replicant-frameworks_native/include/ui/InputReader.h
Jeff Brown 02d85b5021 Add support for fallback keycodes.
This change enables the framework to synthesize key events to implement
default behavior when an application does not handle a key.
For example, this change enables numeric keypad keys to perform
their associated special function when numlock is off.

The application is informed that it is processing a fallback keypress
so it can choose to ignore it.

Added a new keycode for switching applications.

Added ALT key deadkeys.

New default key mappings:
- ESC -> BACK
- Meta+ESC -> HOME
- Alt+ESC -> MENU
- Meta+Space -> SEARCH
- Meta+Tab -> APP_SWITCH

Fixed some comments.
Fixed some tests.

Change-Id: Id7f3b6645f3a350275e624547822f72652f3defe
2010-12-07 17:35:26 -08:00

939 lines
28 KiB
C++

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _UI_INPUT_READER_H
#define _UI_INPUT_READER_H
#include <ui/EventHub.h>
#include <ui/Input.h>
#include <ui/InputDispatcher.h>
#include <utils/KeyedVector.h>
#include <utils/threads.h>
#include <utils/Timers.h>
#include <utils/RefBase.h>
#include <utils/String8.h>
#include <utils/BitSet.h>
#include <stddef.h>
#include <unistd.h>
namespace android {
class InputDevice;
class InputMapper;
/*
* Input reader policy interface.
*
* The input reader policy is used by the input reader to interact with the Window Manager
* and other system components.
*
* The actual implementation is partially supported by callbacks into the DVM
* via JNI. This interface is also mocked in the unit tests.
*/
class InputReaderPolicyInterface : public virtual RefBase {
protected:
InputReaderPolicyInterface() { }
virtual ~InputReaderPolicyInterface() { }
public:
/* Display orientations. */
enum {
ROTATION_0 = 0,
ROTATION_90 = 1,
ROTATION_180 = 2,
ROTATION_270 = 3
};
/* Gets information about the display with the specified id.
* Returns true if the display info is available, false otherwise.
*/
virtual bool getDisplayInfo(int32_t displayId,
int32_t* width, int32_t* height, int32_t* orientation) = 0;
/* Determines whether to turn on some hacks we have to improve the touch interaction with a
* certain device whose screen currently is not all that good.
*/
virtual bool filterTouchEvents() = 0;
/* Determines whether to turn on some hacks to improve touch interaction with another device
* where touch coordinate data can get corrupted.
*/
virtual bool filterJumpyTouchEvents() = 0;
/* Gets the excluded device names for the platform. */
virtual void getExcludedDeviceNames(Vector<String8>& outExcludedDeviceNames) = 0;
};
/* Processes raw input events and sends cooked event data to an input dispatcher. */
class InputReaderInterface : public virtual RefBase {
protected:
InputReaderInterface() { }
virtual ~InputReaderInterface() { }
public:
/* Dumps the state of the input reader.
*
* This method may be called on any thread (usually by the input manager). */
virtual void dump(String8& dump) = 0;
/* Runs a single iteration of the processing loop.
* Nominally reads and processes one incoming message from the EventHub.
*
* This method should be called on the input reader thread.
*/
virtual void loopOnce() = 0;
/* Gets the current input device configuration.
*
* This method may be called on any thread (usually by the input manager).
*/
virtual void getInputConfiguration(InputConfiguration* outConfiguration) = 0;
/* Gets information about the specified input device.
* Returns OK if the device information was obtained or NAME_NOT_FOUND if there
* was no such device.
*
* This method may be called on any thread (usually by the input manager).
*/
virtual status_t getInputDeviceInfo(int32_t deviceId, InputDeviceInfo* outDeviceInfo) = 0;
/* Gets the list of all registered device ids. */
virtual void getInputDeviceIds(Vector<int32_t>& outDeviceIds) = 0;
/* Query current input state. */
virtual int32_t getScanCodeState(int32_t deviceId, uint32_t sourceMask,
int32_t scanCode) = 0;
virtual int32_t getKeyCodeState(int32_t deviceId, uint32_t sourceMask,
int32_t keyCode) = 0;
virtual int32_t getSwitchState(int32_t deviceId, uint32_t sourceMask,
int32_t sw) = 0;
/* Determine whether physical keys exist for the given framework-domain key codes. */
virtual bool hasKeys(int32_t deviceId, uint32_t sourceMask,
size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) = 0;
};
/* Internal interface used by individual input devices to access global input device state
* and parameters maintained by the input reader.
