59bfd2bbed
Adds some more safety checking for cases where we get an error while
trying to create the EGLImage. The checking puts the Layer into a
failed state after detecting an error, since the shadow queue may no
longer be synchronized.
Bug: 20957332
Change-Id: I68b4c40eab3e58731b875ed5752f2c7d17f14bcb
(cherry picked from commit 65476f3332
)
1537 lines
56 KiB
C++
1537 lines
56 KiB
C++
/*
|
|
* Copyright (C) 2007 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
|
|
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <sys/types.h>
|
|
#include <math.h>
|
|
|
|
#include <cutils/compiler.h>
|
|
#include <cutils/native_handle.h>
|
|
#include <cutils/properties.h>
|
|
|
|
#include <utils/Errors.h>
|
|
#include <utils/Log.h>
|
|
#include <utils/NativeHandle.h>
|
|
#include <utils/StopWatch.h>
|
|
#include <utils/Trace.h>
|
|
|
|
#include <ui/GraphicBuffer.h>
|
|
#include <ui/PixelFormat.h>
|
|
|
|
#include <gui/BufferItem.h>
|
|
#include <gui/Surface.h>
|
|
|
|
#include "clz.h"
|
|
#include "Colorizer.h"
|
|
#include "DisplayDevice.h"
|
|
#include "Layer.h"
|
|
#include "MonitoredProducer.h"
|
|
#include "SurfaceFlinger.h"
|
|
|
|
#include "DisplayHardware/HWComposer.h"
|
|
|
|
#include "RenderEngine/RenderEngine.h"
|
|
|
|
#define DEBUG_RESIZE 0
|
|
|
|
namespace android {
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
int32_t Layer::sSequence = 1;
|
|
|
|
Layer::Layer(SurfaceFlinger* flinger, const sp<Client>& client,
|
|
const String8& name, uint32_t w, uint32_t h, uint32_t flags)
|
|
: contentDirty(false),
|
|
sequence(uint32_t(android_atomic_inc(&sSequence))),
|
|
mFlinger(flinger),
|
|
mTextureName(-1U),
|
|
mPremultipliedAlpha(true),
|
|
mName("unnamed"),
|
|
mFormat(PIXEL_FORMAT_NONE),
|
|
mTransactionFlags(0),
|
|
mQueuedFrames(0),
|
|
mSidebandStreamChanged(false),
|
|
mCurrentTransform(0),
|
|
mCurrentScalingMode(NATIVE_WINDOW_SCALING_MODE_FREEZE),
|
|
mCurrentOpacity(true),
|
|
mRefreshPending(false),
|
|
mFrameLatencyNeeded(false),
|
|
mFiltering(false),
|
|
mNeedsFiltering(false),
|
|
mMesh(Mesh::TRIANGLE_FAN, 4, 2, 2),
|
|
mSecure(false),
|
|
mProtectedByApp(false),
|
|
mHasSurface(false),
|
|
mClientRef(client),
|
|
mPotentialCursor(false),
|
|
mQueueItemLock(),
|
|
mQueueItemCondition(),
|
|
mQueueItems(),
|
|
mLastFrameNumberReceived(0),
|
|
mUpdateTexImageFailed(false)
|
|
{
|
|
mCurrentCrop.makeInvalid();
|
|
mFlinger->getRenderEngine().genTextures(1, &mTextureName);
|
|
mTexture.init(Texture::TEXTURE_EXTERNAL, mTextureName);
|
|
|
|
uint32_t layerFlags = 0;
|
|
if (flags & ISurfaceComposerClient::eHidden)
|
|
layerFlags |= layer_state_t::eLayerHidden;
|
|
if (flags & ISurfaceComposerClient::eOpaque)
|
|
layerFlags |= layer_state_t::eLayerOpaque;
|
|
|
|
if (flags & ISurfaceComposerClient::eNonPremultiplied)
|
|
mPremultipliedAlpha = false;
|
|
|
|
mName = name;
|
|
|
|
mCurrentState.active.w = w;
|
|
mCurrentState.active.h = h;
|
|
mCurrentState.active.crop.makeInvalid();
|
|
mCurrentState.z = 0;
|
|
mCurrentState.alpha = 0xFF;
|
|
mCurrentState.layerStack = 0;
|
|
mCurrentState.flags = layerFlags;
|
|
mCurrentState.sequence = 0;
|
|
mCurrentState.transform.set(0, 0);
|
|
mCurrentState.requested = mCurrentState.active;
|
|
|
|
// drawing state & current state are identical
|
|
mDrawingState = mCurrentState;
|
|
|
|
nsecs_t displayPeriod =
|
|
flinger->getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY);
|
|
mFrameTracker.setDisplayRefreshPeriod(displayPeriod);
|
|
}
|
|
|
|
void Layer::onFirstRef() {
|
|
// Creates a custom BufferQueue for SurfaceFlingerConsumer to use
|
|
sp<IGraphicBufferProducer> producer;
|
|
sp<IGraphicBufferConsumer> consumer;
|
|
BufferQueue::createBufferQueue(&producer, &consumer);
|
|
mProducer = new MonitoredProducer(producer, mFlinger);
|
|
mSurfaceFlingerConsumer = new SurfaceFlingerConsumer(consumer, mTextureName);
|
|
mSurfaceFlingerConsumer->setConsumerUsageBits(getEffectiveUsage(0));
|
|
mSurfaceFlingerConsumer->setContentsChangedListener(this);
|
|
mSurfaceFlingerConsumer->setName(mName);
|
|
|
|
#ifdef TARGET_DISABLE_TRIPLE_BUFFERING
|
|
#warning "disabling triple buffering"
|
|
mSurfaceFlingerConsumer->setDefaultMaxBufferCount(2);
|
|
#else
|
|
mSurfaceFlingerConsumer->setDefaultMaxBufferCount(3);
|
|
#endif
|
|
|
|
const sp<const DisplayDevice> hw(mFlinger->getDefaultDisplayDevice());
|
|
updateTransformHint(hw);
|
|
}
|
|
|
|
Layer::~Layer() {
|
|
sp<Client> c(mClientRef.promote());
|
|
if (c != 0) {
|
|
c->detachLayer(this);
|
|
}
|
|
mFlinger->deleteTextureAsync(mTextureName);
|
|
mFrameTracker.logAndResetStats(mName);
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// callbacks
|
|
// ---------------------------------------------------------------------------
|
|
|
|
void Layer::onLayerDisplayed(const sp<const DisplayDevice>& /* hw */,
|
|
HWComposer::HWCLayerInterface* layer) {
|
|
if (layer) {
|
|
layer->onDisplayed();
|
|
mSurfaceFlingerConsumer->setReleaseFence(layer->getAndResetReleaseFence());
|
|
}
|
|
}
|
|
|
|
void Layer::onFrameAvailable(const BufferItem& item) {
|
|
// Add this buffer from our internal queue tracker
|
|
{ // Autolock scope
|
|
Mutex::Autolock lock(mQueueItemLock);
|
|
|
|
// Reset the frame number tracker when we receive the first buffer after
|
|
// a frame number reset
|
|
if (item.mFrameNumber == 1) {
|
|
mLastFrameNumberReceived = 0;
|
|
}
|
|
|
|
// Ensure that callbacks are handled in order
|
|
while (item.mFrameNumber != mLastFrameNumberReceived + 1) {
|
|
