a929748ddb
Surface Texture dequeue logic is modified to return the oldest of the free buffers to Client on dequeue call. Currently dequeue method is returning the first buffer index which is free. The parsing is done in ascending order of the buffer slot indices. This leads to returning the buffer which has been just queued to composer, and hence display, and this defeats the purpose of having minimum dequeue count as 2 in asynchrnouse mode. This is fixed by checking all the free slots and returning the oldest buffer. Change-Id: Ibbac10593c3994c278c601af0480b171635ecdd4 Signed-off-by: Sunita Nadampalli <sunitan@ti.com>
496 lines
21 KiB
C++
496 lines
21 KiB
C++
/*
|
|
* Copyright (C) 2010 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef ANDROID_GUI_SURFACETEXTURE_H
|
|
#define ANDROID_GUI_SURFACETEXTURE_H
|
|
|
|
#include <EGL/egl.h>
|
|
#include <EGL/eglext.h>
|
|
#include <GLES2/gl2.h>
|
|
#include <GLES2/gl2ext.h>
|
|
|
|
#include <gui/ISurfaceTexture.h>
|
|
|
|
#include <ui/GraphicBuffer.h>
|
|
|
|
#include <utils/String8.h>
|
|
#include <utils/Vector.h>
|
|
#include <utils/threads.h>
|
|
|
|
#define ANDROID_GRAPHICS_SURFACETEXTURE_JNI_ID "mSurfaceTexture"
|
|
|
|
namespace android {
|
|
// ----------------------------------------------------------------------------
|
|
|
|
class IGraphicBufferAlloc;
|
|
class String8;
|
|
|
|
class SurfaceTexture : public BnSurfaceTexture {
|
|
public:
|
|
enum { MIN_UNDEQUEUED_BUFFERS = 2 };
|
|
enum {
|
|
MIN_ASYNC_BUFFER_SLOTS = MIN_UNDEQUEUED_BUFFERS + 1,
|
|
MIN_SYNC_BUFFER_SLOTS = MIN_UNDEQUEUED_BUFFERS
|
|
};
|
|
enum { NUM_BUFFER_SLOTS = 32 };
|
|
enum { NO_CONNECTED_API = 0 };
|
|
|
|
struct FrameAvailableListener : public virtual RefBase {
|
|
// onFrameAvailable() is called from queueBuffer() each time an
|
|
// additional frame becomes available for consumption. This means that
|
|
// frames that are queued while in asynchronous mode only trigger the
|
|
// callback if no previous frames are pending. Frames queued while in
|
|
// synchronous mode always trigger the callback.
|
|
//
|
|
// This is called without any lock held and can be called concurrently
|
|
// by multiple threads.
|
|
virtual void onFrameAvailable() = 0;
|
|
};
|
|
|
|
// tex indicates the name OpenGL texture to which images are to be streamed.
|
|
// This texture name cannot be changed once the SurfaceTexture is created.
|
|
SurfaceTexture(GLuint tex, bool allowSynchronousMode = true,
|
|
GLenum texTarget = GL_TEXTURE_EXTERNAL_OES);
|
|
|
|
virtual ~SurfaceTexture();
|
|
|
|
// setBufferCount updates the number of available buffer slots. After
|
|
// calling this all buffer slots are both unallocated and owned by the
|
|
// SurfaceTexture object (i.e. they are not owned by the client).
|
|
virtual status_t setBufferCount(int bufferCount);
|
|
|
|
virtual status_t requestBuffer(int slot, sp<GraphicBuffer>* buf);
|
|
|
|
// dequeueBuffer gets the next buffer slot index for the client to use. If a
|
|
// buffer slot is available then that slot index is written to the location
|
|
// pointed to by the buf argument and a status of OK is returned. If no
|
|
// slot is available then a status of -EBUSY is returned and buf is
|
|
// unmodified.
|
|
// The width and height parameters must be no greater than the minimum of
|
|
// GL_MAX_VIEWPORT_DIMS and GL_MAX_TEXTURE_SIZE (see: glGetIntegerv).