*/
class InputReaderContext {
public:
InputReaderContext() { }
virtual ~InputReaderContext() { }
virtual void updateGlobalMetaState() = 0;
virtual int32_t getGlobalMetaState() = 0;
virtual InputReaderPolicyInterface* getPolicy() = 0;
virtual InputDispatcherInterface* getDispatcher() = 0;
virtual EventHubInterface* getEventHub() = 0;
};
/* The input reader reads raw event data from the event hub and processes it into input events
* that it sends to the input dispatcher. Some functions of the input reader, such as early
* event filtering in low power states, are controlled by a separate policy object.
*
* IMPORTANT INVARIANT:
* Because the policy and dispatcher can potentially block or cause re-entrance into
* the input reader, the input reader never calls into other components while holding
* an exclusive internal lock whenever re-entrance can happen.
*/
class InputReader : public InputReaderInterface, protected InputReaderContext {
public:
InputReader(const sp<EventHubInterface>& eventHub,
const sp<InputReaderPolicyInterface>& policy,
const sp<InputDispatcherInterface>& dispatcher);
virtual ~InputReader();
virtual void dump(String8& dump);
virtual void loopOnce();
virtual void getInputConfiguration(InputConfiguration* outConfiguration);
virtual status_t getInputDeviceInfo(int32_t deviceId, InputDeviceInfo* outDeviceInfo);
virtual void getInputDeviceIds(Vector<int32_t>& outDeviceIds);
virtual int32_t getScanCodeState(int32_t deviceId, uint32_t sourceMask,
int32_t scanCode);
virtual int32_t getKeyCodeState(int32_t deviceId, uint32_t sourceMask,
int32_t keyCode);
virtual int32_t getSwitchState(int32_t deviceId, uint32_t sourceMask,
int32_t sw);
virtual bool hasKeys(int32_t deviceId, uint32_t sourceMask,
size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags);
protected:
// These methods are protected virtual so they can be overridden and instrumented
// by test cases.
virtual InputDevice* createDevice(int32_t deviceId, const String8& name, uint32_t classes);
private:
sp<EventHubInterface> mEventHub;
sp<InputReaderPolicyInterface> mPolicy;
sp<InputDispatcherInterface> mDispatcher;
virtual InputReaderPolicyInterface* getPolicy() { return mPolicy.get(); }
virtual InputDispatcherInterface* getDispatcher() { return mDispatcher.get(); }
virtual EventHubInterface* getEventHub() { return mEventHub.get(); }
// This reader/writer lock guards the list of input devices.
// The writer lock must be held whenever the list of input devices is modified
// and then promptly released.
// The reader lock must be held whenever the list of input devices is traversed or an
// input device in the list is accessed.
// This lock only protects the registry and prevents inadvertent deletion of device objects
// that are in use. Individual devices are responsible for guarding their own internal state
// as needed for concurrent operation.