status_t result = mQueueItemCondition.waitRelative(mQueueItemLock,
|
|
ms2ns(500));
|
|
if (result != NO_ERROR) {
|
|
ALOGE("[%s] Timed out waiting on callback", mName.string());
|
|
}
|
|
}
|
|
|
|
mQueueItems.push_back(item);
|
|
android_atomic_inc(&mQueuedFrames);
|
|
|
|
// Wake up any pending callbacks
|
|
mLastFrameNumberReceived = item.mFrameNumber;
|
|
mQueueItemCondition.broadcast();
|
|
}
|
|
|
|
mFlinger->signalLayerUpdate();
|
|
}
|
|
|
|
void Layer::onFrameReplaced(const BufferItem& item) {
|
|
Mutex::Autolock lock(mQueueItemLock);
|
|
|
|
// Ensure that callbacks are handled in order
|
|
while (item.mFrameNumber != mLastFrameNumberReceived + 1) {
|
|
status_t result = mQueueItemCondition.waitRelative(mQueueItemLock,
|
|
ms2ns(500));
|
|
if (result != NO_ERROR) {
|
|
ALOGE("[%s] Timed out waiting on callback", mName.string());
|
|
}
|
|
}
|
|
|
|
if (mQueueItems.empty()) {
|
|
ALOGE("Can't replace a frame on an empty queue");
|
|
return;
|
|
}
|
|
mQueueItems.editItemAt(0) = item;
|
|
|
|
// Wake up any pending callbacks
|
|
mLastFrameNumberReceived = item.mFrameNumber;
|
|
mQueueItemCondition.broadcast();
|
|
}
|
|
|
|
void Layer::onSidebandStreamChanged() {
|
|
if (android_atomic_release_cas(false, true, &mSidebandStreamChanged) == 0) {
|
|
// mSidebandStreamChanged was false
|
|
mFlinger->signalLayerUpdate();
|
|
}
|
|
}
|
|
|
|
// called with SurfaceFlinger::mStateLock from the drawing thread after
|
|
// the layer has been remove from the current state list (and just before
|
|
// it's removed from the drawing state list)
|
|
void Layer::onRemoved() {
|
|
mSurfaceFlingerConsumer->abandon();
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// set-up
|
|
// ---------------------------------------------------------------------------
|
|
|
|
const String8& Layer::getName() const {
|
|
return mName;
|
|
}
|
|
|
|
status_t Layer::setBuffers( uint32_t w, uint32_t h,
|
|
PixelFormat format, uint32_t flags)
|
|
{
|
|
uint32_t const maxSurfaceDims = min(
|
|
mFlinger->getMaxTextureSize(), mFlinger->getMaxViewportDims());
|
|
|
|
// never allow a surface larger than what our underlying GL implementation
|
|
// can handle.
|
|
if ((uint32_t(w)>maxSurfaceDims) || (uint32_t(h)>maxSurfaceDims)) {
|
|
ALOGE("dimensions too large %u x %u", uint32_t(w), uint32_t(h));
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
mFormat = format;
|
|
|
|
mPotentialCursor = (flags & ISurfaceComposerClient::eCursorWindow) ? true : false;
|
|
mSecure = (flags & ISurfaceComposerClient::eSecure) ? true : false;
|
|
mProtectedByApp = (flags & ISurfaceComposerClient::eProtectedByApp) ? true : false;
|
|
mCurrentOpacity = getOpacityForFormat(format);
|
|
|
|
mSurfaceFlingerConsumer->setDefaultBufferSize(w, h);
|
|
mSurfaceFlingerConsumer->setDefaultBufferFormat(format);
|
|
mSurfaceFlingerConsumer->setConsumerUsageBits(getEffectiveUsage(0));
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
sp<IBinder> Layer::getHandle() {
|
|
Mutex::Autolock _l(mLock);
|
|
|
|
LOG_ALWAYS_FATAL_IF(mHasSurface,
|
|
"Layer::getHandle() has already been called");
|
|
|
|
mHasSurface = true;
|
|
|
|
/*
|
|
* The layer handle is just a BBinder object passed to the client
|
|
* (remote process) -- we don't keep any reference on our side such that
|
|
* the dtor is called when the remote side let go of its reference.
|
|
*
|
|
* LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for
|
|
* this layer when the handle is destroyed.
|
|
*/
|
|
|
|
class Handle : public BBinder, public LayerCleaner {
|
|
wp<const Layer> mOwner;
|
|
public:
|
|
Handle(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer)
|
|
: LayerCleaner(flinger, layer), mOwner(layer) {
|
|
}
|
|
};
|
|
|
|
return new Handle(mFlinger, this);
|
|
}
|
|
|
|
sp<IGraphicBufferProducer> Layer::getProducer() const {
|
|
return mProducer;
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// h/w composer set-up
|
|
// ---------------------------------------------------------------------------
|
|
|
|
Rect Layer::getContentCrop() const {
|
|
// this is the crop rectangle that applies to the buffer
|
|
// itself (as opposed to the window)
|
|
Rect crop;
|
|
if (!mCurrentCrop.isEmpty()) {
|
|
// if the buffer crop is defined, we use that
|
|
crop = mCurrentCrop;
|
|
} else if (mActiveBuffer != NULL) {
|
|
// otherwise we use the whole buffer
|
|
crop = mActiveBuffer->getBounds();
|
|
} else {
|
|
// if we don't have a buffer yet, we use an empty/invalid crop
|
|
crop.makeInvalid();
|
|
}
|
|
return crop;
|
|
}
|
|
|
|
static Rect reduce(const Rect& win, const Region& exclude) {
|
|
if (CC_LIKELY(exclude.isEmpty())) {
|
|
return win;
|
|
}
|
|
if (exclude.isRect()) {
|
|
return win.reduce(exclude.getBounds());
|
|
}
|
|
return Region(win).subtract(exclude).getBounds();
|
|
}
|
|
|
|
Rect Layer::computeBounds() const {
|
|
const Layer::State& s(getDrawingState());
|
|
return computeBounds(s.activeTransparentRegion);
|
|
}
|
|
|
|
Rect Layer::computeBounds(const Region& activeTransparentRegion) const {
|
|
const Layer::State& s(getDrawingState());
|
|
Rect win(s.active.w, s.active.h);
|
|
if (!s.active.crop.isEmpty()) {
|
|
win.intersect(s.active.crop, &win);
|
|
}
|
|
// subtract the transparent region and snap to the bounds
|
|
return reduce(win, activeTransparentRegion);
|
|
}
|
|
|
|
FloatRect Layer::computeCrop(const sp<const DisplayDevice>& hw) const {
|
|
// the content crop is the area of the content that gets scaled to the
|
|
// layer's size.