|
|
// An error due to invalid dimensions might not be reported until
|
|
// updateTexImage() is called.
|
|
virtual status_t dequeueBuffer(int *buf, uint32_t width, uint32_t height,
|
|
uint32_t format, uint32_t usage);
|
|
|
|
// queueBuffer returns a filled buffer to the SurfaceTexture. In addition, a
|
|
// timestamp must be provided for the buffer. The timestamp is in
|
|
// nanoseconds, and must be monotonically increasing. Its other semantics
|
|
// (zero point, etc) are client-dependent and should be documented by the
|
|
// client.
|
|
virtual status_t queueBuffer(int buf, int64_t timestamp,
|
|
uint32_t* outWidth, uint32_t* outHeight, uint32_t* outTransform);
|
|
virtual void cancelBuffer(int buf);
|
|
virtual status_t setCrop(const Rect& reg);
|
|
virtual status_t setTransform(uint32_t transform);
|
|
virtual status_t setScalingMode(int mode);
|
|
|
|
virtual int query(int what, int* value);
|
|
|
|
// setSynchronousMode set whether dequeueBuffer is synchronous or
|
|
// asynchronous. In synchronous mode, dequeueBuffer blocks until
|
|
// a buffer is available, the currently bound buffer can be dequeued and
|
|
// queued buffers will be retired in order.
|
|
// The default mode is asynchronous.
|
|
virtual status_t setSynchronousMode(bool enabled);
|
|
|
|
// connect attempts to connect a client API to the SurfaceTexture. This
|
|
// must be called before any other ISurfaceTexture methods are called except
|
|
// for getAllocator.
|
|
//
|
|
// This method will fail if the connect was previously called on the
|
|
// SurfaceTexture and no corresponding disconnect call was made.
|
|
virtual status_t connect(int api,
|
|
uint32_t* outWidth, uint32_t* outHeight, uint32_t* outTransform);
|
|
|
|
// disconnect attempts to disconnect a client API from the SurfaceTexture.
|
|
// Calling this method will cause any subsequent calls to other
|
|
// ISurfaceTexture methods to fail except for getAllocator and connect.
|
|
// Successfully calling connect after this will allow the other methods to
|
|
// succeed again.
|
|
//
|
|
// This method will fail if the the SurfaceTexture is not currently
|
|
// connected to the specified client API.
|
|
virtual status_t disconnect(int api);
|
|
|
|
// updateTexImage sets the image contents of the target texture to that of
|
|
// the most recently queued buffer.
|
|
//
|
|
// This call may only be made while the OpenGL ES context to which the
|
|
// target texture belongs is bound to the calling thread.
|
|
status_t updateTexImage();
|
|
|
|
// setBufferCountServer set the buffer count. If the client has requested
|
|
// a buffer count using setBufferCount, the server-buffer count will
|
|
// take effect once the client sets the count back to zero.
|
|
status_t setBufferCountServer(int bufferCount);
|
|
|
|
// getTransformMatrix retrieves the 4x4 texture coordinate transform matrix
|
|
// associated with the texture image set by the most recent call to
|
|
// updateTexImage.
|
|
//
|
|
// This transform matrix maps 2D homogeneous texture coordinates of the form
|
|
// (s, t, 0, 1) with s and t in the inclusive range [0, 1] to the texture
|
|
// coordinate that should be used to sample that location from the texture.
|
|
// Sampling the texture outside of the range of this transform is undefined.
|
|
//
|
|
// This transform is necessary to compensate for transforms that the stream
|
|
// content producer may implicitly apply to the content. By forcing users of
|
|
// a SurfaceTexture to apply this transform we avoid performing an extra
|
|
// copy of the data that would be needed to hide the transform from the
|
|
// user.
|
|
//
|
|
// The matrix is stored in column-major order so that it may be passed
|
|
// directly to OpenGL ES via the glLoadMatrixf or glUniformMatrix4fv
|
|
// functions.
|
|
void getTransformMatrix(float mtx[16]);
|
|
|
|
// getTimestamp retrieves the timestamp associated with the texture image
|
|
// set by the most recent call to updateTexImage.
