replicant-frameworks_native/libs/gui/SurfaceTexture.cpp
Jamie Gennis f3a4c96f7a Revert "SurfaceTexture: inherit from ConsumerBase"
This reverts commit ed059a8d75

Change-Id: I72542c2595771a40c2c88251e0d6eb54e305b99b
2012-08-20 14:50:31 -07:00

889 lines
29 KiB
C++

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "SurfaceTexture"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
//#define LOG_NDEBUG 0
#define GL_GLEXT_PROTOTYPES
#define EGL_EGLEXT_PROTOTYPES
#include <EGL/egl.h>
#include <EGL/eglext.h>
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#include <gui/IGraphicBufferAlloc.h>
#include <gui/ISurfaceComposer.h>
#include <gui/SurfaceComposerClient.h>
#include <gui/SurfaceTexture.h>
#include <private/gui/ComposerService.h>
#include <utils/Log.h>
#include <utils/String8.h>
#include <utils/Trace.h>
// This compile option makes SurfaceTexture use the EGL_KHR_fence_sync extension
// to synchronize access to the buffers. It will cause dequeueBuffer to stall,
// waiting for the GL reads for the buffer being dequeued to complete before
// allowing the buffer to be dequeued.
#ifdef USE_FENCE_SYNC
#ifdef ALLOW_DEQUEUE_CURRENT_BUFFER
#error "USE_FENCE_SYNC and ALLOW_DEQUEUE_CURRENT_BUFFER are incompatible"
#endif
#endif
// Macros for including the SurfaceTexture name in log messages
#define ST_LOGV(x, ...) ALOGV("[%s] "x, mName.string(), ##__VA_ARGS__)
#define ST_LOGD(x, ...) ALOGD("[%s] "x, mName.string(), ##__VA_ARGS__)
#define ST_LOGI(x, ...) ALOGI("[%s] "x, mName.string(), ##__VA_ARGS__)
#define ST_LOGW(x, ...) ALOGW("[%s] "x, mName.string(), ##__VA_ARGS__)
#define ST_LOGE(x, ...) ALOGE("[%s] "x, mName.string(), ##__VA_ARGS__)
namespace android {
// Transform matrices
static float mtxIdentity[16] = {
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1,
};
static float mtxFlipH[16] = {
-1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
1, 0, 0, 1,
};
static float mtxFlipV[16] = {
1, 0, 0, 0,
0, -1, 0, 0,
0, 0, 1, 0,
0, 1, 0, 1,
};
static float mtxRot90[16] = {
0, 1, 0, 0,
-1, 0, 0, 0,
0, 0, 1, 0,
1, 0, 0, 1,
};
static float mtxRot180[16] = {
-1, 0, 0, 0,
0, -1, 0, 0,
0, 0, 1, 0,
1, 1, 0, 1,
};
static float mtxRot270[16] = {
0, -1, 0, 0,
1, 0, 0, 0,
0, 0, 1, 0,
0, 1, 0, 1,
};
static void mtxMul(float out[16], const float a[16], const float b[16]);
// Get an ID that's unique within this process.
static int32_t createProcessUniqueId() {
static volatile int32_t globalCounter = 0;
return android_atomic_inc(&globalCounter);
}
SurfaceTexture::SurfaceTexture(GLuint tex, bool allowSynchronousMode,
GLenum texTarget, bool useFenceSync, const sp<BufferQueue> &bufferQueue) :
mCurrentTransform(0),
mCurrentTimestamp(0),
mFilteringEnabled(true),
mTexName(tex),
#ifdef USE_FENCE_SYNC
mUseFenceSync(useFenceSync),
#else
mUseFenceSync(false),
#endif
mTexTarget(texTarget),
mEglDisplay(EGL_NO_DISPLAY),
mEglContext(EGL_NO_CONTEXT),
mAbandoned(false),
mCurrentTexture(BufferQueue::INVALID_BUFFER_SLOT),
mAttached(true)
{
// Choose a name using the PID and a process-unique ID.