|
|
FloatRect crop(getContentCrop());
|
|
|
|
// the active.crop is the area of the window that gets cropped, but not
|
|
// scaled in any ways.
|
|
const State& s(getDrawingState());
|
|
|
|
// apply the projection's clipping to the window crop in
|
|
// layerstack space, and convert-back to layer space.
|
|
// if there are no window scaling involved, this operation will map to full
|
|
// pixels in the buffer.
|
|
// FIXME: the 3 lines below can produce slightly incorrect clipping when we have
|
|
// a viewport clipping and a window transform. we should use floating point to fix this.
|
|
|
|
Rect activeCrop(s.active.w, s.active.h);
|
|
if (!s.active.crop.isEmpty()) {
|
|
activeCrop = s.active.crop;
|
|
}
|
|
|
|
activeCrop = s.transform.transform(activeCrop);
|
|
activeCrop.intersect(hw->getViewport(), &activeCrop);
|
|
activeCrop = s.transform.inverse().transform(activeCrop);
|
|
|
|
// This needs to be here as transform.transform(Rect) computes the
|
|
// transformed rect and then takes the bounding box of the result before
|
|
// returning. This means
|
|
// transform.inverse().transform(transform.transform(Rect)) != Rect
|
|
// in which case we need to make sure the final rect is clipped to the
|
|
// display bounds.
|
|
activeCrop.intersect(Rect(s.active.w, s.active.h), &activeCrop);
|
|
|
|
// subtract the transparent region and snap to the bounds
|
|
activeCrop = reduce(activeCrop, s.activeTransparentRegion);
|
|
|
|
if (!activeCrop.isEmpty()) {
|
|
// Transform the window crop to match the buffer coordinate system,
|
|
// which means using the inverse of the current transform set on the
|
|
// SurfaceFlingerConsumer.
|
|
uint32_t invTransform = mCurrentTransform;
|
|
if (mSurfaceFlingerConsumer->getTransformToDisplayInverse()) {
|
|
/*
|
|
* the code below applies the display's inverse transform to the buffer
|
|
*/
|
|
uint32_t invTransformOrient = hw->getOrientationTransform();
|
|
// calculate the inverse transform
|
|
if (invTransformOrient & NATIVE_WINDOW_TRANSFORM_ROT_90) {
|
|
invTransformOrient ^= NATIVE_WINDOW_TRANSFORM_FLIP_V |
|
|
NATIVE_WINDOW_TRANSFORM_FLIP_H;
|
|
// If the transform has been rotated the axis of flip has been swapped
|
|
// so we need to swap which flip operations we are performing
|
|
bool is_h_flipped = (invTransform & NATIVE_WINDOW_TRANSFORM_FLIP_H) != 0;
|
|
bool is_v_flipped = (invTransform & NATIVE_WINDOW_TRANSFORM_FLIP_V) != 0;
|
|
if (is_h_flipped != is_v_flipped) {
|
|
invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V |
|
|
NATIVE_WINDOW_TRANSFORM_FLIP_H;
|
|
}
|
|
}
|
|
// and apply to the current transform
|
|
invTransform = (Transform(invTransform) * Transform(invTransformOrient)).getOrientation();
|
|
}
|
|
|
|
int winWidth = s.active.w;
|
|
int winHeight = s.active.h;
|
|
if (invTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
|
|
// If the activeCrop has been rotate the ends are rotated but not
|
|
// the space itself so when transforming ends back we can't rely on
|
|
// a modification of the axes of rotation. To account for this we
|
|
// need to reorient the inverse rotation in terms of the current
|
|
// axes of rotation.
|
|
bool is_h_flipped = (invTransform & NATIVE_WINDOW_TRANSFORM_FLIP_H) != 0;
|
|
bool is_v_flipped = (invTransform & NATIVE_WINDOW_TRANSFORM_FLIP_V) != 0;
|
|
if (is_h_flipped == is_v_flipped) {
|
|
invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V |
|
|
NATIVE_WINDOW_TRANSFORM_FLIP_H;
|
|
}
|
|
winWidth = s.active.h;
|
|
winHeight = s.active.w;
|
|
}
|
|
const Rect winCrop = activeCrop.transform(
|
|
invTransform, s.active.w, s.active.h);
|
|
|
|
// below, crop is intersected with winCrop expressed in crop's coordinate space
|
|
float xScale = crop.getWidth() / float(winWidth);
|
|
float yScale = crop.getHeight() / float(winHeight);
|
|
|
|
float insetL = winCrop.left * xScale;
|
|
float insetT = winCrop.top * yScale;
|
|
float insetR = (winWidth - winCrop.right ) * xScale;
|
|
float insetB = (winHeight - winCrop.bottom) * yScale;
|
|
|
|
crop.left += insetL;
|
|
crop.top += insetT;
|
|
crop.right -= insetR;
|
|
crop.bottom -= insetB;
|
|
}
|
|
return crop;
|
|
}
|
|
|
|
void Layer::setGeometry(
|
|
const sp<const DisplayDevice>& hw,
|
|
HWComposer::HWCLayerInterface& layer)
|
|
{
|
|
layer.setDefaultState();
|
|
|
|
// enable this layer
|
|
layer.setSkip(false);
|
|
|
|
if (isSecure() && !hw->isSecure()) {
|
|
layer.setSkip(true);
|
|
}
|
|
|
|
// this gives us only the "orientation" component of the transform
|
|
const State& s(getDrawingState());
|
|
if (!isOpaque(s) || s.alpha != 0xFF) {
|
|
layer.setBlending(mPremultipliedAlpha ?
|
|
HWC_BLENDING_PREMULT :
|
|
HWC_BLENDING_COVERAGE);
|
|
}
|
|
|
|
// apply the layer's transform, followed by the display's global transform
|
|
// here we're guaranteed that the layer's transform preserves rects
|
|
Region activeTransparentRegion(s.activeTransparentRegion);
|
|
if (!s.active.crop.isEmpty()) {
|
|
Rect activeCrop(s.active.crop);
|
|
activeCrop = s.transform.transform(activeCrop);
|
|
activeCrop.intersect(hw->getViewport(), &activeCrop);
|
|
activeCrop = s.transform.inverse().transform(activeCrop);
|
|
// This needs to be here as transform.transform(Rect) computes the
|
|
// transformed rect and then takes the bounding box of the result before
|
|
// returning. This means
|
|
// transform.inverse().transform(transform.transform(Rect)) != Rect
|
|
// in which case we need to make sure the final rect is clipped to the
|
|
// display bounds.
