replicant-frameworks_native/include/private/opengles/gl_context.h
2009-06-22 18:09:09 -07:00

633 lines
17 KiB
C++

/*
* Copyright (C) 2006 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_OPENGLES_CONTEXT_H
#define ANDROID_OPENGLES_CONTEXT_H
#include <stdint.h>
#include <stddef.h>
#include <sys/types.h>
#include <pthread.h>
#ifdef HAVE_ANDROID_OS
#include <bionic_tls.h>
#endif
#include <private/pixelflinger/ggl_context.h>
#include <GLES/gl.h>
#include <GLES/glext.h>
namespace android {
const unsigned int OGLES_NUM_COMPRESSED_TEXTURE_FORMATS = 10;
class EGLTextureObject;
class EGLSurfaceManager;
class EGLBufferObjectManager;
namespace gl {
struct ogles_context_t;
struct matrixx_t;
struct transform_t;
struct buffer_t;
ogles_context_t* getGlContext();
template<typename T>
static inline void swap(T& a, T& b) {
T t(a); a = b; b = t;
}
template<typename T>
inline T max(T a, T b) {
return a<b ? b : a;
}
template<typename T>
inline T max(T a, T b, T c) {
return max(a, max(b, c));
}
template<typename T>
inline T min(T a, T b) {
return a<b ? a : b;
}
template<typename T>
inline T min(T a, T b, T c) {
return min(a, min(b, c));
}
template<typename T>
inline T min(T a, T b, T c, T d) {
return min(min(a,b), min(c,d));
}
// ----------------------------------------------------------------------------
// vertices
// ----------------------------------------------------------------------------
struct vec3_t {
union {
struct { GLfixed x, y, z; };
struct { GLfixed r, g, b; };
struct { GLfixed S, T, R; };
GLfixed v[3];
};
};
struct vec4_t {
union {
struct { GLfixed x, y, z, w; };
struct { GLfixed r, g, b, a; };
struct { GLfixed S, T, R, Q; };
GLfixed v[4];
};
};
struct vertex_t {
enum {
// these constant matter for our clipping
CLIP_L = 0x0001, // clipping flags
CLIP_R = 0x0002,
CLIP_B = 0x0004,
CLIP_T = 0x0008,
CLIP_N = 0x0010,
CLIP_F = 0x0020,
EYE = 0x0040,
RESERVED = 0x0080,
USER_CLIP_0 = 0x0100, // user clipping flags
USER_CLIP_1 = 0x0200,
USER_CLIP_2 = 0x0400,
USER_CLIP_3 = 0x0800,
USER_CLIP_4 = 0x1000,
USER_CLIP_5 = 0x2000,
LIT = 0x4000, // lighting has been applied
TT = 0x8000, // texture coords transformed
FRUSTUM_CLIP_ALL= 0x003F,
USER_CLIP_ALL = 0x3F00,
CLIP_ALL = 0x3F3F,
};
// the fields below are arranged to minimize d-cache usage
// we group together, by cache-line, the fields most likely to be used
union {
vec4_t obj;
vec4_t eye;
};
vec4_t clip;
uint32_t flags;
size_t index; // cache tag, and vertex index
GLfixed fog;
uint8_t locked;
uint8_t mru;
uint8_t reserved[2];
vec4_t window;
vec4_t color;
vec4_t texture[GGL_TEXTURE_UNIT_COUNT];
uint32_t reserved1[4];
inline void clear() {
flags = index = locked = mru = 0;
}
};
struct point_size_t {
GGLcoord size;
GLboolean smooth;
};
struct line_width_t {
GGLcoord width;
GLboolean smooth;
};
struct polygon_offset_t {
GLfixed factor;
GLfixed units;
GLboolean enable;
};
// ----------------------------------------------------------------------------
// arrays
// ----------------------------------------------------------------------------
struct array_t {
typedef void (*fetcher_t)(ogles_context_t*, GLfixed*, const GLvoid*);
fetcher_t fetch;
GLvoid const* physical_pointer;
GLint size;
GLsizei stride;
GLvoid const* pointer;
buffer_t const* bo;
uint16_t type;
GLboolean enable;
GLboolean pad;
GLsizei bounds;
void init(GLint, GLenum, GLsizei, const GLvoid *, const buffer_t*, GLsizei);