mName = String8::format("unnamed-%d-%d", getpid(), createProcessUniqueId());
ST_LOGV("SurfaceTexture");
if (bufferQueue == 0) {
ST_LOGV("Creating a new BufferQueue");
mBufferQueue = new BufferQueue(allowSynchronousMode);
}
else {
mBufferQueue = bufferQueue;
}
memcpy(mCurrentTransformMatrix, mtxIdentity,
sizeof(mCurrentTransformMatrix));
// Note that we can't create an sp<...>(this) in a ctor that will not keep a
// reference once the ctor ends, as that would cause the refcount of 'this'
// dropping to 0 at the end of the ctor. Since all we need is a wp<...>
// that's what we create.
wp<BufferQueue::ConsumerListener> listener;
sp<BufferQueue::ConsumerListener> proxy;
listener = static_cast<BufferQueue::ConsumerListener*>(this);
proxy = new BufferQueue::ProxyConsumerListener(listener);
status_t err = mBufferQueue->consumerConnect(proxy);
if (err != NO_ERROR) {
ST_LOGE("SurfaceTexture: error connecting to BufferQueue: %s (%d)",
strerror(-err), err);
} else {
mBufferQueue->setConsumerName(mName);
mBufferQueue->setConsumerUsageBits(DEFAULT_USAGE_FLAGS);
}
}
SurfaceTexture::~SurfaceTexture() {
ST_LOGV("~SurfaceTexture");
abandon();
}
status_t SurfaceTexture::setBufferCountServer(int bufferCount) {
Mutex::Autolock lock(mMutex);
return mBufferQueue->setBufferCountServer(bufferCount);
}
status_t SurfaceTexture::setDefaultBufferSize(uint32_t w, uint32_t h)
{
Mutex::Autolock lock(mMutex);
mDefaultWidth = w;
mDefaultHeight = h;
return mBufferQueue->setDefaultBufferSize(w, h);
}
status_t SurfaceTexture::updateTexImage() {
return SurfaceTexture::updateTexImage(NULL);
}
status_t SurfaceTexture::updateTexImage(BufferRejecter* rejecter) {
ATRACE_CALL();
ST_LOGV("updateTexImage");
Mutex::Autolock lock(mMutex);
status_t err = NO_ERROR;
if (mAbandoned) {
ST_LOGE("updateTexImage: SurfaceTexture is abandoned!");
return NO_INIT;
}
if (!mAttached) {
ST_LOGE("updateTexImage: SurfaceTexture is not attached to an OpenGL "
"ES context");
return INVALID_OPERATION;
}
EGLDisplay dpy = eglGetCurrentDisplay();
EGLContext ctx = eglGetCurrentContext();
if ((mEglDisplay != dpy && mEglDisplay != EGL_NO_DISPLAY) ||
dpy == EGL_NO_DISPLAY) {
ST_LOGE("updateTexImage: invalid current EGLDisplay");
return INVALID_OPERATION;
}
if ((mEglContext != ctx && mEglContext != EGL_NO_CONTEXT) ||
ctx == EGL_NO_CONTEXT) {
ST_LOGE("updateTexImage: invalid current EGLContext");
return INVALID_OPERATION;
}
mEglDisplay = dpy;
mEglContext = ctx;
BufferQueue::BufferItem item;
// In asynchronous mode the list is guaranteed to be one buffer
// deep, while in synchronous mode we use the oldest buffer.
err = mBufferQueue->acquireBuffer(&item);
if (err == NO_ERROR) {
int buf = item.mBuf;
// This buffer was newly allocated, so we need to clean up on our side
if (item.mGraphicBuffer != NULL) {
mEGLSlots[buf].mGraphicBuffer = 0;
if (mEGLSlots[buf].mEglImage != EGL_NO_IMAGE_KHR) {
eglDestroyImageKHR(dpy, mEGLSlots[buf].mEglImage);
mEGLSlots[buf].mEglImage = EGL_NO_IMAGE_KHR;
}
mEGLSlots[buf].mGraphicBuffer = item.mGraphicBuffer;
}
// we call the rejecter here, in case the caller has a reason to
// not accept this buffer. this is used by SurfaceFlinger to
// reject buffers which have the wrong size
if (rejecter && rejecter->reject(mEGLSlots[buf].mGraphicBuffer, item)) {
mBufferQueue->releaseBuffer(buf, dpy, EGL_NO_SYNC_KHR, item.mFence);
glBindTexture(mTexTarget, mTexName);
return NO_ERROR;
}
// Update the GL texture object. We may have to do this even when
// item.mGraphicBuffer == NULL, if we destroyed the EGLImage when
// detaching from a context but the buffer has not been re-allocated.