RWLock mDeviceRegistryLock;
KeyedVector<int32_t, InputDevice*> mDevices;
// low-level input event decoding and device management
void process(const RawEvent* rawEvent);
void addDevice(int32_t deviceId);
void removeDevice(int32_t deviceId);
void configureExcludedDevices();
void consumeEvent(const RawEvent* rawEvent);
void handleConfigurationChanged(nsecs_t when);
// state management for all devices
Mutex mStateLock;
int32_t mGlobalMetaState;
virtual void updateGlobalMetaState();
virtual int32_t getGlobalMetaState();
InputConfiguration mInputConfiguration;
void updateInputConfiguration();
// state queries
typedef int32_t (InputDevice::*GetStateFunc)(uint32_t sourceMask, int32_t code);
int32_t getState(int32_t deviceId, uint32_t sourceMask, int32_t code,
GetStateFunc getStateFunc);
bool markSupportedKeyCodes(int32_t deviceId, uint32_t sourceMask, size_t numCodes,
const int32_t* keyCodes, uint8_t* outFlags);
};
/* Reads raw events from the event hub and processes them, endlessly. */
class InputReaderThread : public Thread {
public:
InputReaderThread(const sp<InputReaderInterface>& reader);
virtual ~InputReaderThread();
private:
sp<InputReaderInterface> mReader;
virtual bool threadLoop();
};
/* Represents the state of a single input device. */
class InputDevice {
public:
InputDevice(InputReaderContext* context, int32_t id, const String8& name);
~InputDevice();
inline InputReaderContext* getContext() { return mContext; }
inline int32_t getId() { return mId; }
inline const String8& getName() { return mName; }
inline uint32_t getSources() { return mSources; }
inline bool isIgnored() { return mMappers.isEmpty(); }
void dump(String8& dump);
void addMapper(InputMapper* mapper);
void configure();
void reset();
void process(const RawEvent* rawEvent);
void getDeviceInfo(InputDeviceInfo* outDeviceInfo);
int32_t getKeyCodeState(uint32_t sourceMask, int32_t keyCode);
int32_t getScanCodeState(uint32_t sourceMask, int32_t scanCode);
int32_t getSwitchState(uint32_t sourceMask, int32_t switchCode);
bool markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
const int32_t* keyCodes, uint8_t* outFlags);
int32_t getMetaState();
inline const PropertyMap& getConfiguration() {
return mConfiguration;
}
private:
InputReaderContext* mContext;
int32_t mId;
Vector<InputMapper*> mMappers;
String8 mName;
uint32_t mSources;
typedef int32_t (InputMapper::*GetStateFunc)(uint32_t sourceMask, int32_t code);
int32_t getState(uint32_t sourceMask, int32_t code, GetStateFunc getStateFunc);
PropertyMap mConfiguration;
};
/* An input mapper transforms raw input events into cooked event data.
* A single input device can have multiple associated input mappers in order to interpret
* different classes of events.
*/
class InputMapper {
public:
InputMapper(InputDevice* device);
virtual ~InputMapper();
inline InputDevice* getDevice() { return mDevice; }
inline int32_t getDeviceId() { return mDevice->getId(); }
inline const String8 getDeviceName() { return mDevice->getName(); }
inline InputReaderContext* getContext() { return mContext; }
inline InputReaderPolicyInterface* getPolicy() { return mContext->getPolicy(); }
inline InputDispatcherInterface* getDispatcher() { return mContext->getDispatcher(); }
inline EventHubInterface* getEventHub() { return mContext->getEventHub(); }
virtual uint32_t getSources() = 0;
virtual void populateDeviceInfo(InputDeviceInfo* deviceInfo);
virtual void dump(String8& dump);
virtual void configure();
virtual void reset();
virtual void process(const RawEvent* rawEvent) = 0;
virtual int32_t getKeyCodeState(uint32_t sourceMask, int32_t keyCode);
virtual int32_t getScanCodeState(uint32_t sourceMask, int32_t scanCode);
virtual int32_t getSwitchState(uint32_t sourceMask, int32_t switchCode);
virtual bool markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
const int32_t* keyCodes, uint8_t* outFlags);
virtual int32_t getMetaState();
protected:
InputDevice* mDevice;
InputReaderContext* mContext;
};
class SwitchInputMapper : public InputMapper {
public:
SwitchInputMapper(InputDevice* device);
virtual ~SwitchInputMapper();
virtual uint32_t getSources();
virtual void process(const RawEvent* rawEvent);
virtual int32_t getSwitchState(uint32_t sourceMask, int32_t switchCode);
private:
void processSwitch(nsecs_t when, int32_t switchCode, int32_t switchValue);
};
class KeyboardInputMapper : public InputMapper {
public:
KeyboardInputMapper(InputDevice* device, uint32_t sources, int32_t keyboardType);
virtual ~KeyboardInputMapper();
virtual uint32_t getSources();
virtual void populateDeviceInfo(InputDeviceInfo* deviceInfo);
virtual void dump(String8& dump);
virtual void configure();
virtual void reset();
virtual void process(const RawEvent* rawEvent);
virtual int32_t getKeyCodeState(uint32_t sourceMask, int32_t keyCode);
virtual int32_t getScanCodeState(uint32_t sourceMask, int32_t scanCode);
virtual bool markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
const int32_t* keyCodes, uint8_t* outFlags);
virtual int32_t getMetaState();
private:
Mutex mLock;
struct KeyDown {
int32_t keyCode;
int32_t scanCode;
};
uint32_t mSources;
int32_t mKeyboardType;
// Immutable configuration parameters.
