replicant-frameworks_native/libs/surfaceflinger/Layer.cpp

582 lines
20 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <stdint.h>
#include <sys/types.h>
#include <cutils/properties.h>
#include <cutils/native_handle.h>
#include <utils/Errors.h>
#include <utils/Log.h>
#include <utils/StopWatch.h>
#include <ui/GraphicBuffer.h>
#include <ui/PixelFormat.h>
#include <surfaceflinger/Surface.h>
#include "clz.h"
#include "Layer.h"
#include "SurfaceFlinger.h"
#include "DisplayHardware/DisplayHardware.h"
#define DEBUG_RESIZE 0
namespace android {
// ---------------------------------------------------------------------------
const uint32_t Layer::typeInfo = LayerBaseClient::typeInfo | 4;
const char* const Layer::typeID = "Layer";
// ---------------------------------------------------------------------------
Layer::Layer(SurfaceFlinger* flinger, DisplayID display,
const sp<Client>& c, int32_t i)
: LayerBaseClient(flinger, display, c, i),
mSecure(false),
mNoEGLImageForSwBuffers(false),
2009-09-24 02:16:27 +00:00
mNeedsBlending(true),
mNeedsDithering(false)
{
// no OpenGL operation is possible here, since we might not be
// in the OpenGL thread.
mFrontBufferIndex = lcblk->getFrontBuffer();
}
Layer::~Layer()
{
destroy();
// the actual buffers will be destroyed here
}
void Layer::destroy()
{
for (size_t i=0 ; i<NUM_BUFFERS ; i++) {
if (mTextures[i].name != -1U) {
glDeleteTextures(1, &mTextures[i].name);
mTextures[i].name = -1U;
}
if (mTextures[i].image != EGL_NO_IMAGE_KHR) {
EGLDisplay dpy(mFlinger->graphicPlane(0).getEGLDisplay());
eglDestroyImageKHR(dpy, mTextures[i].image);
mTextures[i].image = EGL_NO_IMAGE_KHR;
}
Mutex::Autolock _l(mLock);
mBuffers[i].clear();
mWidth = mHeight = 0;
}
mSurface.clear();
}
sp<LayerBaseClient::Surface> Layer::createSurface() const
{
return mSurface;
}
status_t Layer::ditch()
{
// the layer is not on screen anymore. free as much resources as possible
mFreezeLock.clear();
destroy();
return NO_ERROR;
}
status_t Layer::setBuffers( uint32_t w, uint32_t h,
PixelFormat format, uint32_t flags)
{
2009-09-24 02:16:27 +00:00
// this surfaces pixel format
PixelFormatInfo info;
status_t err = getPixelFormatInfo(format, &info);
if (err) return err;
2009-09-24 02:16:27 +00:00
// the display's pixel format
const DisplayHardware& hw(graphicPlane(0).displayHardware());
PixelFormatInfo displayInfo;
getPixelFormatInfo(hw.getFormat(), &displayInfo);
const uint32_t hwFlags = hw.getFlags();
mFormat = format;
mWidth = w;
mHeight = h;
mSecure = (flags & ISurfaceComposer::eSecure) ? true : false;
mNeedsBlending = (info.h_alpha - info.l_alpha) > 0;
mNoEGLImageForSwBuffers = !(hwFlags & DisplayHardware::CACHED_BUFFERS);
2009-09-24 02:16:27 +00:00
// we use the red index
int displayRedSize = displayInfo.getSize(PixelFormatInfo::INDEX_RED);
int layerRedsize = info.getSize(PixelFormatInfo::INDEX_RED);
mNeedsDithering = layerRedsize > displayRedSize;
for (size_t i=0 ; i<NUM_BUFFERS ; i++) {
mBuffers[i] = new GraphicBuffer();
}
mSurface = new SurfaceLayer(mFlinger, clientIndex(), this);
return NO_ERROR;
}
void Layer::reloadTexture(const Region& dirty)
{
Mutex::Autolock _l(mLock);
sp<GraphicBuffer> buffer(getFrontBufferLocked());
if (buffer == NULL) {
// this situation can happen if we ran out of memory for instance.