EGLImageKHR image = mEGLSlots[buf].mEglImage;
if (image == EGL_NO_IMAGE_KHR) {
if (mEGLSlots[buf].mGraphicBuffer == NULL) {
ST_LOGE("updateTexImage: buffer at slot %d is null", buf);
err = BAD_VALUE;
} else {
image = createImage(dpy, mEGLSlots[buf].mGraphicBuffer);
mEGLSlots[buf].mEglImage = image;
if (image == EGL_NO_IMAGE_KHR) {
// NOTE: if dpy was invalid, createImage() is guaranteed to
// fail. so we'd end up here.
err = UNKNOWN_ERROR;
}
}
}
if (err == NO_ERROR) {
GLint error;
while ((error = glGetError()) != GL_NO_ERROR) {
ST_LOGW("updateTexImage: clearing GL error: %#04x", error);
}
glBindTexture(mTexTarget, mTexName);
glEGLImageTargetTexture2DOES(mTexTarget, (GLeglImageOES)image);
while ((error = glGetError()) != GL_NO_ERROR) {
ST_LOGE("updateTexImage: error binding external texture image %p "
"(slot %d): %#04x", image, buf, error);
err = UNKNOWN_ERROR;
}
if (err == NO_ERROR) {
err = syncForReleaseLocked(dpy);
}
}
if (err != NO_ERROR) {
// Release the buffer we just acquired. It's not safe to
// release the old buffer, so instead we just drop the new frame.
mBufferQueue->releaseBuffer(buf, dpy, EGL_NO_SYNC_KHR, item.mFence);
return err;
}
ST_LOGV("updateTexImage: (slot=%d buf=%p) -> (slot=%d buf=%p)",
mCurrentTexture,
mCurrentTextureBuf != NULL ? mCurrentTextureBuf->handle : 0,
buf, item.mGraphicBuffer != NULL ? item.mGraphicBuffer->handle : 0);
// release old buffer
if (mCurrentTexture != BufferQueue::INVALID_BUFFER_SLOT) {
status_t status = mBufferQueue->releaseBuffer(mCurrentTexture, dpy,
mEGLSlots[mCurrentTexture].mFence,
mEGLSlots[mCurrentTexture].mReleaseFence);
mEGLSlots[mCurrentTexture].mFence = EGL_NO_SYNC_KHR;
mEGLSlots[mCurrentTexture].mReleaseFence.clear();
if (status == BufferQueue::STALE_BUFFER_SLOT) {
freeBufferLocked(mCurrentTexture);
} else if (status != NO_ERROR) {
ST_LOGE("updateTexImage: released invalid buffer");
err = status;
}
}
// Update the SurfaceTexture state.
mCurrentTexture = buf;
mCurrentTextureBuf = mEGLSlots[buf].mGraphicBuffer;
mCurrentCrop = item.mCrop;
mCurrentTransform = item.mTransform;
mCurrentScalingMode = item.mScalingMode;
mCurrentTimestamp = item.mTimestamp;
mCurrentFence = item.mFence;
computeCurrentTransformMatrix();
} else {
if (err < 0) {
ST_LOGE("updateTexImage failed on acquire %d", err);
}
// We always bind the texture even if we don't update its contents.