struct Parameters {
int32_t associatedDisplayId;
bool orientationAware;
} mParameters;
struct LockedState {
Vector<KeyDown> keyDowns; // keys that are down
int32_t metaState;
nsecs_t downTime; // time of most recent key down
struct LedState {
bool avail; // led is available
bool on; // we think the led is currently on
};
LedState capsLockLedState;
LedState numLockLedState;
LedState scrollLockLedState;
} mLocked;
void initializeLocked();
void configureParameters();
void dumpParameters(String8& dump);
bool isKeyboardOrGamepadKey(int32_t scanCode);
void processKey(nsecs_t when, bool down, int32_t keyCode, int32_t scanCode,
uint32_t policyFlags);
ssize_t findKeyDownLocked(int32_t scanCode);
void resetLedStateLocked();
void initializeLedStateLocked(LockedState::LedState& ledState, int32_t led);
void updateLedStateLocked(bool reset);
void updateLedStateForModifierLocked(LockedState::LedState& ledState, int32_t led,
int32_t modifier, bool reset);
};
class TrackballInputMapper : public InputMapper {
public:
TrackballInputMapper(InputDevice* device);
virtual ~TrackballInputMapper();
virtual uint32_t getSources();
virtual void populateDeviceInfo(InputDeviceInfo* deviceInfo);
virtual void dump(String8& dump);
virtual void configure();
virtual void reset();
virtual void process(const RawEvent* rawEvent);
virtual int32_t getScanCodeState(uint32_t sourceMask, int32_t scanCode);
private:
// Amount that trackball needs to move in order to generate a key event.
static const int32_t TRACKBALL_MOVEMENT_THRESHOLD = 6;
Mutex mLock;
// Immutable configuration parameters.
struct Parameters {
int32_t associatedDisplayId;
bool orientationAware;
} mParameters;
struct Accumulator {
enum {
FIELD_BTN_MOUSE = 1,
FIELD_REL_X = 2,
FIELD_REL_Y = 4
};
uint32_t fields;
bool btnMouse;
int32_t relX;
int32_t relY;
inline void clear() {
fields = 0;
}
} mAccumulator;
float mXScale;
float mYScale;
float mXPrecision;
float mYPrecision;
struct LockedState {
bool down;
nsecs_t downTime;
} mLocked;
void initializeLocked();
void configureParameters();
void dumpParameters(String8& dump);
void sync(nsecs_t when);
};
class TouchInputMapper : public InputMapper {
public:
TouchInputMapper(InputDevice* device);
virtual ~TouchInputMapper();
virtual uint32_t getSources();
virtual void populateDeviceInfo(InputDeviceInfo* deviceInfo);
virtual void dump(String8& dump);
virtual void configure();
virtual void reset();
virtual int32_t getKeyCodeState(uint32_t sourceMask, int32_t keyCode);
virtual int32_t getScanCodeState(uint32_t sourceMask, int32_t scanCode);
virtual bool markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
const int32_t* keyCodes, uint8_t* outFlags);
protected:
Mutex mLock;
struct VirtualKey {
int32_t keyCode;
int32_t scanCode;
uint32_t flags;
// computed hit box, specified in touch screen coords based on known display size
int32_t hitLeft;
int32_t hitTop;
int32_t hitRight;
int32_t hitBottom;
inline bool isHit(int32_t x, int32_t y) const {
return x >= hitLeft && x <= hitRight && y >= hitTop && y <= hitBottom;
}
};
// Raw data for a single pointer.