|
|
//
|
|
// The timestamp is in nanoseconds, and is monotonically increasing. Its
|
|
// other semantics (zero point, etc) are source-dependent and should be
|
|
// documented by the source.
|
|
int64_t getTimestamp();
|
|
|
|
// setFrameAvailableListener sets the listener object that will be notified
|
|
// when a new frame becomes available.
|
|
void setFrameAvailableListener(const sp<FrameAvailableListener>& listener);
|
|
|
|
// getAllocator retrieves the binder object that must be referenced as long
|
|
// as the GraphicBuffers dequeued from this SurfaceTexture are referenced.
|
|
// Holding this binder reference prevents SurfaceFlinger from freeing the
|
|
// buffers before the client is done with them.
|
|
sp<IBinder> getAllocator();
|
|
|
|
// setDefaultBufferSize is used to set the size of buffers returned by
|
|
// requestBuffers when a with and height of zero is requested.
|
|
// A call to setDefaultBufferSize() may trigger requestBuffers() to
|
|
// be called from the client.
|
|
// The width and height parameters must be no greater than the minimum of
|
|
// GL_MAX_VIEWPORT_DIMS and GL_MAX_TEXTURE_SIZE (see: glGetIntegerv).
|
|
// An error due to invalid dimensions might not be reported until
|
|
// updateTexImage() is called.
|
|
status_t setDefaultBufferSize(uint32_t width, uint32_t height);
|
|
|
|
// getCurrentBuffer returns the buffer associated with the current image.
|
|
sp<GraphicBuffer> getCurrentBuffer() const;
|
|
|
|
// getCurrentTextureTarget returns the texture target of the current
|
|
// texture as returned by updateTexImage().
|
|
GLenum getCurrentTextureTarget() const;
|
|
|
|
// getCurrentCrop returns the cropping rectangle of the current buffer
|
|
Rect getCurrentCrop() const;
|
|
|
|
// getCurrentTransform returns the transform of the current buffer
|
|
uint32_t getCurrentTransform() const;
|
|
|
|
// getCurrentScalingMode returns the scaling mode of the current buffer
|
|
uint32_t getCurrentScalingMode() const;
|
|
|
|
// abandon frees all the buffers and puts the SurfaceTexture into the
|
|
// 'abandoned' state. Once put in this state the SurfaceTexture can never
|
|
// leave it. When in the 'abandoned' state, all methods of the
|
|
// ISurfaceTexture interface will fail with the NO_INIT error.
|
|
//
|
|
// Note that while calling this method causes all the buffers to be freed
|
|
// from the perspective of the the SurfaceTexture, if there are additional
|
|
// references on the buffers (e.g. if a buffer is referenced by a client or
|
|
// by OpenGL ES as a texture) then those buffer will remain allocated.
|
|
void abandon();
|
|
|
|
// set the name of the SurfaceTexture that will be used to identify it in
|
|
// log messages.
|
|
void setName(const String8& name);
|
|
|
|
// dump our state in a String
|
|
void dump(String8& result) const;
|
|
void dump(String8& result, const char* prefix, char* buffer, size_t SIZE) const;
|
|
|
|
protected:
|
|
|
|
// freeBufferLocked frees the resources (both GraphicBuffer and EGLImage)
|
|
// for the given slot.
|
|
void freeBufferLocked(int index);
|
|
|
|
// freeAllBuffersLocked frees the resources (both GraphicBuffer and
|
|
// EGLImage) for all slots.
|
|
void freeAllBuffersLocked();
|
|
|
|
// freeAllBuffersExceptHeadLocked frees the resources (both GraphicBuffer
|
|
// and EGLImage) for all slots except the head of mQueue
|
|
void freeAllBuffersExceptHeadLocked();
|
|
|
|
// drainQueueLocked drains the buffer queue if we're in synchronous mode
|
|
// returns immediately otherwise. return NO_INIT if SurfaceTexture
|
|
// became abandoned or disconnected during this call.