glBindTexture(mTexTarget, mTexName);
return OK;
}
return err;
}
void SurfaceTexture::setReleaseFence(int fenceFd) {
sp<Fence> fence(new Fence(fenceFd));
if (fenceFd == -1 || mCurrentTexture == BufferQueue::INVALID_BUFFER_SLOT)
return;
if (!mEGLSlots[mCurrentTexture].mReleaseFence.get()) {
mEGLSlots[mCurrentTexture].mReleaseFence = fence;
} else {
sp<Fence> mergedFence = Fence::merge(
String8("SurfaceTexture merged release"),
mEGLSlots[mCurrentTexture].mReleaseFence, fence);
if (!mergedFence.get()) {
ST_LOGE("failed to merge release fences");
// synchronization is broken, the best we can do is hope fences
// signal in order so the new fence will act like a union
mEGLSlots[mCurrentTexture].mReleaseFence = fence;
return;
}
mEGLSlots[mCurrentTexture].mReleaseFence = mergedFence;
}
}
status_t SurfaceTexture::detachFromContext() {
ATRACE_CALL();
ST_LOGV("detachFromContext");
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
ST_LOGE("detachFromContext: abandoned SurfaceTexture");
return NO_INIT;
}
if (!mAttached) {
ST_LOGE("detachFromContext: SurfaceTexture is not attached to a "
"context");
return INVALID_OPERATION;
}
EGLDisplay dpy = eglGetCurrentDisplay();
EGLContext ctx = eglGetCurrentContext();
if (mEglDisplay != dpy && mEglDisplay != EGL_NO_DISPLAY) {
ST_LOGE("detachFromContext: invalid current EGLDisplay");
return INVALID_OPERATION;
}
if (mEglContext != ctx && mEglContext != EGL_NO_CONTEXT) {
ST_LOGE("detachFromContext: invalid current EGLContext");
return INVALID_OPERATION;
}
if (dpy != EGL_NO_DISPLAY && ctx != EGL_NO_CONTEXT) {
status_t err = syncForReleaseLocked(dpy);
if (err != OK) {
return err;
}
glDeleteTextures(1, &mTexName);
}
// Because we're giving up the EGLDisplay we need to free all the EGLImages
// that are associated with it. They'll be recreated when the
// SurfaceTexture gets attached to a new OpenGL ES context (and thus gets a
// new EGLDisplay).
for (int i =0; i < BufferQueue::NUM_BUFFER_SLOTS; i++) {
EGLImageKHR img = mEGLSlots[i].mEglImage;
if (img != EGL_NO_IMAGE_KHR) {
eglDestroyImageKHR(mEglDisplay, img);
mEGLSlots[i].mEglImage = EGL_NO_IMAGE_KHR;
}
}
mEglDisplay = EGL_NO_DISPLAY;
mEglContext = EGL_NO_CONTEXT;
mAttached = false;
return OK;
}
status_t SurfaceTexture::attachToContext(GLuint tex) {
ATRACE_CALL();
ST_LOGV("attachToContext");
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
ST_LOGE("attachToContext: abandoned SurfaceTexture");
return NO_INIT;
}
if (mAttached) {
ST_LOGE("attachToContext: SurfaceTexture is already attached to a "
"context");
return INVALID_OPERATION;
}
EGLDisplay dpy = eglGetCurrentDisplay();
EGLContext ctx = eglGetCurrentContext();
if (dpy == EGL_NO_DISPLAY) {
ST_LOGE("attachToContext: invalid current EGLDisplay");
return INVALID_OPERATION;
}
if (ctx == EGL_NO_CONTEXT) {
ST_LOGE("attachToContext: invalid current EGLContext");
return INVALID_OPERATION;
}
// We need to bind the texture regardless of whether there's a current
// buffer.
glBindTexture(mTexTarget, tex);
if (mCurrentTextureBuf != NULL) {
// The EGLImageKHR that was associated with the slot was destroyed when
// the SurfaceTexture was detached from the old context, so we need to
// recreate it here.