struct PointerData {
uint32_t id;
int32_t x;
int32_t y;
int32_t pressure;
int32_t touchMajor;
int32_t touchMinor;
int32_t toolMajor;
int32_t toolMinor;
int32_t orientation;
inline bool operator== (const PointerData& other) const {
return id == other.id
&& x == other.x
&& y == other.y
&& pressure == other.pressure
&& touchMajor == other.touchMajor
&& touchMinor == other.touchMinor
&& toolMajor == other.toolMajor
&& toolMinor == other.toolMinor
&& orientation == other.orientation;
}
inline bool operator!= (const PointerData& other) const {
return !(*this == other);
}
};
// Raw data for a collection of pointers including a pointer id mapping table.
struct TouchData {
uint32_t pointerCount;
PointerData pointers[MAX_POINTERS];
BitSet32 idBits;
uint32_t idToIndex[MAX_POINTER_ID + 1];
void copyFrom(const TouchData& other) {
pointerCount = other.pointerCount;
idBits = other.idBits;
for (uint32_t i = 0; i < pointerCount; i++) {
pointers[i] = other.pointers[i];
int id = pointers[i].id;
idToIndex[id] = other.idToIndex[id];
}
}
inline void clear() {
pointerCount = 0;
idBits.clear();
}
};
// Immutable configuration parameters.
struct Parameters {
enum DeviceType {
DEVICE_TYPE_TOUCH_SCREEN,
DEVICE_TYPE_TOUCH_PAD,
};
DeviceType deviceType;
int32_t associatedDisplayId;
bool orientationAware;
bool useBadTouchFilter;
bool useJumpyTouchFilter;
bool useAveragingTouchFilter;
} mParameters;
// Immutable calibration parameters in parsed form.
struct Calibration {
// Position
bool haveXOrigin;
int32_t xOrigin;
bool haveYOrigin;
int32_t yOrigin;
bool haveXScale;
float xScale;
bool haveYScale;
float yScale;
// Touch Size
enum TouchSizeCalibration {
TOUCH_SIZE_CALIBRATION_DEFAULT,
TOUCH_SIZE_CALIBRATION_NONE,
TOUCH_SIZE_CALIBRATION_GEOMETRIC,
TOUCH_SIZE_CALIBRATION_PRESSURE,
};
TouchSizeCalibration touchSizeCalibration;
// Tool Size
enum ToolSizeCalibration {
TOOL_SIZE_CALIBRATION_DEFAULT,
TOOL_SIZE_CALIBRATION_NONE,
TOOL_SIZE_CALIBRATION_GEOMETRIC,
TOOL_SIZE_CALIBRATION_LINEAR,
TOOL_SIZE_CALIBRATION_AREA,
};
ToolSizeCalibration toolSizeCalibration;
bool haveToolSizeLinearScale;
float toolSizeLinearScale;
bool haveToolSizeLinearBias;
float toolSizeLinearBias;
bool haveToolSizeAreaScale;
float toolSizeAreaScale;
bool haveToolSizeAreaBias;
float toolSizeAreaBias;
bool haveToolSizeIsSummed;
bool toolSizeIsSummed;
// Pressure
enum PressureCalibration {
PRESSURE_CALIBRATION_DEFAULT,
PRESSURE_CALIBRATION_NONE,
PRESSURE_CALIBRATION_PHYSICAL,
PRESSURE_CALIBRATION_AMPLITUDE,
};
enum PressureSource {
PRESSURE_SOURCE_DEFAULT,
PRESSURE_SOURCE_PRESSURE,
PRESSURE_SOURCE_TOUCH,
};
PressureCalibration pressureCalibration;
PressureSource pressureSource;
bool havePressureScale;
float pressureScale;
// Size
enum SizeCalibration {
SIZE_CALIBRATION_DEFAULT,
SIZE_CALIBRATION_NONE,
SIZE_CALIBRATION_NORMALIZED,
};
SizeCalibration sizeCalibration;
// Orientation
enum OrientationCalibration {
ORIENTATION_CALIBRATION_DEFAULT,
ORIENTATION_CALIBRATION_NONE,
ORIENTATION_CALIBRATION_INTERPOLATED,
};
OrientationCalibration orientationCalibration;
} mCalibration;
// Raw axis information from the driver.
