callback {
|
|
public:
|
|
ZeroPhaseTracer() : mParity(false) {}
|
|
|
|
virtual void onDispSyncEvent(nsecs_t when) {
|
|
mParity = !mParity;
|
|
ATRACE_INT("ZERO_PHASE_VSYNC", mParity ? 1 : 0);
|
|
}
|
|
|
|
private:
|
|
bool mParity;
|
|
};
|
|
|
|
DispSync::DispSync() {
|
|
mThread = new DispSyncThread();
|
|
mThread->run("DispSync", PRIORITY_URGENT_DISPLAY + PRIORITY_MORE_FAVORABLE);
|
|
|
|
reset();
|
|
beginResync();
|
|
|
|
if (traceDetailedInfo) {
|
|
// If runningWithoutSyncFramework is true then the ZeroPhaseTracer
|
|
// would prevent HW vsync event from ever being turned off.
|
|
// Furthermore the zero-phase tracing is not needed because any time
|
|
// there is an event registered we will turn on the HW vsync events.
|
|
if (!runningWithoutSyncFramework) {
|
|
addEventListener(0, new ZeroPhaseTracer());
|
|
}
|
|
}
|
|
}
|
|
|
|
DispSync::~DispSync() {}
|
|
|
|
void DispSync::reset() {
|
|
Mutex::Autolock lock(mMutex);
|
|
|
|
mNumResyncSamples = 0;
|
|
mFirstResyncSample = 0;
|
|
mNumResyncSamplesSincePresent = 0;
|
|
resetErrorLocked();
|
|
}
|
|
|
|
bool DispSync::addPresentFence(const sp<Fence>& fence) {
|
|
Mutex::Autolock lock(mMutex);
|
|
|
|
mPresentFences[mPresentSampleOffset] = fence;
|
|
mPresentTimes[mPresentSampleOffset] = 0;
|
|
mPresentSampleOffset = (mPresentSampleOffset + 1) % NUM_PRESENT_SAMPLES;
|
|
mNumResyncSamplesSincePresent = 0;
|
|
|
|
for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
|
|
const sp<Fence>& f(mPresentFences[i]);
|
|
if (f != NULL) {
|
|
nsecs_t t = f->getSignalTime();
|
|
if (t < INT64_MAX) {
|
|
mPresentFences[i].clear();
|
|
mPresentTimes[i] = t + presentTimeOffset;
|
|
}
|
|
}
|
|
}
|
|
|
|
updateErrorLocked();
|
|
|
|
return mPeriod == 0 || mError > errorThreshold;
|
|
}
|
|
|
|
void DispSync::beginResync() {
|
|
Mutex::Autolock lock(mMutex);
|
|
|
|
mNumResyncSamples = 0;
|
|
}
|
|
|
|
bool DispSync::addResyncSample(nsecs_t timestamp) {
|
|
Mutex::Autolock lock(mMutex);
|
|
|
|
size_t idx = (mFirstResyncSample + mNumResyncSamples) % MAX_RESYNC_SAMPLES;
|
|
mResyncSamples[idx] = timestamp;
|
|
|
|
if (mNumResyncSamples < MAX_RESYNC_SAMPLES) {
|
|
mNumResyncSamples++;
|
|
} else {
|
|
mFirstResyncSample = (mFirstResyncSample + 1) % MAX_RESYNC_SAMPLES;
|
|
}
|
|
|
|
updateModelLocked();
|
|
|
|
if (mNumResyncSamplesSincePresent++ > MAX_RESYNC_SAMPLES_WITHOUT_PRESENT) {
|
|
resetErrorLocked();
|
|
}
|
|
|
|
if (runningWithoutSyncFramework) {
|
|
// If we don't have the sync framework we will never have
|
|
// addPresentFence called. This means we have no way to know whether
|
|
// or not we're synchronized with the HW vsyncs, so we just request
|
|
// that the HW vsync events be turned on whenever we need to generate
|
|
// SW vsync events.