|
|
status_t drainQueueLocked();
|
|
|
|
// drainQueueAndFreeBuffersLocked drains the buffer queue if we're in
|
|
// synchronous mode and free all buffers. In asynchronous mode, all buffers
|
|
// are freed except the current buffer.
|
|
status_t drainQueueAndFreeBuffersLocked();
|
|
|
|
static bool isExternalFormat(uint32_t format);
|
|
|
|
private:
|
|
|
|
// createImage creates a new EGLImage from a GraphicBuffer.
|
|
EGLImageKHR createImage(EGLDisplay dpy,
|
|
const sp<GraphicBuffer>& graphicBuffer);
|
|
|
|
status_t setBufferCountServerLocked(int bufferCount);
|
|
|
|
// computeCurrentTransformMatrix computes the transform matrix for the
|
|
// current texture. It uses mCurrentTransform and the current GraphicBuffer
|
|
// to compute this matrix and stores it in mCurrentTransformMatrix.
|
|
void computeCurrentTransformMatrix();
|
|
|
|
enum { INVALID_BUFFER_SLOT = -1 };
|
|
|
|
struct BufferSlot {
|
|
|
|
BufferSlot()
|
|
: mEglImage(EGL_NO_IMAGE_KHR),
|
|
mEglDisplay(EGL_NO_DISPLAY),
|
|
mBufferState(BufferSlot::FREE),
|
|
mRequestBufferCalled(false),
|
|
mTransform(0),
|
|
mScalingMode(NATIVE_WINDOW_SCALING_MODE_FREEZE),
|
|
mTimestamp(0),
|
|
mFrameNumber(0) {
|
|
mCrop.makeInvalid();
|
|
}
|
|
|
|
// mGraphicBuffer points to the buffer allocated for this slot or is NULL
|
|
// if no buffer has been allocated.
|
|
sp<GraphicBuffer> mGraphicBuffer;
|
|
|
|
// mEglImage is the EGLImage created from mGraphicBuffer.
|
|
EGLImageKHR mEglImage;
|
|
|
|
// mEglDisplay is the EGLDisplay used to create mEglImage.
|
|
EGLDisplay mEglDisplay;
|
|
|
|
// BufferState represents the different states in which a buffer slot
|
|
// can be.
|
|
enum BufferState {
|
|
// FREE indicates that the buffer is not currently being used and
|
|
// will not be used in the future until it gets dequeued and
|
|
// subsequently queued by the client.
|
|
FREE = 0,
|
|
|
|
// DEQUEUED indicates that the buffer has been dequeued by the
|
|
// client, but has not yet been queued or canceled. The buffer is
|
|
// considered 'owned' by the client, and the server should not use
|
|
// it for anything.
|
|
//
|
|
// Note that when in synchronous-mode (mSynchronousMode == true),
|
|
// the buffer that's currently attached to the texture may be
|
|
// dequeued by the client. That means that the current buffer can
|
|
// be in either the DEQUEUED or QUEUED state. In asynchronous mode,
|
|
// however, the current buffer is always in the QUEUED state.
|
|
DEQUEUED = 1,
|
|
|
|
// QUEUED indicates that the buffer has been queued by the client,
|
|
// and has not since been made available for the client to dequeue.
|
|
// Attaching the buffer to the texture does NOT transition the
|
|
// buffer away from the QUEUED state. However, in Synchronous mode
|
|
// the current buffer may be dequeued by the client under some
|
|
// circumstances. See the note about the current buffer in the
|
|
// documentation for DEQUEUED.
|
|
QUEUED = 2,
|
|
};
|
|
|
|
// mBufferState is the current state of this buffer slot.
|
|
BufferState mBufferState;
|
|
|
|
// mRequestBufferCalled is used for validating that the client did
|
|
// call requestBuffer() when told to do so. Technically this is not
|
|
// needed but useful for debugging and catching client bugs.
|
|
bool mRequestBufferCalled;
|
|
|
|
// mCrop is the current crop rectangle for this buffer slot. This gets
|
|
// set to mNextCrop each time queueBuffer gets called for this buffer.