struct RawAxes {
RawAbsoluteAxisInfo x;
RawAbsoluteAxisInfo y;
RawAbsoluteAxisInfo pressure;
RawAbsoluteAxisInfo touchMajor;
RawAbsoluteAxisInfo touchMinor;
RawAbsoluteAxisInfo toolMajor;
RawAbsoluteAxisInfo toolMinor;
RawAbsoluteAxisInfo orientation;
} mRawAxes;
// Current and previous touch sample data.
TouchData mCurrentTouch;
TouchData mLastTouch;
// The time the primary pointer last went down.
nsecs_t mDownTime;
struct LockedState {
Vector<VirtualKey> virtualKeys;
// The surface orientation and width and height set by configureSurfaceLocked().
int32_t surfaceOrientation;
int32_t surfaceWidth, surfaceHeight;
// Translation and scaling factors, orientation-independent.
int32_t xOrigin;
float xScale;
float xPrecision;
int32_t yOrigin;
float yScale;
float yPrecision;
float geometricScale;
float toolSizeLinearScale;
float toolSizeLinearBias;
float toolSizeAreaScale;
float toolSizeAreaBias;
float pressureScale;
float sizeScale;
float orientationScale;
// Oriented motion ranges for input device info.
struct OrientedRanges {
InputDeviceInfo::MotionRange x;
InputDeviceInfo::MotionRange y;
bool havePressure;
InputDeviceInfo::MotionRange pressure;
bool haveSize;
InputDeviceInfo::MotionRange size;
bool haveTouchSize;
InputDeviceInfo::MotionRange touchMajor;
InputDeviceInfo::MotionRange touchMinor;
bool haveToolSize;
InputDeviceInfo::MotionRange toolMajor;
InputDeviceInfo::MotionRange toolMinor;
bool haveOrientation;
InputDeviceInfo::MotionRange orientation;
} orientedRanges;
// Oriented dimensions and precision.
float orientedSurfaceWidth, orientedSurfaceHeight;
float orientedXPrecision, orientedYPrecision;
struct CurrentVirtualKeyState {
bool down;
nsecs_t downTime;
int32_t keyCode;
int32_t scanCode;
} currentVirtualKey;
} mLocked;
virtual void configureParameters();
virtual void dumpParameters(String8& dump);
virtual void configureRawAxes();
virtual void dumpRawAxes(String8& dump);
virtual bool configureSurfaceLocked();
virtual void dumpSurfaceLocked(String8& dump);
virtual void configureVirtualKeysLocked();
virtual void dumpVirtualKeysLocked(String8& dump);
virtual void parseCalibration();
virtual void resolveCalibration();
virtual void dumpCalibration(String8& dump);
enum TouchResult {
// Dispatch the touch normally.
DISPATCH_TOUCH,
// Do not dispatch the touch, but keep tracking the current stroke.
SKIP_TOUCH,
// Do not dispatch the touch, and drop all information associated with the current stoke
// so the next movement will appear as a new down.
DROP_STROKE
};
void syncTouch(nsecs_t when, bool havePointerIds);
private:
/* Maximum number of historical samples to average. */
static const uint32_t AVERAGING_HISTORY_SIZE = 5;
/* Slop distance for jumpy pointer detection.
* The vertical range of the screen divided by this is our epsilon value. */
static const uint32_t JUMPY_EPSILON_DIVISOR = 212;
/* Number of jumpy points to drop for touchscreens that need it. */
static const uint32_t JUMPY_TRANSITION_DROPS = 3;
static const uint32_t JUMPY_DROP_LIMIT = 3;
/* Maximum squared distance for averaging.
