// OpenGL ES 2.0 code #include #define LOG_TAG "GLPerf gl_code.cpp" #include #include #include #include #include #include #include #include FILE * out; static void printGLString(const char *name, GLenum s) { const char *v = (const char *) glGetString(s); LOGI("GL %s = %s\n", name, v); } static void checkGlError(const char* op) { for (GLint error = glGetError(); error; error = glGetError()) { LOGI("after %s() glError (0x%x)\n", op, error); } } GLuint loadShader(GLenum shaderType, const char* pSource) { GLuint shader = glCreateShader(shaderType); if (shader) { glShaderSource(shader, 1, &pSource, NULL); glCompileShader(shader); GLint compiled = 0; glGetShaderiv(shader, GL_COMPILE_STATUS, &compiled); if (!compiled) { GLint infoLen = 0; glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &infoLen); if (infoLen) { char* buf = (char*) malloc(infoLen); if (buf) { glGetShaderInfoLog(shader, infoLen, NULL, buf); LOGE("Could not compile shader %d:\n%s\n", shaderType, buf); free(buf); } glDeleteShader(shader); shader = 0; } } } return shader; } enum { A_POS, A_COLOR, A_TEX0, A_TEX1 }; GLuint createProgram(const char* pVertexSource, const char* pFragmentSource) { GLuint vertexShader = loadShader(GL_VERTEX_SHADER, pVertexSource); if (!vertexShader) { return 0; } GLuint pixelShader = loadShader(GL_FRAGMENT_SHADER, pFragmentSource); if (!pixelShader) { return 0; } GLuint program = glCreateProgram(); if (program) { glAttachShader(program, vertexShader); checkGlError("glAttachShader v"); glAttachShader(program, pixelShader); checkGlError("glAttachShader p"); glBindAttribLocation(program, A_POS, "a_pos"); glBindAttribLocation(program, A_COLOR, "a_color"); glBindAttribLocation(program, A_TEX0, "a_tex0"); glBindAttribLocation(program, A_TEX1, "a_tex1"); glLinkProgram(program); GLint linkStatus = GL_FALSE; glGetProgramiv(program, GL_LINK_STATUS, &linkStatus); if (linkStatus != GL_TRUE) { GLint bufLength = 0; glGetProgramiv(program, GL_INFO_LOG_LENGTH, &bufLength); if (bufLength) { char* buf = (char*) malloc(bufLength); if (buf) { glGetProgramInfoLog(program, bufLength, NULL, buf); LOGE("Could not link program:\n%s\n", buf); free(buf); } } glDeleteProgram(program); program = 0; } } checkGlError("createProgram"); glUseProgram(program); return program; } uint64_t getTime() { struct timespec t; clock_gettime(CLOCK_MONOTONIC, &t); return t.tv_nsec + ((uint64_t)t.tv_sec * 1000 * 1000 * 1000); } uint64_t gTime; void startTimer() { gTime = getTime(); } void endTimer(const char *str, int w, int h, double dc, int count) { uint64_t t2 = getTime(); double delta = ((double)(t2 - gTime)) / 1000000000; double pixels = dc * (w * h) * count; double mpps = pixels / delta / 1000000; double dc60 = pixels / delta / (w * h) / 60; LOGI("%s, %f, %f\n", str, mpps, dc60); if (out) { fprintf(out, "%s, %f, %f\r\n", str, mpps, dc60); fflush(out); } } static const char gVertexShader[] = "attribute vec4 a_pos;\n" "attribute vec4 a_color;\n" "attribute vec2 a_tex0;\n" "attribute vec2 a_tex1;\n" "varying vec4 v_color;\n" "varying vec2 v_tex0;\n" "varying vec2 v_tex1;\n" "void main() {\n" " v_color = a_color;\n" " v_tex0 = a_tex0;\n" " v_tex1 = a_tex1;\n" " gl_Position = a_pos;\n" "}\n"; static const char gShaderPrefix[] = "precision mediump float;\n" "uniform vec4 u_color;\n" "uniform vec4 u_0;\n" "uniform vec4 u_1;\n" "uniform vec4 u_2;\n" "uniform vec4 u_3;\n" "varying vec4 v_color;\n" "varying vec2 v_tex0;\n" "varying vec2 v_tex1;\n" "uniform sampler2D u_tex0;\n" "uniform sampler2D u_tex1;\n" "void main() {\n"; static const char gShaderPostfix[] = " gl_FragColor = c;\n" "}\n"; static char * append(char *d, const char *s) { size_t len = strlen(s); memcpy(d, s, len); return d + len; } static char * genShader( bool useVarColor, int