EGLImageKHR image = createImage(dpy, mCurrentTextureBuf);
if (image == EGL_NO_IMAGE_KHR) {
return UNKNOWN_ERROR;
}
// Attach the current buffer to the GL texture.
glEGLImageTargetTexture2DOES(mTexTarget, (GLeglImageOES)image);
GLint error;
status_t err = OK;
while ((error = glGetError()) != GL_NO_ERROR) {
ST_LOGE("attachToContext: error binding external texture image %p "
"(slot %d): %#04x", image, mCurrentTexture, error);
err = UNKNOWN_ERROR;
}
// We destroy the EGLImageKHR here because the current buffer may no
// longer be associated with one of the buffer slots, so we have
// nowhere to to store it. If the buffer is still associated with a
// slot then another EGLImageKHR will be created next time that buffer
// gets acquired in updateTexImage.
eglDestroyImageKHR(dpy, image);
if (err != OK) {
return err;
}
}
mEglDisplay = dpy;
mEglContext = ctx;
mTexName = tex;
mAttached = true;
return OK;
}
status_t SurfaceTexture::syncForReleaseLocked(EGLDisplay dpy) {
ST_LOGV("syncForReleaseLocked");
if (mUseFenceSync && mCurrentTexture != BufferQueue::INVALID_BUFFER_SLOT) {
EGLSyncKHR fence = mEGLSlots[mCurrentTexture].mFence;
if (fence != EGL_NO_SYNC_KHR) {
// There is already a fence for the current slot. We need to wait
// on that before replacing it with another fence to ensure that all
// outstanding buffer accesses have completed before the producer
// accesses it.
EGLint result = eglClientWaitSyncKHR(dpy, fence, 0, 1000000000);
if (result == EGL_FALSE) {
ST_LOGE("syncForReleaseLocked: error waiting for previous "
"fence: %#x", eglGetError());
return UNKNOWN_ERROR;
} else if (result == EGL_TIMEOUT_EXPIRED_KHR) {
ST_LOGE("syncForReleaseLocked: timeout waiting for previous "
"fence");
return TIMED_OUT;
}
eglDestroySyncKHR(dpy, fence);
}
// Create a fence for the outstanding accesses in the current OpenGL ES
// context.
fence = eglCreateSyncKHR(dpy, EGL_SYNC_FENCE_KHR, NULL);
if (fence == EGL_NO_SYNC_KHR) {
ST_LOGE("syncForReleaseLocked: error creating fence: %#x",
eglGetError());
return UNKNOWN_ERROR;
}
glFlush();
mEGLSlots[mCurrentTexture].mFence = fence;
}
return OK;
}
bool SurfaceTexture::isExternalFormat(uint32_t format)
{
switch (format) {
// supported YUV formats
case HAL_PIXEL_FORMAT_YV12:
// Legacy/deprecated YUV formats
case HAL_PIXEL_FORMAT_YCbCr_422_SP:
case HAL_PIXEL_FORMAT_YCrCb_420_SP:
case HAL_PIXEL_FORMAT_YCbCr_422_I:
return true;
}
// Any OEM format needs to be considered
if (format>=0x100 && format<=0x1FF)
return true;
return false;
}
GLenum SurfaceTexture::getCurrentTextureTarget() const {
return mTexTarget;
}
void SurfaceTexture::getTransformMatrix(float mtx[16]) {
Mutex::Autolock lock(mMutex);
memcpy(mtx, mCurrentTransformMatrix, sizeof(mCurrentTransformMatrix));
}
void SurfaceTexture::setFilteringEnabled(bool enabled) {
Mutex::Autolock lock(mMutex);
bool needsRecompute = mFilteringEnabled != enabled;
mFilteringEnabled = enabled;
if (needsRecompute) {
computeCurrentTransformMatrix();
}
}
void SurfaceTexture::computeCurrentTransformMatrix() {
ST_LOGV("computeCurrentTransformMatrix");
float xform[16];
for (int i = 0; i < 16; i++) {
xform[i] = mtxIdentity[i];
}
if (mCurrentTransform & NATIVE_WINDOW_TRANSFORM_FLIP_H) {
float result[16];
mtxMul(result, xform, mtxFlipH);
for (int i = 0; i < 16; i++) {
xform[i] = result[i];
}
}
if (mCurrentTransform & NATIVE_WINDOW_TRANSFORM_FLIP_V) {
float result[16];
mtxMul(result, xform, mtxFlipV);
for (int i = 0; i < 16; i++) {
xform[i] = result[i];
}
}
if (mCurrentTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
float result[16];
mtxMul(result, xform, mtxRot90);
for (int i = 0; i < 16; i++) {
xform[i] = result[i];
}
}
sp<GraphicBuffer>& buf(mCurrentTextureBuf);
Rect cropRect = mCurrentCrop;
float tx = 0.0f, ty = 0.0f, sx = 1.0f, sy = 1.0f;
float bufferWidth = buf->getWidth();
float bufferHeight = buf->getHeight();
if (!cropRect.isEmpty()) {
float shrinkAmount = 0.0f;
if (mFilteringEnabled) {
// In order to prevent bilinear sampling beyond the edge of the
// crop rectangle we may need to shrink it by 2 texels in each
// dimension. Normally this would just need to take 1/2 a texel
// off each end, but because the chroma channels of YUV420 images
// are subsampled we may need to shrink the crop region by a whole
// texel on each side.
