StringBlock instances containing UTF-8 strings use a cache to convert
into UTF-16, but using that cache and then using a JNI call to NewString
causes the UTF-8 string as well as two copies of the UTF-16 string to
be held in memory. Getting the UTF-8 string directly from the StringPool
eliminates one copy of the UTF-16 string being held in memory.
This is part 1. Part 2 will include ResXMLParser optimizations.
Change-Id: Ibd4509a485db746d59cd4b9501f544877139276c
Add a Flattenable interface to libutils which can be used to flatten
an object into bytestream + filedescriptor stream.
Parcel is modified to handle Flattenable. And GraphicBuffer implements
Flattenable.
Except for the overlay classes libui is now independent of libbinder.
Unicode.cpp used a packed data table for character data that essentially
duplicated ICU's functionality.
Change-Id: Ia68fe4ac94e89dc68d9a3f45f33f6e648a5500b7
Remove some utility functions for discovering character data
that ICU probably took over a while ago.
Change-Id: I97abe4de2f51eb2bf48679941258bc501184c3dc
The device mode is now called ui mode. Furthermore is the order of
precedence for the resources now in such a way that the ui mode needs
to be specified after the orientation and before the density.
The ui mode can be set, like it is done for the locale, as follows:
IActivityManager am = ActivityManagerNative.getDefault();
Configuration config = am.getConfiguration();
config.uiMode = Configuration.UI_MODE_TYPE_CAR | Configuration.UI_MODE_NIGHT_ANY;
am.updateConfiguration(config);
To allow users to disable the car mode and set the night mode the IUiModeManager
interface is used.
The automatic night mode switching will be added in a separate change.
A typo caused GL_AMBIENT_AND_DIFFUSE to only set the the ambient color.
Fix another typo which caused the viewer position to be wrong for
specular highlights.
Switch back to eye-space lighting, since there are still some issues
with some demos (San Angeles in particular).
At some point the implementation became complicated because of
SurfaceFlinger's special needs, since we are now relying on gralloc
we can go back to much simpler MemoryDealer.
Removed HeapInterface and AllocatorInterface, since those don't need
to be paramterized anymore. Merged SimpleMemory and Allocation.
Made SimplisticAllocator non virtual.
Removed MemoryDealer flags (READ_ONLY, PAGE_ALIGNED)
Removed a lot of unneeded code.
Allows "aapt dump --values resource" to print out whether a string in a
ResStringPool is in UTF-8 or UTF-16 encoding.
Change-Id: I6478884a70a3b46fee862dece6cb33454fc34843
This is a very simply implementation: upon receiving an IPC, if the handling
thread is at a background priority (the driver will have taken care of
propagating this from the calling thread), then stick it in to the background
scheduling group. Plus an API to turn this off for the process, which is
used by the system process.
This also pulls some of the code for managing scheduling classes out of
the Process JNI wrappers and in to some convenience methods in thread.h.
Allows the use of UTF-8 for packing resources instead of the
default of UTF-16 for Java. When strings are extracted from the
ResStringPool, they are converted to UTF-16 and the result is
cached for subsequent calls.
When using aapt to package, add in the "-8" switch to pack the
resources using UTF-8. This will result in the value, key, and
type strings as well as the compiled XML string values taking
significantly less space in the final application package in
most scenarios.
Change-Id: I129483f8b3d3b1c5869dced05cb525e494a6c83a
Surface::validate() could sometimes dereference a null pointer before checking it wasn't null.
This will prevent the application to crash when given bad parameters or used incorrectly.
However, the bug above probably has another cause.
we lost the concept of vertical stride when moving video playback to EGLImage.
Here we bring it back in a somewhat hacky-way that will work only for the
softgl/mdp backend.
Use EGLImageKHR instead of copybit directly.
We now have the basis to use streaming YUV textures (well, in fact
we already are). When/if we use the GPU instead of the MDP we'll
need to make sure it supports the appropriate YUV format.
Also make sure we compile if EGL_ANDROID_image_native_buffer is not supported
This also fixes [2152536] ANR in browser
When SF is enqueuing buffers faster than SF dequeues them.
The update flag in SF is not counted and under some situations SF will only
dequeue the first buffer. The state at this point is not technically
corrupted, it's valid, but just delayed by one buffer.
In the case of the Browser ANR, because the last enqueued buffer was delayed
the resizing of the current buffer couldn't happen.
The system would always fall back onto its feet if anything -else- in
tried to draw, because the "late" buffer would be picked up then.
A window is created and the browser is about to render into it the
very first time, at that point it does an IPC to SF to request a new
buffer. Meanwhile, the window manager removes that window from the
list and the shared memory block it uses is marked as invalid.
However, at that point, another window is created and is given the
same index (that just go freed), but a different identity and resets
the "invalid" bit in the shared block. When we go back to the buffer
allocation code, we're stuck because the surface we're allocating for
is gone and we don't detect it's invalid because the invalid bit has
been reset.
It is not sufficient to check for the invalid bit, I should
also check that identities match.
When EGLImage extension is not available, SurfaceFlinger will fallback to using
glTexImage2D and glTexSubImage2D instead, which requires 50% more memory and an
extra copy. However this code path has never been exercised and had some bugs
which this patch fix.
Mainly the scale factor wasn't computed right when falling back on glDrawElements.
We also fallback to this mode of operation if a buffer doesn't have the adequate
usage bits for EGLImage usage.
This changes only code that is currently not executed. Some refactoring was needed to
keep the change clean. This doesn't change anything functionaly.