inline void resolve();
inline const GLubyte* element(GLint i) const {
return (const GLubyte*)physical_pointer + i * stride;
}
};
struct array_machine_t {
array_t vertex;
array_t normal;
array_t color;
array_t texture[GGL_TEXTURE_UNIT_COUNT];
uint8_t activeTexture;
uint8_t tmu;
uint16_t cull;
uint32_t flags;
GLenum indicesType;
buffer_t const* array_buffer;
buffer_t const* element_array_buffer;
void (*compileElements)(ogles_context_t*, vertex_t*, GLint, GLsizei);
void (*compileElement)(ogles_context_t*, vertex_t*, GLint);
void (*mvp_transform)(transform_t const*, vec4_t*, vec4_t const*);
void (*mv_transform)(transform_t const*, vec4_t*, vec4_t const*);
void (*tex_transform[2])(transform_t const*, vec4_t*, vec4_t const*);
void (*perspective)(ogles_context_t*c, vertex_t* v);
void (*clipVertex)(ogles_context_t* c, vertex_t* nv,
GGLfixed t, const vertex_t* s, const vertex_t* p);
void (*clipEye)(ogles_context_t* c, vertex_t* nv,
GGLfixed t, const vertex_t* s, const vertex_t* p);
};
struct vertex_cache_t {
enum {
// must be at least 4
// 3 vertice for triangles
// or 2 + 2 for indexed triangles w/ cache contention
VERTEX_BUFFER_SIZE = 8,
// must be a power of two and at least 3
VERTEX_CACHE_SIZE = 64, // 8 KB
INDEX_BITS = 16,
INDEX_MASK = ((1LU<<INDEX_BITS)-1),
INDEX_SEQ = 1LU<<INDEX_BITS,
};
vertex_t* vBuffer;
vertex_t* vCache;
uint32_t sequence;
void* base;
uint32_t total;
uint32_t misses;
int64_t startTime;
void init();
void uninit();
void clear();
void dump_stats(GLenum mode);
};
// ----------------------------------------------------------------------------
// fog
// ----------------------------------------------------------------------------
struct fog_t {
GLfixed density;
GLfixed start;
GLfixed end;
GLfixed invEndMinusStart;
GLenum mode;
GLfixed (*fog)(ogles_context_t* c, GLfixed z);
};
// ----------------------------------------------------------------------------
// user clip planes
// ----------------------------------------------------------------------------
const unsigned int OGLES_MAX_CLIP_PLANES = 6;
struct clip_plane_t {
vec4_t equation;
};
struct user_clip_planes_t {
clip_plane_t plane[OGLES_MAX_CLIP_PLANES];
uint32_t enable;
};
// ----------------------------------------------------------------------------
// lighting
// ----------------------------------------------------------------------------
const unsigned int OGLES_MAX_LIGHTS = 8;
struct light_t {
vec4_t ambient;
vec4_t diffuse;
vec4_t specular;
vec4_t implicitAmbient;
vec4_t implicitDiffuse;
vec4_t implicitSpecular;
vec4_t position; // position in eye space
vec4_t objPosition;
vec4_t normalizedObjPosition;
vec4_t spotDir;
vec4_t normalizedSpotDir;
GLfixed spotExp;
GLfixed spotCutoff;
GLfixed spotCutoffCosine;
GLfixed attenuation[3];
GLfixed rConstAttenuation;
GLboolean enable;
};
struct material_t {
vec4_t ambient;
vec4_t diffuse;
vec4_t specular;
vec4_t emission;
GLfixed shininess;
};
struct light_model_t {
vec4_t ambient;
GLboolean twoSide;
};
struct color_material_t {
GLenum face;
GLenum mode;
GLboolean enable;
};
struct lighting_t {
light_t lights[OGLES_MAX_LIGHTS];
material_t front;
light_model_t lightModel;
color_material_t colorMaterial;
uint32_t enabledLights;
GLboolean enable;
vec4_t implicitSceneEmissionAndAmbient;
GLenum shadeModel;
typedef void (*light_fct_t)(ogles_context_t*, vertex_t*);