|
|
activeCrop.intersect(Rect(s.active.w, s.active.h), &activeCrop);
|
|
// mark regions outside the crop as transparent
|
|
activeTransparentRegion.orSelf(Rect(0, 0, s.active.w, activeCrop.top));
|
|
activeTransparentRegion.orSelf(Rect(0, activeCrop.bottom,
|
|
s.active.w, s.active.h));
|
|
activeTransparentRegion.orSelf(Rect(0, activeCrop.top,
|
|
activeCrop.left, activeCrop.bottom));
|
|
activeTransparentRegion.orSelf(Rect(activeCrop.right, activeCrop.top,
|
|
s.active.w, activeCrop.bottom));
|
|
}
|
|
Rect frame(s.transform.transform(computeBounds(activeTransparentRegion)));
|
|
frame.intersect(hw->getViewport(), &frame);
|
|
const Transform& tr(hw->getTransform());
|
|
layer.setFrame(tr.transform(frame));
|
|
layer.setCrop(computeCrop(hw));
|
|
layer.setPlaneAlpha(s.alpha);
|
|
|
|
/*
|
|
* Transformations are applied in this order:
|
|
* 1) buffer orientation/flip/mirror
|
|
* 2) state transformation (window manager)
|
|
* 3) layer orientation (screen orientation)
|
|
* (NOTE: the matrices are multiplied in reverse order)
|
|
*/
|
|
|
|
const Transform bufferOrientation(mCurrentTransform);
|
|
Transform transform(tr * s.transform * bufferOrientation);
|
|
|
|
if (mSurfaceFlingerConsumer->getTransformToDisplayInverse()) {
|
|
/*
|
|
* the code below applies the display's inverse transform to the buffer
|
|
*/
|
|
uint32_t invTransform = hw->getOrientationTransform();
|
|
uint32_t t_orientation = transform.getOrientation();
|
|
// calculate the inverse transform
|
|
if (invTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
|
|
invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V |
|
|
NATIVE_WINDOW_TRANSFORM_FLIP_H;
|
|
// If the transform has been rotated the axis of flip has been swapped
|
|
// so we need to swap which flip operations we are performing
|
|
bool is_h_flipped = (t_orientation & NATIVE_WINDOW_TRANSFORM_FLIP_H) != 0;
|
|
bool is_v_flipped = (t_orientation & NATIVE_WINDOW_TRANSFORM_FLIP_V) != 0;
|
|
if (is_h_flipped != is_v_flipped) {
|
|
t_orientation ^= NATIVE_WINDOW_TRANSFORM_FLIP_V |
|
|
NATIVE_WINDOW_TRANSFORM_FLIP_H;
|
|
}
|
|
}
|
|
// and apply to the current transform
|
|
transform = Transform(t_orientation) * Transform(invTransform);
|
|
}
|
|
|
|
// this gives us only the "orientation" component of the transform
|
|
const uint32_t orientation = transform.getOrientation();
|
|
if (orientation & Transform::ROT_INVALID) {
|
|
// we can only handle simple transformation
|
|
layer.setSkip(true);
|
|
} else {
|
|
layer.setTransform(orientation);
|
|
}
|
|
}
|
|
|
|
void Layer::setPerFrameData(const sp<const DisplayDevice>& hw,
|
|
HWComposer::HWCLayerInterface& layer) {
|
|
// we have to set the visible region on every frame because
|
|
// we currently free it during onLayerDisplayed(), which is called
|
|
// after HWComposer::commit() -- every frame.
|
|
// Apply this display's projection's viewport to the visible region
|
|
// before giving it to the HWC HAL.
|
|
const Transform& tr = hw->getTransform();
|
|
Region visible = tr.transform(visibleRegion.intersect(hw->getViewport()));
|
|
layer.setVisibleRegionScreen(visible);
|
|
|
|
// Pass full-surface damage down untouched
|
|
if (surfaceDamageRegion.isRect() &&
|
|
surfaceDamageRegion.getBounds() == Rect::INVALID_RECT) {
|
|
layer.setSurfaceDamage(surfaceDamageRegion);
|
|
} else {
|
|
Region surfaceDamage =
|
|
tr.transform(surfaceDamageRegion.intersect(hw->getViewport()));
|
|
layer.setSurfaceDamage(surfaceDamage);
|
|
}
|
|
|
|
if (mSidebandStream.get()) {
|
|
layer.setSidebandStream(mSidebandStream);
|
|
} else {
|
|
// NOTE: buffer can be NULL if the client never drew into this
|
|
// layer yet, or if we ran out of memory
|
|
layer.setBuffer(mActiveBuffer);
|
|
}
|
|
}
|
|
|
|
void Layer::setAcquireFence(const sp<const DisplayDevice>& /* hw */,
|
|
HWComposer::HWCLayerInterface& layer) {
|
|
int fenceFd = -1;
|
|
|
|
// TODO: there is a possible optimization here: we only need to set the
|
|
// acquire fence the first time a new buffer is acquired on EACH display.
|
|
|
|
if (layer.getCompositionType() == HWC_OVERLAY || layer.getCompositionType() == HWC_CURSOR_OVERLAY) {
|
|
sp<Fence> fence = mSurfaceFlingerConsumer->getCurrentFence();
|
|
if (fence->isValid()) {
|
|
fenceFd = fence->dup();
|
|
if (fenceFd == -1) {
|
|
ALOGW("failed to dup layer fence, skipping sync: %d", errno);
|
|
}
|
|
}
|
|
}
|
|
layer.setAcquireFenceFd(fenceFd);
|
|
}
|
|
|
|
Rect Layer::getPosition(
|
|
const sp<const DisplayDevice>& hw)
|
|
{
|
|
// this gives us only the "orientation" component of the transform
|
|
const State& s(getCurrentState());
|
|
|
|
// apply the layer's transform, followed by the display's global transform
|
|
// here we're guaranteed that the layer's transform preserves rects
|
|
Rect win(s.active.w, s.active.h);
|
|
if (!s.active.crop.isEmpty()) {
|
|
win.intersect(s.active.crop, &win);
|
|
}
|
|
// subtract the transparent region and snap to the bounds
|
|
Rect bounds = reduce(win, s.activeTransparentRegion);
|
|
Rect frame(s.transform.transform(bounds));
|
|
frame.intersect(hw->getViewport(), &frame);
|
|
const Transform& tr(hw->getTransform());
|
|
return Rect(tr.transform(frame));
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// drawing...
|
|
// ---------------------------------------------------------------------------
|
|
|
|
void Layer::draw(const sp<const DisplayDevice>& hw, const Region& clip) const {
|
|
onDraw(hw, clip, false);
|
|
}
|
|
|
|
void Layer::draw(const sp<const DisplayDevice>& hw,
|
|
bool useIdentityTransform) const {
|
|
onDraw(hw, Region(hw->bounds()), useIdentityTransform);
|
|
}
|
|
|
|
void Layer::draw(const sp<const DisplayDevice>& hw) const {
|
|
onDraw(hw, Region(hw->bounds()), false);
|
|
}
|
|
|
|
void Layer::onDraw(const sp<const DisplayDevice>& hw, const Region& clip,
|
|
bool useIdentityTransform) const
|
|
{
|
|
ATRACE_CALL();
|
|
|
|
if (CC_UNLIKELY(mActiveBuffer == 0)) {
|
|
// the texture has not been created yet, this Layer has
|
|
// in fact never been drawn into. This happens frequently with
|
|
// SurfaceView because the WindowManager can't know when the client
|
|
// has drawn the first time.