// not much we can do. continue to use whatever texture was bound
// to this context.
return;
}
const int index = mFrontBufferIndex;
// create the new texture name if needed
if (UNLIKELY(mTextures[index].name == -1U)) {
mTextures[index].name = createTexture();
mTextures[index].width = 0;
mTextures[index].height = 0;
}
#ifdef EGL_ANDROID_image_native_buffer
if (mFlags & DisplayHardware::DIRECT_TEXTURE) {
if (buffer->usage & GraphicBuffer::USAGE_HW_TEXTURE) {
if (mTextures[index].dirty) {
if (initializeEglImage(buffer, &mTextures[index]) != NO_ERROR) {
// not sure what we can do here...
mFlags &= ~DisplayHardware::DIRECT_TEXTURE;
goto slowpath;
}
}
} else {
if (mHybridBuffer==0 || (mHybridBuffer->width != buffer->width ||
mHybridBuffer->height != buffer->height)) {
mHybridBuffer.clear();
mHybridBuffer = new GraphicBuffer(
buffer->width, buffer->height, buffer->format,
GraphicBuffer::USAGE_SW_WRITE_OFTEN |
GraphicBuffer::USAGE_HW_TEXTURE);
if (initializeEglImage(
mHybridBuffer, &mTextures[0]) != NO_ERROR) {
// not sure what we can do here...
mFlags &= ~DisplayHardware::DIRECT_TEXTURE;
mHybridBuffer.clear();
goto slowpath;
}
}
GGLSurface t;
status_t res = buffer->lock(&t, GRALLOC_USAGE_SW_READ_OFTEN);
LOGE_IF(res, "error %d (%s) locking buffer %p",
res, strerror(res), buffer.get());
if (res == NO_ERROR) {
Texture* const texture(&mTextures[0]);
glBindTexture(GL_TEXTURE_2D, texture->name);
sp<GraphicBuffer> buf(mHybridBuffer);
void* vaddr;
res = buf->lock(GraphicBuffer::USAGE_SW_WRITE_OFTEN, &vaddr);
if (res == NO_ERROR) {
int bpp = 0;
switch (t.format) {
case HAL_PIXEL_FORMAT_RGB_565:
case HAL_PIXEL_FORMAT_RGBA_4444:
bpp = 2;
break;
case HAL_PIXEL_FORMAT_RGBA_8888:
case HAL_PIXEL_FORMAT_RGBX_8888:
bpp = 4;
break;
default:
if (isSupportedYuvFormat(t.format)) {
// just show the Y plane of YUV buffers
bpp = 1;
break;
}
// oops, we don't handle this format!
LOGE("layer %p, texture=%d, using format %d, which is not "
"supported by the GL", this, texture->name, t.format);
}
if (bpp) {
const Rect bounds(dirty.getBounds());
size_t src_stride = t.stride;
size_t dst_stride = buf->stride;
if (src_stride == dst_stride &&
bounds.width() == t.width &&
bounds.height() == t.height)
{
memcpy(vaddr, t.data, t.height * t.stride * bpp);
} else {
GLubyte const * src = t.data +
(bounds.left + bounds.top * src_stride) * bpp;
GLubyte * dst = (GLubyte *)vaddr +
(bounds.left + bounds.top * dst_stride) * bpp;
const size_t length = bounds.width() * bpp;
size_t h = bounds.height();
src_stride *= bpp;
dst_stride *= bpp;
while (h--) {
memcpy(dst, src, length);
dst += dst_stride;
src += src_stride;
}
}
}
buf->unlock();
}
buffer->unlock();
}
}
} else
#endif
{
slowpath:
for (size_t i=0 ; i<NUM_BUFFERS ; i++) {
mTextures[i].image = EGL_NO_IMAGE_KHR;
}
GGLSurface t;
status_t res = buffer->lock(&t, GRALLOC_USAGE_SW_READ_OFTEN);
LOGE_IF(res, "error %d (%s) locking buffer %p",
res, strerror(res), buffer.get());
if (res == NO_ERROR) {
loadTexture(&mTextures[0], dirty, t);
buffer->unlock();
}
}
}
void Layer::onDraw(const Region& clip) const
{
int index = mFrontBufferIndex;
if (mTextures[index].image == EGL_NO_IMAGE_KHR)
index = 0;
GLuint textureName = mTextures[index].name;
if (UNLIKELY(textureName == -1LU)) {
// the texture has not been created yet, this Layer has
// in fact never been drawn into. this happens frequently with
// SurfaceView.
clearWithOpenGL(clip);
return;
}
2009-06-24 01:08:22 +00:00
drawWithOpenGL(clip, mTextures[index]);
}
sp<GraphicBuffer> Layer::requestBuffer(int index, int usage)
{
sp<GraphicBuffer> buffer;
// this ensures our client doesn't go away while we're accessing
// the shared area.
sp<Client> ourClient(client.promote());
if (ourClient == 0) {
// oops, the client is already gone
return buffer;
}
/*
* This is called from the client's Surface::dequeue(). This can happen
* at any time, especially while we're in the middle of using the
* buffer 'index' as our front buffer.