|
|
Rect mCrop;
|
|
|
|
// mTransform is the current transform flags for this buffer slot. This
|
|
// gets set to mNextTransform each time queueBuffer gets called for this
|
|
// slot.
|
|
uint32_t mTransform;
|
|
|
|
// mScalingMode is the current scaling mode for this buffer slot. This
|
|
// gets set to mNextScalingMode each time queueBuffer gets called for
|
|
// this slot.
|
|
uint32_t mScalingMode;
|
|
|
|
// mTimestamp is the current timestamp for this buffer slot. This gets
|
|
// to set by queueBuffer each time this slot is queued.
|
|
int64_t mTimestamp;
|
|
|
|
// mFrameNumber is the number of the queued frame for this slot.
|
|
uint64_t mFrameNumber;
|
|
|
|
};
|
|
|
|
// mSlots is the array of buffer slots that must be mirrored on the client
|
|
// side. This allows buffer ownership to be transferred between the client
|
|
// and server without sending a GraphicBuffer over binder. The entire array
|
|
// is initialized to NULL at construction time, and buffers are allocated
|
|
// for a slot when requestBuffer is called with that slot's index.
|
|
BufferSlot mSlots[NUM_BUFFER_SLOTS];
|
|
|
|
// mDefaultWidth holds the default width of allocated buffers. It is used
|
|
// in requestBuffers() if a width and height of zero is specified.
|
|
uint32_t mDefaultWidth;
|
|
|
|
// mDefaultHeight holds the default height of allocated buffers. It is used
|
|
// in requestBuffers() if a width and height of zero is specified.
|
|
uint32_t mDefaultHeight;
|
|
|
|
// mPixelFormat holds the pixel format of allocated buffers. It is used
|
|
// in requestBuffers() if a format of zero is specified.
|
|
uint32_t mPixelFormat;
|
|
|
|
// mBufferCount is the number of buffer slots that the client and server
|
|
// must maintain. It defaults to MIN_ASYNC_BUFFER_SLOTS and can be changed
|
|
// by calling setBufferCount or setBufferCountServer
|
|
int mBufferCount;
|
|
|
|
// mClientBufferCount is the number of buffer slots requested by the client.
|
|
// The default is zero, which means the client doesn't care how many buffers
|
|
// there is.
|
|
int mClientBufferCount;
|
|
|
|
// mServerBufferCount buffer count requested by the server-side
|
|
int mServerBufferCount;
|
|
|
|
// mCurrentTexture is the buffer slot index of the buffer that is currently
|
|
// bound to the OpenGL texture. It is initialized to INVALID_BUFFER_SLOT,
|
|
// indicating that no buffer slot is currently bound to the texture. Note,
|
|
// however, that a value of INVALID_BUFFER_SLOT does not necessarily mean
|
|
// that no buffer is bound to the texture. A call to setBufferCount will
|
|
// reset mCurrentTexture to INVALID_BUFFER_SLOT.
|
|
int mCurrentTexture;
|
|
|
|
// mCurrentTextureBuf is the graphic buffer of the current texture. It's
|
|
// possible that this buffer is not associated with any buffer slot, so we
|
|
// must track it separately in order to support the getCurrentBuffer method.
|
|
sp<GraphicBuffer> mCurrentTextureBuf;
|
|
|
|
// mCurrentCrop is the crop rectangle that applies to the current texture.
|
|
// It gets set each time updateTexImage is called.
|
|
Rect mCurrentCrop;
|
|
|
|
// mCurrentTransform is the transform identifier for the current texture. It
|
|
// gets set each time updateTexImage is called.
|
|
uint32_t mCurrentTransform;
|
|
|
|
// mCurrentScalingMode is the scaling mode for the current texture. It gets
|
|
// set to each time updateTexImage is called.
|
|
uint32_t mCurrentScalingMode;
|
|
|
|
// mCurrentTransformMatrix is the transform matrix for the current texture.
|
|
// It gets computed by computeTransformMatrix each time updateTexImage is
|
|
// called.