* If moving farther than this, turn of averaging to avoid lag in response. */
static const uint64_t AVERAGING_DISTANCE_LIMIT = 75 * 75;
struct AveragingTouchFilterState {
// Individual history tracks are stored by pointer id
uint32_t historyStart[MAX_POINTERS];
uint32_t historyEnd[MAX_POINTERS];
struct {
struct {
int32_t x;
int32_t y;
int32_t pressure;
} pointers[MAX_POINTERS];
} historyData[AVERAGING_HISTORY_SIZE];
} mAveragingTouchFilter;
struct JumpyTouchFilterState {
uint32_t jumpyPointsDropped;
} mJumpyTouchFilter;
struct PointerDistanceHeapElement {
uint32_t currentPointerIndex : 8;
uint32_t lastPointerIndex : 8;
uint64_t distance : 48; // squared distance
};
void initializeLocked();
TouchResult consumeOffScreenTouches(nsecs_t when, uint32_t policyFlags);
void dispatchTouches(nsecs_t when, uint32_t policyFlags);
void dispatchTouch(nsecs_t when, uint32_t policyFlags, TouchData* touch,
BitSet32 idBits, uint32_t changedId, uint32_t pointerCount,
int32_t motionEventAction);
bool isPointInsideSurfaceLocked(int32_t x, int32_t y);
const VirtualKey* findVirtualKeyHitLocked(int32_t x, int32_t y);
bool applyBadTouchFilter();
bool applyJumpyTouchFilter();
void applyAveragingTouchFilter();
void calculatePointerIds();
};
class SingleTouchInputMapper : public TouchInputMapper {
public:
SingleTouchInputMapper(InputDevice* device);
virtual ~SingleTouchInputMapper();
virtual void reset();
virtual void process(const RawEvent* rawEvent);
protected:
virtual void configureRawAxes();
private:
struct Accumulator {
enum {
FIELD_BTN_TOUCH = 1,
FIELD_ABS_X = 2,
FIELD_ABS_Y = 4,
FIELD_ABS_PRESSURE = 8,
FIELD_ABS_TOOL_WIDTH = 16
};
uint32_t fields;
bool btnTouch;
int32_t absX;
int32_t absY;
int32_t absPressure;
int32_t absToolWidth;
inline void clear() {
fields = 0;
}
} mAccumulator;
bool mDown;
int32_t mX;
int32_t mY;
int32_t mPressure;
int32_t mToolWidth;
void initialize();
void sync(nsecs_t when);
};
class MultiTouchInputMapper : public TouchInputMapper {
public:
MultiTouchInputMapper(InputDevice* device);
virtual ~MultiTouchInputMapper();
virtual void reset();
virtual void process(const RawEvent* rawEvent);
protected:
virtual void configureRawAxes();
private:
struct Accumulator {
enum {
FIELD_ABS_MT_POSITION_X = 1,
FIELD_ABS_MT_POSITION_Y = 2,
FIELD_ABS_MT_TOUCH_MAJOR = 4,
FIELD_ABS_MT_TOUCH_MINOR = 8,
FIELD_ABS_MT_WIDTH_MAJOR = 16,
FIELD_ABS_MT_WIDTH_MINOR = 32,
FIELD_ABS_MT_ORIENTATION = 64,
FIELD_ABS_MT_TRACKING_ID = 128,
FIELD_ABS_MT_PRESSURE = 256,
};
uint32_t pointerCount;
struct Pointer {
uint32_t fields;
int32_t absMTPositionX;
int32_t absMTPositionY;
int32_t absMTTouchMajor;
int32_t absMTTouchMinor;
int32_t absMTWidthMajor;
int32_t absMTWidthMinor;
int32_t absMTOrientation;
int32_t absMTTrackingId;
int32_t absMTPressure;
inline void clear() {
fields = 0;
}
} pointers[MAX_POINTERS + 1]; // + 1 to remove the need for extra range checks
inline void clear() {
pointerCount = 0;
pointers[0].clear();
}
} mAccumulator;
void initialize();
void sync(nsecs_t when);
};
} // namespace android
#endif // _UI_INPUT_READER_H