*
* Make sure the buffer we're resizing is not the front buffer and has been
* dequeued. Once this condition is asserted, we are guaranteed that this
* buffer cannot become the front buffer under our feet, since we're called
* from Surface::dequeue()
*/
status_t err = lcblk->assertReallocate(index);
LOGE_IF(err, "assertReallocate(%d) failed (%s)", index, strerror(-err));
if (err != NO_ERROR) {
// the surface may have died
return buffer;
}
uint32_t w, h;
{ // scope for the lock
Mutex::Autolock _l(mLock);
w = mWidth;
h = mHeight;
buffer = mBuffers[index];
// destroy() could have been called before we get here, we log it
// because it's uncommon, and the code below should handle it
LOGW_IF(buffer==0,
"mBuffers[%d] is null (mWidth=%d, mHeight=%d)",
index, w, h);
mBuffers[index].clear();
}
const uint32_t effectiveUsage = getEffectiveUsage(usage);
if (buffer!=0 && buffer->getStrongCount() == 1) {
err = buffer->reallocate(w, h, mFormat, effectiveUsage);
} else {
// here we have to reallocate a new buffer because we could have a
// client in our process with a reference to it (eg: status bar),
// and we can't release the handle under its feet.
buffer.clear();
buffer = new GraphicBuffer(w, h, mFormat, effectiveUsage);
err = buffer->initCheck();
}
if (err || buffer->handle == 0) {
LOGE_IF(err || buffer->handle == 0,
"Layer::requestBuffer(this=%p), index=%d, w=%d, h=%d failed (%s)",
this, index, w, h, strerror(-err));
} else {
LOGD_IF(DEBUG_RESIZE,
"Layer::requestBuffer(this=%p), index=%d, w=%d, h=%d, handle=%p",
this, index, w, h, buffer->handle);
}
if (err == NO_ERROR && buffer->handle != 0) {
Mutex::Autolock _l(mLock);
if (mWidth && mHeight) {
// and we have new buffer
mBuffers[index] = buffer;
// texture is now dirty...
mTextures[index].dirty = true;
} else {
// oops we got killed while we were allocating the buffer
buffer.clear();
}
}
return buffer;
}
uint32_t Layer::getEffectiveUsage(uint32_t usage) const
{
/*
* buffers used for software rendering, but h/w composition
* are allocated with SW_READ_OFTEN | SW_WRITE_OFTEN | HW_TEXTURE
*
* buffers used for h/w rendering and h/w composition
* are allocated with HW_RENDER | HW_TEXTURE
*
* buffers used with h/w rendering and either NPOT or no egl_image_ext
* are allocated with SW_READ_RARELY | HW_RENDER
*
*/
if (mSecure) {
// secure buffer, don't store it into the GPU
usage = GraphicBuffer::USAGE_SW_READ_OFTEN |
GraphicBuffer::USAGE_SW_WRITE_OFTEN;
} else {
// it's allowed to modify the usage flags here, but generally
// the requested flags should be honored.
if (mNoEGLImageForSwBuffers) {
if (usage & GraphicBuffer::USAGE_HW_MASK) {
// request EGLImage for h/w buffers only
usage |= GraphicBuffer::USAGE_HW_TEXTURE;
}
} else {
// request EGLImage for all buffers
usage |= GraphicBuffer::USAGE_HW_TEXTURE;
}
}
return usage;
}
uint32_t Layer::doTransaction(uint32_t flags)
{
const Layer::State& front(drawingState());
const Layer::State& temp(currentState());
if ((front.requested_w != temp.requested_w) ||
(front.requested_h != temp.requested_h)) {
// the size changed, we need to ask our client to request a new buffer
LOGD_IF(DEBUG_RESIZE,
"resize (layer=%p), requested (%dx%d), "
"drawing (%d,%d), (%dx%d), (%dx%d)",
this,
int(temp.requested_w), int(temp.requested_h),
int(front.requested_w), int(front.requested_h),
int(mBuffers[0]->getWidth()), int(mBuffers[0]->getHeight()),
int(mBuffers[1]->getWidth()), int(mBuffers[1]->getHeight()));
// we're being resized and there is a freeze display request,
// acquire a freeze lock, so that the screen stays put
// until we've redrawn at the new size; this is to avoid
// glitches upon orientation changes.
if (mFlinger->hasFreezeRequest()) {
// if the surface is hidden, don't try to acquire the
// freeze lock, since hidden surfaces may never redraw
if (!(front.flags & ISurfaceComposer::eLayerHidden)) {
mFreezeLock = mFlinger->getFreezeLock();
}
}
// this will make sure LayerBase::doTransaction doesn't update
// the drawing state's size
Layer::State& editDraw(mDrawingState);
editDraw.requested_w = temp.requested_w;
editDraw.requested_h = temp.requested_h;
// record the new size, form this point on, when the client request a
// buffer, it'll get the new size.