switch (buf->getPixelFormat()) {
case PIXEL_FORMAT_RGBA_8888:
case PIXEL_FORMAT_RGBX_8888:
case PIXEL_FORMAT_RGB_888:
case PIXEL_FORMAT_RGB_565:
case PIXEL_FORMAT_BGRA_8888:
case PIXEL_FORMAT_RGBA_5551:
case PIXEL_FORMAT_RGBA_4444:
// We know there's no subsampling of any channels, so we
// only need to shrink by a half a pixel.
shrinkAmount = 0.5;
break;
default:
// If we don't recognize the format, we must assume the
// worst case (that we care about), which is YUV420.
shrinkAmount = 1.0;
}
}
// Only shrink the dimensions that are not the size of the buffer.
if (cropRect.width() < bufferWidth) {
tx = (float(cropRect.left) + shrinkAmount) / bufferWidth;
sx = (float(cropRect.width()) - (2.0f * shrinkAmount)) /
bufferWidth;
}
if (cropRect.height() < bufferHeight) {
ty = (float(bufferHeight - cropRect.bottom) + shrinkAmount) /
bufferHeight;
sy = (float(cropRect.height()) - (2.0f * shrinkAmount)) /
bufferHeight;
}
}
float crop[16] = {
sx, 0, 0, 0,
0, sy, 0, 0,
0, 0, 1, 0,
tx, ty, 0, 1,
};
float mtxBeforeFlipV[16];
mtxMul(mtxBeforeFlipV, crop, xform);
// SurfaceFlinger expects the top of its window textures to be at a Y
// coordinate of 0, so SurfaceTexture must behave the same way. We don't
// want to expose this to applications, however, so we must add an
// additional vertical flip to the transform after all the other transforms.
mtxMul(mCurrentTransformMatrix, mtxFlipV, mtxBeforeFlipV);
}
nsecs_t SurfaceTexture::getTimestamp() {
ST_LOGV("getTimestamp");
Mutex::Autolock lock(mMutex);
return mCurrentTimestamp;
}
void SurfaceTexture::setFrameAvailableListener(
const sp<FrameAvailableListener>& listener) {
ST_LOGV("setFrameAvailableListener");
Mutex::Autolock lock(mMutex);
mFrameAvailableListener = listener;
}
EGLImageKHR SurfaceTexture::createImage(EGLDisplay dpy,
const sp<GraphicBuffer>& graphicBuffer) {
EGLClientBuffer cbuf = (EGLClientBuffer)graphicBuffer->getNativeBuffer();
EGLint attrs[] = {
EGL_IMAGE_PRESERVED_KHR, EGL_TRUE,
EGL_NONE,
};
EGLImageKHR image = eglCreateImageKHR(dpy, EGL_NO_CONTEXT,
EGL_NATIVE_BUFFER_ANDROID, cbuf, attrs);
if (image == EGL_NO_IMAGE_KHR) {
EGLint error = eglGetError();
ST_LOGE("error creating EGLImage: %#x", error);
}
return image;
}
sp<GraphicBuffer> SurfaceTexture::getCurrentBuffer() const {
Mutex::Autolock lock(mMutex);
return mCurrentTextureBuf;
}
Rect SurfaceTexture::getCurrentCrop() const {
Mutex::Autolock lock(mMutex);
Rect outCrop = mCurrentCrop;
if (mCurrentScalingMode == NATIVE_WINDOW_SCALING_MODE_SCALE_CROP) {
int32_t newWidth = mCurrentCrop.width();
int32_t newHeight = mCurrentCrop.height();
if (newWidth * mDefaultHeight > newHeight * mDefaultWidth) {
newWidth = newHeight * mDefaultWidth / mDefaultHeight;
