replicant-frameworks_native/opengl/tests/gl_perfapp/jni/gl_code.cpp
Jack Palevich 3e9eb868b3 Fix extraMath state variable.
Change-Id: Iba76d3e4e3bab0b993d176755f588201c8a967cd
2010-07-19 18:01:39 -07:00

485 lines
14 KiB
C++

// OpenGL ES 2.0 code
#include <nativehelper/jni.h>
#define LOG_TAG "GLPerf gl_code.cpp"
#include <utils/Log.h>
#include <EGL/egl.h>
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#include <utils/Timers.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
FILE * out;
static void printGLString(const char *name, GLenum s) {
const char *v = (const char *) glGetString(s);
LOGI("GL %s = %s\n", name, v);
}
static void checkGlError(const char* op) {
for (GLint error = glGetError(); error; error
= glGetError()) {
LOGI("after %s() glError (0x%x)\n", op, error);
}
}
GLuint loadShader(GLenum shaderType, const char* pSource) {
GLuint shader = glCreateShader(shaderType);
if (shader) {
glShaderSource(shader, 1, &pSource, NULL);
glCompileShader(shader);
GLint compiled = 0;
glGetShaderiv(shader, GL_COMPILE_STATUS, &compiled);
if (!compiled) {
GLint infoLen = 0;
glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &infoLen);
if (infoLen) {
char* buf = (char*) malloc(infoLen);
if (buf) {
glGetShaderInfoLog(shader, infoLen, NULL, buf);
LOGE("Could not compile shader %d:\n%s\n",
shaderType, buf);
free(buf);
}
glDeleteShader(shader);
shader = 0;
}
}
}
return shader;
}
enum {
A_POS,
A_COLOR,
A_TEX0,
A_TEX1
};
GLuint createProgram(const char* pVertexSource, const char* pFragmentSource) {
GLuint vertexShader = loadShader(GL_VERTEX_SHADER, pVertexSource);
if (!vertexShader) {
return 0;
}
GLuint pixelShader = loadShader(GL_FRAGMENT_SHADER, pFragmentSource);
if (!pixelShader) {
return 0;
}
GLuint program = glCreateProgram();
if (program) {
glAttachShader(program, vertexShader);
checkGlError("glAttachShader v");
glAttachShader(program, pixelShader);
checkGlError("glAttachShader p");
glBindAttribLocation(program, A_POS, "a_pos");
glBindAttribLocation(program, A_COLOR, "a_color");
glBindAttribLocation(program, A_TEX0, "a_tex0");
glBindAttribLocation(program, A_TEX1, "a_tex1");
glLinkProgram(program);
GLint linkStatus = GL_FALSE;
glGetProgramiv(program, GL_LINK_STATUS, &linkStatus);
if (linkStatus != GL_TRUE) {
GLint bufLength = 0;
glGetProgramiv(program, GL_INFO_LOG_LENGTH, &bufLength);
if (bufLength) {
char* buf = (char*) malloc(bufLength);
if (buf) {
glGetProgramInfoLog(program, bufLength, NULL, buf);
LOGE("Could not link program:\n%s\n", buf);
free(buf);
}
}
glDeleteProgram(program);
program = 0;
}
}
checkGlError("createProgram");
glUseProgram(program);
return program;
}
uint64_t getTime() {
struct timespec t;
clock_gettime(CLOCK_MONOTONIC, &t);
return t.tv_nsec + ((uint64_t)t.tv_sec * 1000 * 1000 * 1000);
}
uint64_t gTime;
void startTimer() {
gTime = getTime();
}
void endTimer(const char *str, int w, int h, double dc, int count) {
uint64_t t2 = getTime();
double delta = ((double)(t2 - gTime)) / 1000000000;
double pixels = dc * (w * h) * count;
double mpps = pixels / delta / 1000000;
double dc60 = pixels / delta / (w * h) / 60;
LOGI("%s, %f, %f\n", str, mpps, dc60);
if (out) {
fprintf(out, "%s, %f, %f\r\n", str, mpps, dc60);
fflush(out);
}
}
static const char gVertexShader[] =
"attribute vec4 a_pos;\n"
"attribute vec4 a_color;\n"
"attribute vec2 a_tex0;\n"
"attribute vec2 a_tex1;\n"
"varying vec4 v_color;\n"
"varying vec2 v_tex0;\n"
"varying vec2 v_tex1;\n"
"void main() {\n"
" v_color = a_color;\n"
" v_tex0 = a_tex0;\n"
" v_tex1 = a_tex1;\n"
" gl_Position = a_pos;\n"
"}\n";
static const char gShaderPrefix[] =
"precision mediump float;\n"
"uniform vec4 u_color;\n"
"uniform vec4 u_0;\n"
"uniform vec4 u_1;\n"
"uniform vec4 u_2;\n"
"uniform vec4 u_3;\n"
"varying vec4 v_color;\n"
"varying vec2 v_tex0;\n"
"varying vec2 v_tex1;\n"
"uniform sampler2D u_tex0;\n"
"uniform sampler2D u_tex1;\n"