texCount, bool modulateFirstTex, int extraMath) { char *str = (char *)calloc(16 * 1024, 1); char *tmp = append(str, gShaderPrefix); if (modulateFirstTex || !texCount) { if (useVarColor) { tmp = append(tmp, " vec4 c = v_color;\n"); } else { tmp = append(tmp, " vec4 c = u_color;\n"); } } else { tmp = append(tmp, " vec4 c = texture2D(u_tex0, v_tex0);\n"); } if (modulateFirstTex && texCount) { tmp = append(tmp, " c *= texture2D(u_tex0, v_tex0);\n"); } if (texCount > 1) { tmp = append(tmp, " c *= texture2D(u_tex1, v_tex1);\n"); } if (extraMath > 0) { tmp = append(tmp, " c *= u_0;\n"); } if (extraMath > 1) { tmp = append(tmp, " c *= u_1;\n"); } if (extraMath > 2) { tmp = append(tmp, " c *= u_2;\n"); } if (extraMath > 3) { tmp = append(tmp, " c *= u_3;\n"); } tmp = append(tmp, gShaderPostfix); tmp[0] = 0; //LOGI("%s", str); return str; } static void setupVA() { static const float vtx[] = { -2.0f,-1.0f, 1.0f,-1.0f, -2.0f, 1.0f, 1.0f, 1.0f }; static const float color[] = { 1.0f,0.0f,1.0f,1.0f, 0.0f,0.0f,1.0f,1.0f, 1.0f,1.0f,0.0f,1.0f, 1.0f,1.0f,1.0f,1.0f }; static const float tex0[] = { 0.0f,0.0f, 1.0f,0.0f, 1.0f,1.0f, 0.0f,1.0f }; static const float tex1[] = { 1.0f,0.0f, 1.0f,1.0f, 0.0f,1.0f, 0.0f,0.0f }; glEnableVertexAttribArray(A_POS); glEnableVertexAttribArray(A_COLOR); glEnableVertexAttribArray(A_TEX0); glEnableVertexAttribArray(A_TEX1); glVertexAttribPointer(A_POS, 2, GL_FLOAT, false, 8, vtx); glVertexAttribPointer(A_COLOR, 4, GL_FLOAT, false, 16, color); glVertexAttribPointer(A_TEX0, 2, GL_FLOAT, false, 8, tex0); glVertexAttribPointer(A_TEX1, 2, GL_FLOAT, false, 8, tex1); } ////////////////////////// // Width and height of the screen uint32_t w; uint32_t h; // The stateClock starts at zero and increments by 1 every time we draw a frame. It is used to control which phase of the test we are in. int stateClock; const int doLoopStates = 2; const int doSingleTestStates = 2; bool done; // Saves the parameters of the test (so we can print them out when we finish the timing.) char saveBuf[1024]; static void doLoop(uint32_t w, uint32_t h, const char *str) { int doLoopState = stateClock % doLoopStates; // LOGI("doLoop %d\n", doLoopState); switch(doLoopState) { case 0: glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); break; case 1: strcpy(saveBuf, str); startTimer(); glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT); for (int ct=0; ct < 100; ct++) { glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); } break; } } static void doSingleTest(uint32_t w, uint32_t h, bool useVarColor, int texCount, bool modulateFirstTex, int extraMath, int tex0, int tex1) { int doSingleTestState = (stateClock / doLoopStates) % doSingleTestStates; // LOGI("doSingleTest %d\n", doSingleTestState); switch (doSingleTestState) { case 0: { char *pgmTxt = genShader(useVarColor, texCount, modulateFirstTex, extraMath); int pgm = createProgram(gVertexShader, pgmTxt); if (!pgm) { LOGE("error running test\n"); return; } int loc = glGetUniformLocation(pgm, "u_tex0"); //LOGI("loc = %i \n", loc); if (loc >= 0) glUniform1i(loc, 0); loc = glGetUniformLocation(pgm, "u_tex1"); if (loc >= 0) glUniform1i(loc, 1); loc = glGetUniformLocation(pgm, "u_color"); if (loc >= 0) glUniform4f(loc, 1.f, 0.4f, 0.6f, 0.8f); loc = glGetUniformLocation(pgm, "u_0"); if (loc >= 0) glUniform4f(loc, 1.f, 0.4f, 0.6f, 0.8f); loc = glGetUniformLocation(pgm, "u_1"); if (loc >= 0) glUniform4f(loc, 0.7f, 0.8f, 0.6f, 0.8f); loc = glGetUniformLocation(pgm, "u_2"); if (loc >= 0) glUniform4f(loc, 0.9f, 0.6f, 0.7f, 1.0f); loc = glGetUniformLocation(pgm, "u_3"); if (loc >= 0) glUniform4f(loc, 0.88f, 0.2f, 0.4f, 0.2f); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, tex0); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, tex1); glActiveTexture(GL_TEXTURE0); glBlendFunc(GL_ONE, GL_ONE); glDisable(GL_BLEND); char