ST_LOGV("too wide: newWidth = %d", newWidth);
} else if (newWidth * mDefaultHeight < newHeight * mDefaultWidth) {
newHeight = newWidth * mDefaultHeight / mDefaultWidth;
ST_LOGV("too tall: newHeight = %d", newHeight);
}
// The crop is too wide
if (newWidth < mCurrentCrop.width()) {
int32_t dw = (newWidth - mCurrentCrop.width())/2;
outCrop.left -=dw;
outCrop.right += dw;
// The crop is too tall
} else if (newHeight < mCurrentCrop.height()) {
int32_t dh = (newHeight - mCurrentCrop.height())/2;
outCrop.top -= dh;
outCrop.bottom += dh;
}
ST_LOGV("getCurrentCrop final crop [%d,%d,%d,%d]",
outCrop.left, outCrop.top,
outCrop.right,outCrop.bottom);
}
return outCrop;
}
uint32_t SurfaceTexture::getCurrentTransform() const {
Mutex::Autolock lock(mMutex);
return mCurrentTransform;
}
uint32_t SurfaceTexture::getCurrentScalingMode() const {
Mutex::Autolock lock(mMutex);
return mCurrentScalingMode;
}
sp<Fence> SurfaceTexture::getCurrentFence() const {
Mutex::Autolock lock(mMutex);
return mCurrentFence;
}
bool SurfaceTexture::isSynchronousMode() const {
Mutex::Autolock lock(mMutex);
return mBufferQueue->isSynchronousMode();
}
void SurfaceTexture::freeBufferLocked(int slotIndex) {
ST_LOGV("freeBufferLocked: slotIndex=%d", slotIndex);
mEGLSlots[slotIndex].mGraphicBuffer = 0;
if (slotIndex == mCurrentTexture) {
mCurrentTexture = BufferQueue::INVALID_BUFFER_SLOT;
}
EGLImageKHR img = mEGLSlots[slotIndex].mEglImage;
if (img != EGL_NO_IMAGE_KHR) {
ST_LOGV("destroying EGLImage dpy=%p img=%p", mEglDisplay, img);
eglDestroyImageKHR(mEglDisplay, img);
}
mEGLSlots[slotIndex].mEglImage = EGL_NO_IMAGE_KHR;
}
void SurfaceTexture::abandon() {
ST_LOGV("abandon");
Mutex::Autolock lock(mMutex);
if (!mAbandoned) {
mAbandoned = true;
mCurrentTextureBuf.clear();
// destroy all egl buffers
for (int i =0; i < BufferQueue::NUM_BUFFER_SLOTS; i++) {
freeBufferLocked(i);
}
// disconnect from the BufferQueue
mBufferQueue->consumerDisconnect();
mBufferQueue.clear();
}
}
void SurfaceTexture::setName(const String8& name) {
Mutex::Autolock _l(mMutex);
mName = name;
mBufferQueue->setConsumerName(name);
}
status_t SurfaceTexture::setDefaultBufferFormat(uint32_t defaultFormat) {
Mutex::Autolock lock(mMutex);
return mBufferQueue->setDefaultBufferFormat(defaultFormat);
}
status_t SurfaceTexture::setConsumerUsageBits(uint32_t usage) {
Mutex::Autolock lock(mMutex);
usage |= DEFAULT_USAGE_FLAGS;
return mBufferQueue->setConsumerUsageBits(usage);
}
status_t SurfaceTexture::setTransformHint(uint32_t hint) {
Mutex::Autolock lock(mMutex);
return mBufferQueue->setTransformHint(hint);
}
// Used for refactoring BufferQueue from SurfaceTexture
// Should not be in final interface once users of SurfaceTexture are clean up.