void (*lightVertex)(ogles_context_t* c, vertex_t* v);
void (*lightTriangle)(ogles_context_t* c,
vertex_t* v0, vertex_t* v1, vertex_t* v2);
};
struct culling_t {
GLenum cullFace;
GLenum frontFace;
GLboolean enable;
};
// ----------------------------------------------------------------------------
// textures
// ----------------------------------------------------------------------------
struct texture_unit_t {
GLuint name;
EGLTextureObject* texture;
uint8_t dirty;
};
struct texture_state_t
{
texture_unit_t tmu[GGL_TEXTURE_UNIT_COUNT];
int active; // active tmu
EGLTextureObject* defaultTexture;
GGLContext* ggl;
uint8_t packAlignment;
uint8_t unpackAlignment;
};
// ----------------------------------------------------------------------------
// transformation and matrices
// ----------------------------------------------------------------------------
struct matrixf_t;
struct matrixx_t {
GLfixed m[16];
void load(const matrixf_t& rhs);
};
struct matrix_stack_t;
struct matrixf_t {
void loadIdentity();
void load(const matrixf_t& rhs);
inline GLfloat* editElements() { return m; }
inline GLfloat const* elements() const { return m; }
void set(const GLfixed* rhs);
void set(const GLfloat* rhs);
static void multiply(matrixf_t& r,
const matrixf_t& lhs, const matrixf_t& rhs);
void dump(const char* what);
private:
friend struct matrix_stack_t;
GLfloat m[16];
void load(const GLfixed* rhs);
void load(const GLfloat* rhs);
void multiply(const matrixf_t& rhs);
void translate(GLfloat x, GLfloat y, GLfloat z);
void scale(GLfloat x, GLfloat y, GLfloat z);
void rotate(GLfloat a, GLfloat x, GLfloat y, GLfloat z);
};
enum {
OP_IDENTITY = 0x00,
OP_TRANSLATE = 0x01,
OP_UNIFORM_SCALE = 0x02,
OP_SCALE = 0x05,
OP_ROTATE = 0x08,
OP_SKEW = 0x10,
OP_ALL = 0x1F
};
struct transform_t {
enum {
FLAGS_2D_PROJECTION = 0x1
};
matrixx_t matrix;
uint32_t flags;
uint32_t ops;
union {
struct {
void (*point2)(transform_t const* t, vec4_t*, vec4_t const*);
void (*point3)(transform_t const* t, vec4_t*, vec4_t const*);
void (*point4)(transform_t const* t, vec4_t*, vec4_t const*);
};
void (*pointv[3])(transform_t const* t, vec4_t*, vec4_t const*);
};
void loadIdentity();
void picker();
void dump(const char* what);
};
struct mvui_transform_t : public transform_t
{
void picker();
};
struct matrix_stack_t {
enum {
DO_PICKER = 0x1,
DO_FLOAT_TO_FIXED = 0x2
};
transform_t transform;
uint8_t maxDepth;
uint8_t depth;
uint8_t dirty;
uint8_t reserved;
matrixf_t *stack;
uint8_t *ops;
void init(int depth);
void uninit();
void loadIdentity();
void load(const GLfixed* rhs);
void load(const GLfloat* rhs);
void multiply(const matrixf_t& rhs);
void translate(GLfloat x, GLfloat y, GLfloat z);
void scale(GLfloat x, GLfloat y, GLfloat z);
void rotate(GLfloat a, GLfloat x, GLfloat y, GLfloat z);
GLint push();
GLint pop();
void validate();
matrixf_t& top() { return stack[depth]; }
const matrixf_t& top() const { return stack[depth]; }
uint32_t top_ops() const { return ops[depth]; }
inline bool isRigidBody() const {
return !(ops[depth] & ~(OP_TRANSLATE|OP_UNIFORM_SCALE|OP_ROTATE));
}
};
struct vp_transform_t {
transform_t transform;
matrixf_t matrix;
GLfloat zNear;
GLfloat zFar;
void loadIdentity();
};
struct transform_state_t {
enum {
MODELVIEW = 0x01,
PROJECTION = 0x02,
VIEWPORT = 0x04,
TEXTURE = 0x08,
MVUI = 0x10,
MVIT = 0x20,
MVP = 0x40,
};
matrix_stack_t *current;
matrix_stack_t modelview;