|
|
|
|
// If there is nothing under us, we paint the screen in black, otherwise
|
|
// we just skip this update.
|
|
|
|
// figure out if there is something below us
|
|
Region under;
|
|
const SurfaceFlinger::LayerVector& drawingLayers(
|
|
mFlinger->mDrawingState.layersSortedByZ);
|
|
const size_t count = drawingLayers.size();
|
|
for (size_t i=0 ; i<count ; ++i) {
|
|
const sp<Layer>& layer(drawingLayers[i]);
|
|
if (layer.get() == static_cast<Layer const*>(this))
|
|
break;
|
|
under.orSelf( hw->getTransform().transform(layer->visibleRegion) );
|
|
}
|
|
// if not everything below us is covered, we plug the holes!
|
|
Region holes(clip.subtract(under));
|
|
if (!holes.isEmpty()) {
|
|
clearWithOpenGL(hw, holes, 0, 0, 0, 1);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Bind the current buffer to the GL texture, and wait for it to be
|
|
// ready for us to draw into.
|
|
status_t err = mSurfaceFlingerConsumer->bindTextureImage();
|
|
if (err != NO_ERROR) {
|
|
ALOGW("onDraw: bindTextureImage failed (err=%d)", err);
|
|
// Go ahead and draw the buffer anyway; no matter what we do the screen
|
|
// is probably going to have something visibly wrong.
|
|
}
|
|
|
|
bool blackOutLayer = isProtected() || (isSecure() && !hw->isSecure());
|
|
|
|
RenderEngine& engine(mFlinger->getRenderEngine());
|
|
|
|
if (!blackOutLayer) {
|
|
// TODO: we could be more subtle with isFixedSize()
|
|
const bool useFiltering = getFiltering() || needsFiltering(hw) || isFixedSize();
|
|
|
|
// Query the texture matrix given our current filtering mode.
|
|
float textureMatrix[16];
|
|
mSurfaceFlingerConsumer->setFilteringEnabled(useFiltering);
|
|
mSurfaceFlingerConsumer->getTransformMatrix(textureMatrix);
|
|
|
|
if (mSurfaceFlingerConsumer->getTransformToDisplayInverse()) {
|
|
|
|
/*
|
|
* the code below applies the display's inverse transform to the texture transform
|
|
*/
|
|
|
|
// create a 4x4 transform matrix from the display transform flags
|
|
const mat4 flipH(-1,0,0,0, 0,1,0,0, 0,0,1,0, 1,0,0,1);
|
|
const mat4 flipV( 1,0,0,0, 0,-1,0,0, 0,0,1,0, 0,1,0,1);
|
|
const mat4 rot90( 0,1,0,0, -1,0,0,0, 0,0,1,0, 1,0,0,1);
|
|
|
|
mat4 tr;
|
|
uint32_t transform = hw->getOrientationTransform();
|
|
if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90)
|
|
tr = tr * rot90;
|
|
if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H)
|
|
tr = tr * flipH;
|
|
if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V)
|
|
tr = tr * flipV;
|
|
|
|
// calculate the inverse
|
|
tr = inverse(tr);
|
|
|
|
// and finally apply it to the original texture matrix
|
|
const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr);
|
|
memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix));
|
|
}
|
|
|
|
// Set things up for texturing.
|
|
mTexture.setDimensions(mActiveBuffer->getWidth(), mActiveBuffer->getHeight());
|
|
mTexture.setFiltering(useFiltering);
|
|
mTexture.setMatrix(textureMatrix);
|
|
|
|
engine.setupLayerTexturing(mTexture);
|
|
} else {
|
|
engine.setupLayerBlackedOut();
|
|
}
|
|
drawWithOpenGL(hw, clip, useIdentityTransform);
|
|
engine.disableTexturing();
|
|
}
|
|
|
|
|
|
void Layer::clearWithOpenGL(const sp<const DisplayDevice>& hw,
|
|
const Region& /* clip */, float red, float green, float blue,
|
|
float alpha) const
|
|
{
|
|
RenderEngine& engine(mFlinger->getRenderEngine());
|
|
computeGeometry(hw, mMesh, false);
|
|
engine.setupFillWithColor(red, green, blue, alpha);
|
|
engine.drawMesh(mMesh);
|
|
}
|
|
|
|
void Layer::clearWithOpenGL(
|
|
const sp<const DisplayDevice>& hw, const Region& clip) const {
|
|
clearWithOpenGL(hw, clip, 0,0,0,0);
|
|
}
|
|
|
|
void Layer::drawWithOpenGL(const sp<const DisplayDevice>& hw,
|
|
const Region& /* clip */, bool useIdentityTransform) const {
|
|
const State& s(getDrawingState());
|
|
|
|
computeGeometry(hw, mMesh, useIdentityTransform);
|
|
|
|
/*
|
|
* NOTE: the way we compute the texture coordinates here produces
|
|
* different results than when we take the HWC path -- in the later case
|
|
* the "source crop" is rounded to texel boundaries.
|
|
* This can produce significantly different results when the texture
|
|
* is scaled by a large amount.
|
|
*
|
|
* The GL code below is more logical (imho), and the difference with
|
|
* HWC is due to a limitation of the HWC API to integers -- a question
|
|
* is suspend is whether we should ignore this problem or revert to
|
|
* GL composition when a buffer scaling is applied (maybe with some
|
|
* minimal value)? Or, we could make GL behave like HWC -- but this feel
|
|
* like more of a hack.