|
|
float mCurrentTransformMatrix[16];
|
|
|
|
// mCurrentTimestamp is the timestamp for the current texture. It
|
|
// gets set each time updateTexImage is called.
|
|
int64_t mCurrentTimestamp;
|
|
|
|
// mNextCrop is the crop rectangle that will be used for the next buffer
|
|
// that gets queued. It is set by calling setCrop.
|
|
Rect mNextCrop;
|
|
|
|
// mNextTransform is the transform identifier that will be used for the next
|
|
// buffer that gets queued. It is set by calling setTransform.
|
|
uint32_t mNextTransform;
|
|
|
|
// mNextScalingMode is the scaling mode that will be used for the next
|
|
// buffers that get queued. It is set by calling setScalingMode.
|
|
int mNextScalingMode;
|
|
|
|
// mTexName is the name of the OpenGL texture to which streamed images will
|
|
// be bound when updateTexImage is called. It is set at construction time
|
|
// changed with a call to setTexName.
|
|
const GLuint mTexName;
|
|
|
|
// mGraphicBufferAlloc is the connection to SurfaceFlinger that is used to
|
|
// allocate new GraphicBuffer objects.
|
|
sp<IGraphicBufferAlloc> mGraphicBufferAlloc;
|
|
|
|
// mFrameAvailableListener is the listener object that will be called when a
|
|
// new frame becomes available. If it is not NULL it will be called from
|
|
// queueBuffer.
|
|
sp<FrameAvailableListener> mFrameAvailableListener;
|
|
|
|
// mSynchronousMode whether we're in synchronous mode or not
|
|
bool mSynchronousMode;
|
|
|
|
// mAllowSynchronousMode whether we allow synchronous mode or not
|
|
const bool mAllowSynchronousMode;
|
|
|
|
// mConnectedApi indicates the API that is currently connected to this
|
|
// SurfaceTexture. It defaults to NO_CONNECTED_API (= 0), and gets updated
|
|
// by the connect and disconnect methods.
|
|
int mConnectedApi;
|
|
|
|
// mDequeueCondition condition used for dequeueBuffer in synchronous mode
|
|
mutable Condition mDequeueCondition;
|
|
|
|
// mQueue is a FIFO of queued buffers used in synchronous mode
|
|
typedef Vector<int> Fifo;
|
|
Fifo mQueue;
|
|
|
|
// mAbandoned indicates that the SurfaceTexture will no longer be used to
|
|
// consume images buffers pushed to it using the ISurfaceTexture interface.
|
|
// It is initialized to false, and set to true in the abandon method. A
|
|
// SurfaceTexture that has been abandoned will return the NO_INIT error from
|
|
// all ISurfaceTexture methods capable of returning an error.
|
|
bool mAbandoned;
|
|
|
|
// mName is a string used to identify the SurfaceTexture in log messages.
|
|
// It is set by the setName method.
|
|
String8 mName;
|
|
|
|
// mMutex is the mutex used to prevent concurrent access to the member
|
|
// variables of SurfaceTexture objects. It must be locked whenever the
|
|
// member variables are accessed.
|
|
mutable Mutex mMutex;
|
|
|
|
// mTexTarget is the GL texture target with which the GL texture object is
|
|
// associated. It is set in the constructor and never changed. It is
|
|
// almost always GL_TEXTURE_EXTERNAL_OES except for one use case in Android
|
|
// Browser. In that case it is set to GL_TEXTURE_2D to allow
|
|
// glCopyTexSubImage to read from the texture. This is a hack to work
|
|
// around a GL driver limitation on the number of FBO attachments, which the
|
|
// browser's tile cache exceeds.
|
|
const GLenum mTexTarget;
|
|
|
|
// mFrameCounter is the free running counter, incremented for every buffer queued
|
|
// with the surface Texture.
|
|
uint64_t mFrameCounter;
|
|
|
|
|
|
};
|
|
|
|
// ----------------------------------------------------------------------------
|
|
}; // namespace android
|
|
|
|
#endif // ANDROID_GUI_SURFACETEXTURE_H
|