setDrawingSize(temp.requested_w, temp.requested_h);
// all buffers need reallocation
lcblk->reallocate();
}
if (temp.sequence != front.sequence) {
if (temp.flags & ISurfaceComposer::eLayerHidden || temp.alpha == 0) {
// this surface is now hidden, so it shouldn't hold a freeze lock
// (it may never redraw, which is fine if it is hidden)
mFreezeLock.clear();
}
}
return LayerBase::doTransaction(flags);
}
void Layer::setDrawingSize(uint32_t w, uint32_t h) {
Mutex::Autolock _l(mLock);
mWidth = w;
mHeight = h;
}
// ----------------------------------------------------------------------------
// pageflip handling...
// ----------------------------------------------------------------------------
void Layer::lockPageFlip(bool& recomputeVisibleRegions)
{
ssize_t buf = lcblk->retireAndLock();
if (buf < NO_ERROR) {
//LOGW("nothing to retire (%s)", strerror(-buf));
// NOTE: here the buffer is locked because we will used
// for composition later in the loop
return;
}
// we retired a buffer, which becomes the new front buffer
mFrontBufferIndex = buf;
// get the dirty region
sp<GraphicBuffer> newFrontBuffer(getBuffer(buf));
const Region dirty(lcblk->getDirtyRegion(buf));
mPostedDirtyRegion = dirty.intersect( newFrontBuffer->getBounds() );
const Layer::State& front(drawingState());
if (newFrontBuffer->getWidth() == front.requested_w &&
newFrontBuffer->getHeight() == front.requested_h)
{
if ((front.w != front.requested_w) ||
(front.h != front.requested_h))
{
// Here we pretend the transaction happened by updating the
// current and drawing states. Drawing state is only accessed
// in this thread, no need to have it locked
Layer::State& editDraw(mDrawingState);
editDraw.w = editDraw.requested_w;
editDraw.h = editDraw.requested_h;
// We also need to update the current state so that we don't
// end-up doing too much work during the next transaction.
// NOTE: We actually don't need hold the transaction lock here
// because State::w and State::h are only accessed from
// this thread
Layer::State& editTemp(currentState());
editTemp.w = editDraw.w;
editTemp.h = editDraw.h;
// recompute visible region
recomputeVisibleRegions = true;
}
// we now have the correct size, unfreeze the screen
mFreezeLock.clear();
}
if (lcblk->getQueuedCount()) {
// signal an event if we have more buffers waiting
mFlinger->signalEvent();
}
if (!mPostedDirtyRegion.isEmpty()) {
reloadTexture( mPostedDirtyRegion );
}
}
void Layer::unlockPageFlip(
const Transform& planeTransform, Region& outDirtyRegion)
{
Region dirtyRegion(mPostedDirtyRegion);
if (!dirtyRegion.isEmpty()) {
mPostedDirtyRegion.clear();
// The dirty region is given in the layer's coordinate space
// transform the dirty region by the surface's transformation
// and the global transformation.
const Layer::State& s(drawingState());
const Transform tr(planeTransform * s.transform);
dirtyRegion = tr.transform(dirtyRegion);
// At this point, the dirty region is in screen space.
// Make sure it's constrained by the visible region (which
// is in screen space as well).
dirtyRegion.andSelf(visibleRegionScreen);
outDirtyRegion.orSelf(dirtyRegion);
}
if (visibleRegionScreen.isEmpty()) {
// an invisible layer should not hold a freeze-lock
// (because it may never be updated and thereore never release it)
mFreezeLock.clear();
}
}
void Layer::finishPageFlip()
{
status_t err = lcblk->unlock( mFrontBufferIndex );
LOGE_IF(err!=NO_ERROR,
"layer %p, buffer=%d wasn't locked!",
this, mFrontBufferIndex);
}
// ---------------------------------------------------------------------------
Layer::SurfaceLayer::SurfaceLayer(const sp<SurfaceFlinger>& flinger,
SurfaceID id, const sp<Layer>& owner)
: Surface(flinger, id, owner->getIdentity(), owner)
{
}
Layer::SurfaceLayer::~SurfaceLayer()
{
}
sp<GraphicBuffer> Layer::SurfaceLayer::requestBuffer(int index, int usage)
{
sp<GraphicBuffer> buffer;
sp<Layer> owner(getOwner());
if (owner != 0) {
LOGE_IF(uint32_t(index)>=NUM_BUFFERS,
"getBuffer() index (%d) out of range", index);
if (uint32_t(index) < NUM_BUFFERS) {
buffer = owner->requestBuffer(index, usage);
}
}
return buffer;
}
// ---------------------------------------------------------------------------
}; // namespace android