"void main() {\n";
static const char gShaderPostfix[] =
" gl_FragColor = c;\n"
"}\n";
static char * append(char *d, const char *s) {
size_t len = strlen(s);
memcpy(d, s, len);
return d + len;
}
static char * genShader(
bool useVarColor,
int texCount,
bool modulateFirstTex,
int extraMath)
{
char *str = (char *)calloc(16 * 1024, 1);
char *tmp = append(str, gShaderPrefix);
if (modulateFirstTex || !texCount) {
if (useVarColor) {
tmp = append(tmp, " vec4 c = v_color;\n");
} else {
tmp = append(tmp, " vec4 c = u_color;\n");
}
} else {
tmp = append(tmp, " vec4 c = texture2D(u_tex0, v_tex0);\n");
}
if (modulateFirstTex && texCount) {
tmp = append(tmp, " c *= texture2D(u_tex0, v_tex0);\n");
}
if (texCount > 1) {
tmp = append(tmp, " c *= texture2D(u_tex1, v_tex1);\n");
}
if (extraMath > 0) {
tmp = append(tmp, " c *= u_0;\n");
}
if (extraMath > 1) {
tmp = append(tmp, " c *= u_1;\n");
}
if (extraMath > 2) {
tmp = append(tmp, " c *= u_2;\n");
}
if (extraMath > 3) {
tmp = append(tmp, " c *= u_3;\n");
}
tmp = append(tmp, gShaderPostfix);
tmp[0] = 0;
//LOGI("%s", str);
return str;
}
static void setupVA() {
static const float vtx[] = {
-2.0f,-1.0f,
1.0f,-1.0f,
-2.0f, 1.0f,
1.0f, 1.0f };
static const float color[] = {
1.0f,0.0f,1.0f,1.0f,
0.0f,0.0f,1.0f,1.0f,
1.0f,1.0f,0.0f,1.0f,
1.0f,1.0f,1.0f,1.0f };
static const float tex0[] = {
0.0f,0.0f,
1.0f,0.0f,
1.0f,1.0f,
0.0f,1.0f };
static const float tex1[] = {
1.0f,0.0f,
1.0f,1.0f,
0.0f,1.0f,
0.0f,0.0f };
glEnableVertexAttribArray(A_POS);
glEnableVertexAttribArray(A_COLOR);
glEnableVertexAttribArray(A_TEX0);
glEnableVertexAttribArray(A_TEX1);
glVertexAttribPointer(A_POS, 2, GL_FLOAT, false, 8, vtx);
glVertexAttribPointer(A_COLOR, 4, GL_FLOAT, false, 16, color);
glVertexAttribPointer(A_TEX0, 2, GL_FLOAT, false, 8, tex0);
glVertexAttribPointer(A_TEX1, 2, GL_FLOAT, false, 8, tex1);
}
//////////////////////////
// Width and height of the screen
uint32_t w;
uint32_t h;
// The stateClock starts at zero and increments by 1 every time we draw a frame. It is used to control which phase of the test we are in.
int stateClock;
const int doLoopStates = 2;
const int doSingleTestStates = 2;
bool done;
// Saves the parameters of the test (so we can print them out when we finish the timing.)
char saveBuf[1024];
static void doLoop(uint32_t w, uint32_t h, const char *str) {
int doLoopState = stateClock % doLoopStates;
// LOGI("doLoop %d\n", doLoopState);
switch(doLoopState) {
case 0:
glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
break;
case 1:
strcpy(saveBuf, str);
startTimer();
glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
for (int ct=0; ct < 100; ct++) {
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
}
break;
}
}
static void doSingleTest(uint32_t w, uint32_t h,
bool useVarColor,
int texCount,
bool modulateFirstTex,
int extraMath,
int tex0, int tex1) {
int doSingleTestState = (stateClock / doLoopStates) % doSingleTestStates;
// LOGI("doSingleTest %d\n", doSingleTestState);
switch (doSingleTestState) {
case 0: {
char *pgmTxt = genShader(useVarColor, texCount, modulateFirstTex, extraMath);
int pgm = createProgram(gVertexShader, pgmTxt);
if (!pgm) {
LOGE("error running test\n");
return;
}
int loc = glGetUniformLocation(pgm, "u_tex0");
//LOGI("loc = %i \n", loc);
if (loc >= 0) glUniform1i(loc, 0);
loc = glGetUniformLocation(pgm, "u_tex1");
if (loc >= 0) glUniform1i(loc, 1);
loc = glGetUniformLocation(pgm, "u_color");
if (loc >= 0) glUniform4f(loc, 1.f, 0.4f, 0.6f, 0.8f);
loc = glGetUniformLocation(pgm, "u_0");
if (loc >= 0) glUniform4f(loc, 1.f, 0.4f, 0.6f, 0.8f);
loc = glGetUniformLocation(pgm, "u_1");
if (loc >= 0) glUniform4f(loc, 0.7f, 0.8f, 0.6f, 0.8f);
loc = glGetUniformLocation(pgm, "u_2");
if (loc >= 0) glUniform4f(loc, 0.9f, 0.6f, 0.7f, 1.0f);
loc = glGetUniformLocation(pgm, "u_3");