status_t SurfaceTexture::setSynchronousMode(bool enabled) {
Mutex::Autolock lock(mMutex);
return mBufferQueue->setSynchronousMode(enabled);
}
// Used for refactoring, should not be in final interface
sp<BufferQueue> SurfaceTexture::getBufferQueue() const {
Mutex::Autolock lock(mMutex);
return mBufferQueue;
}
void SurfaceTexture::onFrameAvailable() {
ST_LOGV("onFrameAvailable");
sp<FrameAvailableListener> listener;
{ // scope for the lock
Mutex::Autolock lock(mMutex);
listener = mFrameAvailableListener;
}
if (listener != NULL) {
ST_LOGV("actually calling onFrameAvailable");
listener->onFrameAvailable();
}
}
void SurfaceTexture::onBuffersReleased() {
ST_LOGV("onBuffersReleased");
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
// Nothing to do if we're already abandoned.
return;
}
uint32_t mask = 0;
mBufferQueue->getReleasedBuffers(&mask);
for (int i = 0; i < BufferQueue::NUM_BUFFER_SLOTS; i++) {
if (mask & (1 << i)) {
freeBufferLocked(i);
}
}
}
void SurfaceTexture::dump(String8& result) const
{
char buffer[1024];
dump(result, "", buffer, 1024);
}
void SurfaceTexture::dump(String8& result, const char* prefix,
char* buffer, size_t SIZE) const
{
Mutex::Autolock _l(mMutex);
snprintf(buffer, SIZE, "%smTexName=%d, mAbandoned=%d\n", prefix, mTexName,
int(mAbandoned));
result.append(buffer);
snprintf(buffer, SIZE,
"%snext : {crop=[%d,%d,%d,%d], transform=0x%02x, current=%d}\n",
prefix, mCurrentCrop.left,
mCurrentCrop.top, mCurrentCrop.right, mCurrentCrop.bottom,
mCurrentTransform, mCurrentTexture
);
result.append(buffer);
if (!mAbandoned) {
mBufferQueue->dump(result, prefix, buffer, SIZE);
}
}
static void mtxMul(float out[16], const float a[16], const float b[16]) {
out[0] = a[0]*b[0] + a[4]*b[1] + a[8]*b[2] + a[12]*b[3];
out[1] = a[1]*b[0] + a[5]*b[1] + a[9]*b[2] + a[13]*b[3];
out[2] = a[2]*b[0] + a[6]*b[1] + a[10]*b[2] + a[14]*b[3];
out[3] = a[3]*b[0] + a[7]*b[1] + a[11]*b[2] + a[15]*b[3];
out[4] = a[0]*b[4] + a[4]*b[5] + a[8]*b[6] + a[12]*b[7];
out[5] = a[1]*b[4] + a[5]*b[5] + a[9]*b[6] + a[13]*b[7];
out[6] = a[2]*b[4] + a[6]*b[5] + a[10]*b[6] + a[14]*b[7];
out[7] = a[3]*b[4] + a[7]*b[5] + a[11]*b[6] + a[15]*b[7];
out[8] = a[0]*b[8] + a[4]*b[9] + a[8]*b[10] + a[12]*b[11];
out[9] = a[1]*b[8] + a[5]*b[9] + a[9]*b[10] + a[13]*b[11];
out[10] = a[2]*b[8] + a[6]*b[9] + a[10]*b[10] + a[14]*b[11];
out[11] = a[3]*b[8] + a[7]*b[9] + a[11]*b[10] + a[15]*b[11];
out[12] = a[0]*b[12] + a[4]*b[13] + a[8]*b[14] + a[12]*b[15];
out[13] = a[1]*b[12] + a[5]*b[13] + a[9]*b[14] + a[13]*b[15];
out[14] = a[2]*b[12] + a[6]*b[13] + a[10]*b[14] + a[14]*b[15];
out[15] = a[3]*b[12] + a[7]*b[13] + a[11]*b[14] + a[15]*b[15];
}
}; // namespace android