|
|
*/
|
|
const Rect win(computeBounds());
|
|
|
|
float left = float(win.left) / float(s.active.w);
|
|
float top = float(win.top) / float(s.active.h);
|
|
float right = float(win.right) / float(s.active.w);
|
|
float bottom = float(win.bottom) / float(s.active.h);
|
|
|
|
// TODO: we probably want to generate the texture coords with the mesh
|
|
// here we assume that we only have 4 vertices
|
|
Mesh::VertexArray<vec2> texCoords(mMesh.getTexCoordArray<vec2>());
|
|
texCoords[0] = vec2(left, 1.0f - top);
|
|
texCoords[1] = vec2(left, 1.0f - bottom);
|
|
texCoords[2] = vec2(right, 1.0f - bottom);
|
|
texCoords[3] = vec2(right, 1.0f - top);
|
|
|
|
RenderEngine& engine(mFlinger->getRenderEngine());
|
|
engine.setupLayerBlending(mPremultipliedAlpha, isOpaque(s), s.alpha);
|
|
engine.drawMesh(mMesh);
|
|
engine.disableBlending();
|
|
}
|
|
|
|
uint32_t Layer::getProducerStickyTransform() const {
|
|
int producerStickyTransform = 0;
|
|
int ret = mProducer->query(NATIVE_WINDOW_STICKY_TRANSFORM, &producerStickyTransform);
|
|
if (ret != OK) {
|
|
ALOGW("%s: Error %s (%d) while querying window sticky transform.", __FUNCTION__,
|
|
strerror(-ret), ret);
|
|
return 0;
|
|
}
|
|
return static_cast<uint32_t>(producerStickyTransform);
|
|
}
|
|
|
|
void Layer::setFiltering(bool filtering) {
|
|
mFiltering = filtering;
|
|
}
|
|
|
|
bool Layer::getFiltering() const {
|
|
return mFiltering;
|
|
}
|
|
|
|
// As documented in libhardware header, formats in the range
|
|
// 0x100 - 0x1FF are specific to the HAL implementation, and
|
|
// are known to have no alpha channel
|
|
// TODO: move definition for device-specific range into
|
|
// hardware.h, instead of using hard-coded values here.
|
|
#define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF)
|
|
|
|
bool Layer::getOpacityForFormat(uint32_t format) {
|
|
if (HARDWARE_IS_DEVICE_FORMAT(format)) {
|
|
return true;
|
|
}
|
|
switch (format) {
|
|
case HAL_PIXEL_FORMAT_RGBA_8888:
|
|
case HAL_PIXEL_FORMAT_BGRA_8888:
|
|
return false;
|
|
}
|
|
// in all other case, we have no blending (also for unknown formats)
|
|
return true;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// local state
|
|
// ----------------------------------------------------------------------------
|
|
|
|
void Layer::computeGeometry(const sp<const DisplayDevice>& hw, Mesh& mesh,
|
|
bool useIdentityTransform) const
|
|
{
|
|
const Layer::State& s(getDrawingState());
|
|
const Transform tr(useIdentityTransform ?
|
|
hw->getTransform() : hw->getTransform() * s.transform);
|
|
const uint32_t hw_h = hw->getHeight();
|
|
Rect win(s.active.w, s.active.h);
|
|
if (!s.active.crop.isEmpty()) {
|
|
win.intersect(s.active.crop, &win);
|
|
}
|
|
// subtract the transparent region and snap to the bounds
|
|
win = reduce(win, s.activeTransparentRegion);
|
|
|
|
Mesh::VertexArray<vec2> position(mesh.getPositionArray<vec2>());
|
|
position[0] = tr.transform(win.left, win.top);
|
|
position[1] = tr.transform(win.left, win.bottom);
|
|
position[2] = tr.transform(win.right, win.bottom);
|
|
position[3] = tr.transform(win.right, win.top);
|
|
for (size_t i=0 ; i<4 ; i++) {
|
|
position[i].y = hw_h - position[i].y;
|
|
}
|
|
}
|
|
|
|
bool Layer::isOpaque(const Layer::State& s) const
|
|
{
|
|
// if we don't have a buffer yet, we're translucent regardless of the
|
|
// layer's opaque flag.
|
|
if (mActiveBuffer == 0) {
|
|
return false;
|
|
}
|
|
|
|
// if the layer has the opaque flag, then we're always opaque,
|
|
// otherwise we use the current buffer's format.
|
|
return ((s.flags & layer_state_t::eLayerOpaque) != 0) || mCurrentOpacity;
|
|
}
|
|
|
|
bool Layer::isProtected() const
|
|
{
|
|
const sp<GraphicBuffer>& activeBuffer(mActiveBuffer);
|
|
return (activeBuffer != 0) &&
|
|
(activeBuffer->getUsage() & GRALLOC_USAGE_PROTECTED);
|
|
}
|
|
|
|
bool Layer::isFixedSize() const {
|
|
return mCurrentScalingMode != NATIVE_WINDOW_SCALING_MODE_FREEZE;
|
|
}
|
|
|
|
bool Layer::isCropped() const {
|
|
return !mCurrentCrop.isEmpty();
|
|
}
|
|
|
|
bool Layer::needsFiltering(const sp<const DisplayDevice>& hw) const {
|
|
return mNeedsFiltering || hw->needsFiltering();
|
|
}
|
|
|
|
void Layer::setVisibleRegion(const Region& visibleRegion) {
|
|
// always called from main thread
|
|
this->visibleRegion = visibleRegion;
|
|
}
|
|
|
|
void Layer::setCoveredRegion(const Region& coveredRegion) {
|
|
// always called from main thread
|
|
this->coveredRegion = coveredRegion;
|
|
}
|
|
|
|
void Layer::setVisibleNonTransparentRegion(const Region&
|
|
setVisibleNonTransparentRegion) {
|
|
// always called from main thread
|
|
this->visibleNonTransparentRegion = setVisibleNonTransparentRegion;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// transaction
|
|
// ----------------------------------------------------------------------------
|
|
|
|
uint32_t Layer::doTransaction(uint32_t flags) {
|
|
ATRACE_CALL();
|
|
|
|
const Layer::State& s(getDrawingState());
|
|
const Layer::State& c(getCurrentState());
|
|
|
|
const bool sizeChanged = (c.requested.w != s.requested.w) ||
|
|
(c.requested.h != s.requested.h);
|
|
|
|
if (sizeChanged) {
|
|
// the size changed, we need to ask our client to request a new buffer
|
|
ALOGD_IF(DEBUG_RESIZE,
|
|
"doTransaction: geometry (layer=%p '%s'), tr=%02x, scalingMode=%d\n"
|
|
" current={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
|
|
" requested={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }}\n"
|
|
" drawing={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
|
|
" requested={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }}\n",
|
|
this, getName().string(), mCurrentTransform, mCurrentScalingMode,
|
|
c.active.w, c.active.h,
|
|
c.active.crop.left,
|
|
c.active.crop.top,
|
|
c.active.crop.right,
|
|
c.active.crop.bottom,
|
|
c.active.crop.getWidth(),
|
|
c.active.crop.getHeight(),
|
|
c.requested.w, c.requested.h,
|
|
c.requested.crop.left,
|
|
c.requested.crop.top,
|
|
c.requested.crop.right,
|
|
c.requested.crop.bottom,
|
|
c.requested.crop.getWidth(),
|
|
c.requested.crop.getHeight(),
|
|
s.active.w, s.active.h,
|
|
s.active.crop.left,
|
|
s.active.crop.top,
|
|
s.active.crop.right,
|
|
s.active.crop.bottom,
|
|
s.active.crop.getWidth(),
|
|
s.active.crop.getHeight(),
|
|
s.requested.w, s.requested.h,
|
|
s.requested.crop.left,
|
|
s.requested.crop.top,
|
|
s.requested.crop.right,
|
|
s.requested.crop.bottom,
|
|
s.requested.crop.getWidth(),
|
|
s.requested.crop.getHeight());
|
|
|
|
// record the new size, form this point on, when the client request
|
|
// a buffer, it'll get the new size.