str2[1024]; sprintf(str2, "%i, %i, %i, %i, %i, 0", useVarColor, texCount, modulateFirstTex, extraMath, tex0); doLoop(w, h, str2); } break; case 1: { char str2[1024]; glEnable(GL_BLEND); sprintf(str2, "%i, %i, %i, %i, %i, 1", useVarColor, texCount, modulateFirstTex, extraMath, tex0); doLoop(w, h, str2); } break; } } void genTextures() { uint32_t *m = (uint32_t *)malloc(1024*1024*4); for (int y=0; y < 1024; y++){ for (int x=0; x < 1024; x++){ m[y*1024 + x] = 0xff0000ff | ((x & 0xff) << 8) | (y << 16); } } glBindTexture(GL_TEXTURE_2D, 1); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 1024, 1024, 0, GL_RGBA, GL_UNSIGNED_BYTE, m); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); for (int y=0; y < 16; y++){ for (int x=0; x < 16; x++){ m[y*16 + x] = 0xff0000ff | (x<<12) | (y<<20); } } glBindTexture(GL_TEXTURE_2D, 2); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 16, 16, 0, GL_RGBA, GL_UNSIGNED_BYTE, m); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); } void doTest(uint32_t w, uint32_t h) { int testState = stateClock / (doLoopStates * doSingleTestStates); int texCount; int extraMath; int testSubState; const int extraMathCount = 5; const int texCount0SubTestCount = 2; const int texCountNSubTestCount = 8; if ( testState < extraMathCount * texCount0SubTestCount) { texCount = 0; // Only 10 tests for texCount 0 extraMath = (testState / texCount0SubTestCount) % extraMathCount; testSubState = testState % texCount0SubTestCount; } else { texCount = 1 + (testState - extraMathCount * texCount0SubTestCount) / (extraMathCount * texCountNSubTestCount); extraMath = (testState / texCountNSubTestCount) % extraMathCount; testSubState = testState % texCountNSubTestCount; } if (texCount >= 3) { LOGI("done\n"); if (out) { fclose(out); out = NULL; } done = true; return; } // LOGI("doTest %d %d %d\n", texCount, extraMath, testSubState); switch(testSubState) { case 0: doSingleTest(w, h, false, texCount, false, extraMath, 1, 1); break; case 1: doSingleTest(w, h, true, texCount, false, extraMath, 1, 1); break; case 2: doSingleTest(w, h, false, texCount, true, extraMath, 1, 1); break; case 3: doSingleTest(w, h, true, texCount, true, extraMath, 1, 1); break; case 4: doSingleTest(w, h, false, texCount, false, extraMath, 2, 2); break; case 5: doSingleTest(w, h, true, texCount, false, extraMath, 2, 2); break; case 6: doSingleTest(w, h, false, texCount, true, extraMath, 2, 2); break; case 7: doSingleTest(w, h, true, texCount, true, extraMath, 2, 2); break; } } extern "C" { JNIEXPORT void JNICALL Java_com_android_glperf_GLPerfLib_init(JNIEnv * env, jobject obj, jint width, jint height); JNIEXPORT void JNICALL Java_com_android_glperf_GLPerfLib_step(JNIEnv * env, jobject obj); }; JNIEXPORT void JNICALL Java_com_android_glperf_GLPerfLib_init(JNIEnv * env, jobject obj, jint width, jint height) { if (!done) { w = width; h = height; stateClock = 0; done = false; setupVA(); genTextures(); const char* fileName = "/sdcard/glperf.csv"; if (out != NULL) { LOGI("Closing partially written output.n"); fclose(out); out = NULL; } LOGI("Writing to: %s\n",fileName); out = fopen(fileName, "w"); if (out == NULL) { LOGE("Could not open: %s\n", fileName); } LOGI("\nvarColor, texCount, modulate, extraMath, texSize, blend, Mpps, DC60\n"); if (out) fprintf(out,"varColor, texCount, modulate, extraMath, texSize, blend, Mpps, DC60\r\n"); } } JNIEXPORT void JNICALL Java_com_android_glperf_GLPerfLib_step(JNIEnv * env, jobject obj) { if (! done) { if (stateClock > 0 && ((stateClock & 1) == 0)) { endTimer(saveBuf, w, h, 1, 100); } doTest(w, h); stateClock++; } else { glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT); } }