if (loc >= 0) glUniform4f(loc, 0.88f, 0.2f, 0.4f, 0.2f);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, tex0);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, tex1);
glActiveTexture(GL_TEXTURE0);
glBlendFunc(GL_ONE, GL_ONE);
glDisable(GL_BLEND);
char str2[1024];
sprintf(str2, "%i, %i, %i, %i, %i, 0",
useVarColor, texCount, modulateFirstTex, extraMath, tex0);
doLoop(w, h, str2);
}
break;
case 1: {
char str2[1024];
glEnable(GL_BLEND);
sprintf(str2, "%i, %i, %i, %i, %i, 1",
useVarColor, texCount, modulateFirstTex, extraMath, tex0);
doLoop(w, h, str2);
}
break;
}
}
void genTextures() {
uint32_t *m = (uint32_t *)malloc(1024*1024*4);
for (int y=0; y < 1024; y++){
for (int x=0; x < 1024; x++){
m[y*1024 + x] = 0xff0000ff | ((x & 0xff) << 8) | (y << 16);
}
}
glBindTexture(GL_TEXTURE_2D, 1);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 1024, 1024, 0, GL_RGBA, GL_UNSIGNED_BYTE, m);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
for (int y=0; y < 16; y++){
for (int x=0; x < 16; x++){
m[y*16 + x] = 0xff0000ff | (x<<12) | (y<<20);
}
}
glBindTexture(GL_TEXTURE_2D, 2);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 16, 16, 0, GL_RGBA, GL_UNSIGNED_BYTE, m);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
}
void doTest(uint32_t w, uint32_t h) {
int testState = stateClock / (doLoopStates * doSingleTestStates);
int texCount;
int extraMath;
int testSubState;
const int extraMathCount = 5;
const int texCount0SubTestCount = 2;
const int texCountNSubTestCount = 8;
if ( testState < extraMathCount * texCount0SubTestCount) {
texCount = 0; // Only 10 tests for texCount 0
extraMath = (testState / texCount0SubTestCount) % extraMathCount;
testSubState = testState % texCount0SubTestCount;
} else {
texCount = 1 + (testState - extraMathCount * texCount0SubTestCount) / (extraMathCount * texCountNSubTestCount);
extraMath = (testState / texCountNSubTestCount) % extraMathCount;
testSubState = testState % texCountNSubTestCount;
}
if (texCount >= 3) {
LOGI("done\n");
if (out) {
fclose(out);
out = NULL;
}
done = true;
return;
}
// LOGI("doTest %d %d %d\n", texCount, extraMath, testSubState);
switch(testSubState) {
case 0:
doSingleTest(w, h, false, texCount, false, extraMath, 1, 1);
break;
case 1:
doSingleTest(w, h, true, texCount, false, extraMath, 1, 1);
break;
case 2:
doSingleTest(w, h, false, texCount, true, extraMath, 1, 1);
break;
case 3:
doSingleTest(w, h, true, texCount, true, extraMath, 1, 1);
break;
case 4:
doSingleTest(w, h, false, texCount, false, extraMath, 2, 2);
break;
case 5:
doSingleTest(w, h, true, texCount, false, extraMath, 2, 2);
break;
case 6:
doSingleTest(w, h, false, texCount, true, extraMath, 2, 2);
break;
case 7:
doSingleTest(w, h, true, texCount, true, extraMath, 2, 2);
break;
}
}
extern "C" {
JNIEXPORT void JNICALL Java_com_android_glperf_GLPerfLib_init(JNIEnv * env, jobject obj, jint width, jint height);
JNIEXPORT void JNICALL Java_com_android_glperf_GLPerfLib_step(JNIEnv * env, jobject obj);
};
JNIEXPORT void JNICALL Java_com_android_glperf_GLPerfLib_init(JNIEnv * env, jobject obj, jint width, jint height)
{
if (!done) {
w = width;
h = height;
stateClock = 0;
done = false;
setupVA();
genTextures();
const char* fileName = "/sdcard/glperf.csv";
if (out != NULL) {
LOGI("Closing partially written output.n");
fclose(out);
out = NULL;
}
LOGI("Writing to: %s\n",fileName);
out = fopen(fileName, "w");
if (out == NULL) {
LOGE("Could not open: %s\n", fileName);
}
LOGI("\nvarColor, texCount, modulate, extraMath, texSize, blend, Mpps, DC60\n");
if (out) fprintf(out,"varColor, texCount, modulate, extraMath, texSize, blend, Mpps, DC60\r\n");
}
}
JNIEXPORT void JNICALL Java_com_android_glperf_GLPerfLib_step(JNIEnv * env, jobject obj)
{
if (! done) {
if (stateClock > 0 && ((stateClock & 1) == 0)) {
endTimer(saveBuf, w, h, 1, 100);
}
doTest(w, h);
stateClock++;
} else {
glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
}
}