|
|
mSurfaceFlingerConsumer->setDefaultBufferSize(
|
|
c.requested.w, c.requested.h);
|
|
}
|
|
|
|
if (!isFixedSize()) {
|
|
|
|
const bool resizePending = (c.requested.w != c.active.w) ||
|
|
(c.requested.h != c.active.h);
|
|
|
|
if (resizePending && mSidebandStream == NULL) {
|
|
// don't let Layer::doTransaction update the drawing state
|
|
// if we have a pending resize, unless we are in fixed-size mode.
|
|
// the drawing state will be updated only once we receive a buffer
|
|
// with the correct size.
|
|
//
|
|
// in particular, we want to make sure the clip (which is part
|
|
// of the geometry state) is latched together with the size but is
|
|
// latched immediately when no resizing is involved.
|
|
//
|
|
// If a sideband stream is attached, however, we want to skip this
|
|
// optimization so that transactions aren't missed when a buffer
|
|
// never arrives
|
|
|
|
flags |= eDontUpdateGeometryState;
|
|
}
|
|
}
|
|
|
|
// always set active to requested, unless we're asked not to
|
|
// this is used by Layer, which special cases resizes.
|
|
if (flags & eDontUpdateGeometryState) {
|
|
} else {
|
|
Layer::State& editCurrentState(getCurrentState());
|
|
editCurrentState.active = c.requested;
|
|
}
|
|
|
|
if (s.active != c.active) {
|
|
// invalidate and recompute the visible regions if needed
|
|
flags |= Layer::eVisibleRegion;
|
|
}
|
|
|
|
if (c.sequence != s.sequence) {
|
|
// invalidate and recompute the visible regions if needed
|
|
flags |= eVisibleRegion;
|
|
this->contentDirty = true;
|
|
|
|
// we may use linear filtering, if the matrix scales us
|
|
const uint8_t type = c.transform.getType();
|
|
mNeedsFiltering = (!c.transform.preserveRects() ||
|
|
(type >= Transform::SCALE));
|
|
}
|
|
|
|
// Commit the transaction
|
|
commitTransaction();
|
|
return flags;
|
|
}
|
|
|
|
void Layer::commitTransaction() {
|
|
mDrawingState = mCurrentState;
|
|
}
|
|
|
|
uint32_t Layer::getTransactionFlags(uint32_t flags) {
|
|
return android_atomic_and(~flags, &mTransactionFlags) & flags;
|
|
}
|
|
|
|
uint32_t Layer::setTransactionFlags(uint32_t flags) {
|
|
return android_atomic_or(flags, &mTransactionFlags);
|
|
}
|
|
|
|
bool Layer::setPosition(float x, float y) {
|
|
if (mCurrentState.transform.tx() == x && mCurrentState.transform.ty() == y)
|
|
return false;
|
|
mCurrentState.sequence++;
|
|
mCurrentState.transform.set(x, y);
|
|
setTransactionFlags(eTransactionNeeded);
|
|
return true;
|
|
}
|
|
bool Layer::setLayer(uint32_t z) {
|
|
if (mCurrentState.z == z)
|
|
return false;
|
|
mCurrentState.sequence++;
|
|
mCurrentState.z = z;
|
|
setTransactionFlags(eTransactionNeeded);
|
|
return true;
|
|
}
|
|
bool Layer::setSize(uint32_t w, uint32_t h) {
|
|
if (mCurrentState.requested.w == w && mCurrentState.requested.h == h)
|
|
return false;
|
|
mCurrentState.requested.w = w;
|
|
mCurrentState.requested.h = h;
|
|
setTransactionFlags(eTransactionNeeded);
|
|
return true;
|
|
}
|
|
bool Layer::setAlpha(uint8_t alpha) {
|
|
if (mCurrentState.alpha == alpha)
|
|
return false;
|
|
mCurrentState.sequence++;
|
|
mCurrentState.alpha = alpha;
|
|
setTransactionFlags(eTransactionNeeded);
|
|
return true;
|
|
}
|
|
bool Layer::setMatrix(const layer_state_t::matrix22_t& matrix) {
|
|
mCurrentState.sequence++;
|
|
mCurrentState.transform.set(
|
|
matrix.dsdx, matrix.dsdy, matrix.dtdx, matrix.dtdy);
|
|
setTransactionFlags(eTransactionNeeded);
|
|
return true;
|
|
}
|
|
bool Layer::setTransparentRegionHint(const Region& transparent) {
|
|
mCurrentState.requestedTransparentRegion = transparent;
|
|
setTransactionFlags(eTransactionNeeded);
|
|
return true;
|
|
}
|
|
bool Layer::setFlags(uint8_t flags, uint8_t mask) {
|
|
const uint32_t newFlags = (mCurrentState.flags & ~mask) | (flags & mask);
|
|
if (mCurrentState.flags == newFlags)
|
|
return false;
|
|
mCurrentState.sequence++;
|
|
mCurrentState.flags = newFlags;
|
|
setTransactionFlags(eTransactionNeeded);
|
|
return true;
|
|
}
|
|
bool Layer::setCrop(const Rect& crop) {
|
|
if (mCurrentState.requested.crop == crop)
|
|
return false;
|
|
mCurrentState.sequence++;
|
|
mCurrentState.requested.crop = crop;
|
|
setTransactionFlags(eTransactionNeeded);
|
|
return true;
|
|
}
|
|
|
|
bool Layer::setLayerStack(uint32_t layerStack) {
|
|
if (mCurrentState.layerStack == layerStack)
|
|
return false;
|
|
mCurrentState.sequence++;
|
|
mCurrentState.layerStack = layerStack;
|
|
setTransactionFlags(eTransactionNeeded);
|
|
return true;
|
|
}
|
|
|
|
void Layer::useSurfaceDamage() {
|
|
if (mFlinger->mForceFullDamage) {
|
|
surfaceDamageRegion = Region::INVALID_REGION;
|
|
} else {
|
|
surfaceDamageRegion = mSurfaceFlingerConsumer->getSurfaceDamage();
|
|
}
|
|
}
|
|
|
|
void Layer::useEmptyDamage() {
|
|
surfaceDamageRegion.clear();
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// pageflip handling...
|
|
// ----------------------------------------------------------------------------
|
|
|
|
bool Layer::shouldPresentNow(const DispSync& dispSync) const {
|
|
Mutex::Autolock lock(mQueueItemLock);
|
|
nsecs_t expectedPresent =
|
|
mSurfaceFlingerConsumer->computeExpectedPresent(dispSync);
|
|
return mQueueItems.empty() ?