matrix_stack_t projection;
matrix_stack_t texture[GGL_TEXTURE_UNIT_COUNT];
// modelview * projection
transform_t mvp __attribute__((aligned(32)));
// viewport transformation
vp_transform_t vpt __attribute__((aligned(32)));
// same for 4-D vertices
transform_t mvp4;
// full modelview inverse transpose
transform_t mvit4;
// upper 3x3 of mv-inverse-transpose (for normals)
mvui_transform_t mvui;
GLenum matrixMode;
GLenum rescaleNormals;
uint32_t dirty;
void invalidate();
void update_mvp();
void update_mvit();
void update_mvui();
};
struct viewport_t {
GLint x;
GLint y;
GLsizei w;
GLsizei h;
struct {
GLint x;
GLint y;
} surfaceport;
struct {
GLint x;
GLint y;
GLsizei w;
GLsizei h;
} scissor;
};
// ----------------------------------------------------------------------------
// Lerping
// ----------------------------------------------------------------------------
struct compute_iterators_t
{
void initTriangle(
vertex_t const* v0,
vertex_t const* v1,
vertex_t const* v2);
void initLine(
vertex_t const* v0,
vertex_t const* v1);
inline void initLerp(vertex_t const* v0, uint32_t enables);
int iteratorsScale(int32_t it[3],
int32_t c0, int32_t c1, int32_t c2) const;
void iterators1616(GGLfixed it[3],
GGLfixed c0, GGLfixed c1, GGLfixed c2) const;
void iterators0032(int32_t it[3],
int32_t c0, int32_t c1, int32_t c2) const;
void iterators0032(int64_t it[3],
int32_t c0, int32_t c1, int32_t c2) const;
GGLcoord area() const { return m_area; }
private:
// don't change order of members here -- used by iterators.S
GGLcoord m_dx01, m_dy10, m_dx20, m_dy02;
GGLcoord m_x0, m_y0;
GGLcoord m_area;
uint8_t m_scale;
uint8_t m_area_scale;
uint8_t m_reserved[2];
};
// ----------------------------------------------------------------------------
// state
// ----------------------------------------------------------------------------
#ifdef HAVE_ANDROID_OS
// We have a dedicated TLS slot in bionic
inline void setGlThreadSpecific(ogles_context_t *value) {
((uint32_t *)__get_tls())[TLS_SLOT_OPENGL] = (uint32_t)value;
}
inline ogles_context_t* getGlThreadSpecific() {
return (ogles_context_t *)(((unsigned *)__get_tls())[TLS_SLOT_OPENGL]);
}
#else
extern pthread_key_t gGLKey;
inline void setGlThreadSpecific(ogles_context_t *value) {
pthread_setspecific(gGLKey, value);
}
inline ogles_context_t* getGlThreadSpecific() {
return static_cast<ogles_context_t*>(pthread_getspecific(gGLKey));
}
#endif
struct prims_t {
typedef ogles_context_t* GL;
void (*renderPoint)(GL, vertex_t*);
void (*renderLine)(GL, vertex_t*, vertex_t*);
void (*renderTriangle)(GL, vertex_t*, vertex_t*, vertex_t*);
};
struct ogles_context_t {
context_t rasterizer;
array_machine_t arrays __attribute__((aligned(32)));
texture_state_t textures;
transform_state_t transforms;
vertex_cache_t vc;
prims_t prims;
culling_t cull;
lighting_t lighting;
user_clip_planes_t clipPlanes;
compute_iterators_t lerp; __attribute__((aligned(32)));
vertex_t current;
vec4_t currentColorClamped;
vec3_t currentNormal;
viewport_t viewport;
point_size_t point;
line_width_t line;
polygon_offset_t polygonOffset;
fog_t fog;
uint32_t perspective : 1;
uint32_t transformTextures : 1;
EGLSurfaceManager* surfaceManager;
EGLBufferObjectManager* bufferObjectManager;
GLenum error;
static inline ogles_context_t* get() {
return getGlThreadSpecific();
}
};
}; // namespace gl
}; // namespace android
#endif // ANDROID_OPENGLES_CONTEXT_H