The ANR is caused by SurfaceFlinger waiting for buffers of a removed surface to become availlable.
When it is removed from the current list, a Surface is marked as NO_INIT, which causes SF to return
immediately in the above case. For some reason, the surface here wasn't marked as NO_INIT.
This change makes the code more robust by always (irregadless or errors) setting the NO_INIT status
in all code paths where a surface is removed from the list.
Additionaly added more information in the logs, should this happen again.
a new method, compostionComplete() is added to the framebuffer hal, it is used by surfaceflinger to signal the driver that the composition is complete, BEFORE it releases its client. This gives a chance to the driver to
This implements support for devices whose hardware can hide
their navigation keys. It works much like the existing keyboardHidden
configuration, and for compatibility uses the same configuration
change bit.
Also add FLAG_TURN_ON_SCREEN for windows, which has the system
cause the screen to be turned on when the window is displayed.
Great fun when used with FLAG_SHOW_WHEN_LOCKED!
Change-Id: I0b867f19af85cfd8786a14cea194b34f7bdd9b7a
Take 2. We needed to check that the usage flags are "good enough" as opposed to "the same".
This reverts commit 8f17a762fe9e9f31e4e86cb60ff2bfb6b10fdee6.
we could have several thread waiting on the condition and they all need to wake-up.
also added a debug "mTid" field in the class, which contains the tid of the thread (as opposed to pthread_t), this
is useful when debugging under gdb for instance.
Rewrote SurfaceFlinger's buffer management from the ground-up.
The design now support an arbitrary number of buffers per surface, however the current implementation is limited to four. Currently only 2 buffers are used in practice.
The main new feature is to be able to dequeue all buffers at once (very important when there are only two).
A client can dequeue all buffers until there are none available, it can lock all buffers except the last one that is used for composition. The client will block then, until a new buffer is enqueued.
The current implementation requires that buffers are locked in the same order they are dequeued and enqueued in the same order they are locked. Only one buffer can be locked at a time.
eg. Allowed sequence: DQ, DQ, LOCK, Q, LOCK, Q
eg. Forbidden sequence: DQ, DQ, LOCK, LOCK, Q, Q
what happened is that the efective pixel format is calculated by SF but Surface nevew had access to it directly.
in particular this caused query(FORMAT) to return the requested format instead of the effective format.
This change makes SurfaceHolder.setType(GPU) obsolete (it's now ignored).
Added an API to android_native_window_t to allow extending the functionality without ever breaking binary compatibility. This is used to implement the new set_usage() API. This API needs to be called by software renderers because the default is to use usage flags suitable for h/w.
* changes:
update most gl tests to use EGLUtils
added two EGL helpers for selecting a config matching a certain pixelformat or native window type
added NATIVE_WINDOW_FORMAT attribute to android_native_window_t
The major things going on here:
- The MotionEvent API is now extended to included "pointer ID" information, for
applications to keep track of individual fingers as they move up and down.
PointerLocation has been updated to take advantage of this.
- The input system now has logic to generate MotionEvents with the new ID
information, synthesizing an identifier as new points are down and trying to
keep pointer ids consistent across events by looking at the distance between
the last and next set of pointers.
- We now support the new multitouch driver protocol, and will use that instead
of the old one if it is available. We do NOT use any finger id information
coming from the driver, but always synthesize pointer ids in user space.
(This is simply because we don't yet have a driver reporting this information
from which to base an implementation on.)
- Increase maximum number of fingers to 10. This code has only been used
with a driver that reports up to 2, so no idea how more will actually work.
- Oh and the input system can now detect and report physical DPAD devices.
there was several issues:
- when a surface was made non-current, the last frame wasn't shown and the buffer could stay locked
- when a surface was made current the 2nd time, it would not dequeue a new buffer
now, queue/dequeue are done when the surface is made current.
for this to work, a new query() hook had to be added on android_native_window_t, it allows to retrieve some attributes of a window (currently only width and height).
It turns out we were not returning the density for anything retrieved from a
TypedArray... which basically means any bitmap references from a layout or style...!!!
This is now fixed.
Also fiddle with the density compatibility mode to turn on smoothing in certain situations,
helping the look of things when they need to scale and we couldn't do the scaling at
load time.
Initial commit for review.
Integrated comments after patch set 1 review.
Fixed lockup in AudioFlinger::ThreadBase::exit()
Fixed lockup when playing tone with AudioPlocyService startTone()
This changes the names of the directories in aapt, to what you see
in the list of DpiTest resources. Also adds a new "long" configuration
for wide screens, which the platform sets appropriate, and introduces
a new kind of resizeability for not large but significantly larger
than normal screens which may have compatibility issues.
MemoryDealer, like all other subclasses of RefBase,MUST NOT BE stack-allocated, a protected destructor prohibits stack-allocation while allowing the baseclass to properly invoke the subclass' destructor once the refcount drops to 0.
This will be used to avoid unnecessarily listening to data from sensors
that function as event devices.
Signed-off-by: Mike Lockwood <lockwood@android.com>
The kernel can now publish a property describing the layout of virtual
hardware buttons on the touchscreen. These outside of the display
area (outside of the absolute x and y controller range the driver
reports), and when the user presses on them a key event will be
generated rather than a touch event.
This also includes a number of tweaks to the absolute controller
processing to make things work better on the new screens. For
example, we now reject down events outside of the display area.
Still left to be done is the ability to cancel a key down event,
so the user can slide up from the virtual keys to the touch screen
without causing a virtual key to execute.