|
|
return mThread->hasAnyEventListeners();
|
|
}
|
|
|
|
return mPeriod == 0 || mError > errorThreshold;
|
|
}
|
|
|
|
void DispSync::endResync() {
|
|
}
|
|
|
|
status_t DispSync::addEventListener(nsecs_t phase,
|
|
const sp<Callback>& callback) {
|
|
|
|
Mutex::Autolock lock(mMutex);
|
|
return mThread->addEventListener(phase, callback);
|
|
}
|
|
|
|
status_t DispSync::removeEventListener(const sp<Callback>& callback) {
|
|
Mutex::Autolock lock(mMutex);
|
|
return mThread->removeEventListener(callback);
|
|
}
|
|
|
|
void DispSync::setPeriod(nsecs_t period) {
|
|
Mutex::Autolock lock(mMutex);
|
|
mPeriod = period;
|
|
mPhase = 0;
|
|
mThread->updateModel(mPeriod, mPhase);
|
|
}
|
|
|
|
void DispSync::updateModelLocked() {
|
|
if (mNumResyncSamples >= MIN_RESYNC_SAMPLES_FOR_UPDATE) {
|
|
nsecs_t durationSum = 0;
|
|
for (size_t i = 1; i < mNumResyncSamples; i++) {
|
|
size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
|
|
size_t prev = (idx + MAX_RESYNC_SAMPLES - 1) % MAX_RESYNC_SAMPLES;
|
|
durationSum += mResyncSamples[idx] - mResyncSamples[prev];
|
|
}
|
|
|
|
mPeriod = durationSum / (mNumResyncSamples - 1);
|
|
|
|
double sampleAvgX = 0;
|
|
double sampleAvgY = 0;
|
|
double scale = 2.0 * M_PI / double(mPeriod);
|
|
for (size_t i = 0; i < mNumResyncSamples; i++) {
|
|
size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
|
|
nsecs_t sample = mResyncSamples[idx];
|
|
double samplePhase = double(sample % mPeriod) * scale;
|
|
sampleAvgX += cos(samplePhase);
|
|
sampleAvgY += sin(samplePhase);
|
|
}
|
|
|
|
sampleAvgX /= double(mNumResyncSamples);
|
|
sampleAvgY /= double(mNumResyncSamples);
|
|
|
|
mPhase = nsecs_t(atan2(sampleAvgY, sampleAvgX) / scale);
|
|
|
|
if (mPhase < 0) {
|
|
mPhase += mPeriod;
|
|
}
|
|
|
|
if (traceDetailedInfo) {
|
|
ATRACE_INT64("DispSync:Period", mPeriod);
|
|
ATRACE_INT64("DispSync:Phase", mPhase);
|
|
}
|
|
|
|
mThread->updateModel(mPeriod, mPhase);
|
|
}
|
|
}
|
|
|
|
void DispSync::updateErrorLocked() {
|
|
if (mPeriod == 0) {
|
|
return;
|
|
}
|
|
|
|
int numErrSamples = 0;
|
|
nsecs_t sqErrSum = 0;
|
|
|
|
for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
|
|
nsecs_t sample = mPresentTimes[i];
|
|
if (sample > mPhase) {
|
|
nsecs_t sampleErr = (sample - mPhase) % mPeriod;
|
|
if (sampleErr > mPeriod / 2) {
|
|
sampleErr -= mPeriod;
|
|
}
|
|
sqErrSum += sampleErr * sampleErr;
|
|
numErrSamples++;
|
|
}
|
|
}
|
|
|
|
if (numErrSamples > 0) {
|
|
mError = sqErrSum / numErrSamples;
|
|
} else {
|
|
mError = 0;
|
|
}
|
|
|
|
if (traceDetailedInfo) {
|
|
ATRACE_INT64("DispSync:Error", mError);
|
|
}
|
|
}
|
|
|
|
void DispSync::resetErrorLocked() {
|
|
mPresentSampleOffset = 0;
|
|
mError = 0;
|
|
for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
|
|
mPresentFences[i].clear();
|
|
mPresentTimes[i] = 0;
|
|
}
|
|
}
|
|
|
|
} // namespace android
|