|
|
false : mQueueItems[0].mTimestamp < expectedPresent;
|
|
}
|
|
|
|
bool Layer::onPreComposition() {
|
|
mRefreshPending = false;
|
|
return mQueuedFrames > 0 || mSidebandStreamChanged;
|
|
}
|
|
|
|
void Layer::onPostComposition() {
|
|
if (mFrameLatencyNeeded) {
|
|
nsecs_t desiredPresentTime = mSurfaceFlingerConsumer->getTimestamp();
|
|
mFrameTracker.setDesiredPresentTime(desiredPresentTime);
|
|
|
|
sp<Fence> frameReadyFence = mSurfaceFlingerConsumer->getCurrentFence();
|
|
if (frameReadyFence->isValid()) {
|
|
mFrameTracker.setFrameReadyFence(frameReadyFence);
|
|
} else {
|
|
// There was no fence for this frame, so assume that it was ready
|
|
// to be presented at the desired present time.
|
|
mFrameTracker.setFrameReadyTime(desiredPresentTime);
|
|
}
|
|
|
|
const HWComposer& hwc = mFlinger->getHwComposer();
|
|
sp<Fence> presentFence = hwc.getDisplayFence(HWC_DISPLAY_PRIMARY);
|
|
if (presentFence->isValid()) {
|
|
mFrameTracker.setActualPresentFence(presentFence);
|
|
} else {
|
|
// The HWC doesn't support present fences, so use the refresh
|
|
// timestamp instead.
|
|
nsecs_t presentTime = hwc.getRefreshTimestamp(HWC_DISPLAY_PRIMARY);
|
|
mFrameTracker.setActualPresentTime(presentTime);
|
|
}
|
|
|
|
mFrameTracker.advanceFrame();
|
|
mFrameLatencyNeeded = false;
|
|
}
|
|
}
|
|
|
|
bool Layer::isVisible() const {
|
|
const Layer::State& s(mDrawingState);
|
|
return !(s.flags & layer_state_t::eLayerHidden) && s.alpha
|
|
&& (mActiveBuffer != NULL || mSidebandStream != NULL);
|
|
}
|
|
|
|
Region Layer::latchBuffer(bool& recomputeVisibleRegions)
|
|
{
|
|
ATRACE_CALL();
|
|
|
|
if (android_atomic_acquire_cas(true, false, &mSidebandStreamChanged) == 0) {
|
|
// mSidebandStreamChanged was true
|
|
mSidebandStream = mSurfaceFlingerConsumer->getSidebandStream();
|
|
if (mSidebandStream != NULL) {
|
|
setTransactionFlags(eTransactionNeeded);
|
|
mFlinger->setTransactionFlags(eTraversalNeeded);
|
|
}
|
|
recomputeVisibleRegions = true;
|
|
|
|
const State& s(getDrawingState());
|
|
return s.transform.transform(Region(Rect(s.active.w, s.active.h)));
|
|
}
|
|
|
|
Region outDirtyRegion;
|
|
if (mQueuedFrames > 0) {
|
|
|
|
// if we've already called updateTexImage() without going through
|
|
// a composition step, we have to skip this layer at this point
|
|
// because we cannot call updateTeximage() without a corresponding
|
|
// compositionComplete() call.
|
|
// we'll trigger an update in onPreComposition().
|
|
if (mRefreshPending) {
|
|
return outDirtyRegion;
|
|
}
|
|
|
|
// Capture the old state of the layer for comparisons later
|
|
const State& s(getDrawingState());
|
|
const bool oldOpacity = isOpaque(s);
|
|
sp<GraphicBuffer> oldActiveBuffer = mActiveBuffer;
|
|
|
|
struct Reject : public SurfaceFlingerConsumer::BufferRejecter {
|
|
Layer::State& front;
|
|
Layer::State& current;
|
|
bool& recomputeVisibleRegions;
|
|
bool stickyTransformSet;
|
|
Reject(Layer::State& front, Layer::State& current,
|
|
bool& recomputeVisibleRegions, bool stickySet)
|
|
: front(front), current(current),
|
|
recomputeVisibleRegions(recomputeVisibleRegions),
|
|
stickyTransformSet(stickySet) {
|
|
}
|
|
|
|
virtual bool reject(const sp<GraphicBuffer>& buf,
|
|
const BufferItem& item) {
|
|
if (buf == NULL) {
|
|
return false;
|
|
}
|
|
|
|
uint32_t bufWidth = buf->getWidth();
|
|
uint32_t bufHeight = buf->getHeight();
|
|
|
|
// check that we received a buffer of the right size
|
|
// (Take the buffer's orientation into account)
|
|
if (item.mTransform & Transform::ROT_90) {
|
|
swap(bufWidth, bufHeight);
|
|
}
|
|
|
|
bool isFixedSize = item.mScalingMode != NATIVE_WINDOW_SCALING_MODE_FREEZE;
|
|
if (front.active != front.requested) {
|
|
|
|
if (isFixedSize ||
|
|
(bufWidth == front.requested.w &&
|
|
bufHeight == front.requested.h))
|
|
{
|
|
// Here we pretend the transaction happened by updating the
|
|
// current and drawing states. Drawing state is only accessed
|
|
// in this thread, no need to have it locked
|
|
front.active = front.requested;
|
|
|
|
// We also need to update the current state so that
|
|
// we don't end-up overwriting the drawing state with
|
|
// this stale current state during the next transaction
|
|
//
|
|
// NOTE: We don't need to hold the transaction lock here
|
|
// because State::active is only accessed from this thread.
|
|
current.active = front.active;
|
|
|
|
// recompute visible region
|
|
recomputeVisibleRegions = true;
|
|
}
|
|
|
|
ALOGD_IF(DEBUG_RESIZE,
|
|
"latchBuffer/reject: buffer (%ux%u, tr=%02x), scalingMode=%d\n"
|
|
" drawing={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
|
|
" requested={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }}\n",
|
|
bufWidth, bufHeight, item.mTransform, item.mScalingMode,
|
|
front.active.w, front.active.h,
|
|
front.active.crop.left,
|
|
front.active.crop.top,
|
|
front.active.crop.right,
|
|
front.active.crop.bottom,
|
|
front.active.crop.getWidth(),
|
|
front.active.crop.getHeight(),
|
|
front.requested.w, front.requested.h,
|
|
front.requested.crop.left,
|
|
front.requested.crop.top,
|
|
front.requested.crop.right,
|
|
front.requested.crop.bottom,
|
|
front.requested.crop.getWidth(),
|
|
front.requested.crop.getHeight());
|
|
}
|
|
|
|
if (!isFixedSize && !stickyTransformSet) {
|
|
if (front.active.w != bufWidth ||
|
|
front.active.h != bufHeight) {
|
|
// reject this buffer
|
|
ALOGE("rejecting buffer: bufWidth=%d, bufHeight=%d, front.active.{w=%d, h=%d}",
|
|
bufWidth, bufHeight, front.active.w, front.active.h);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// if the transparent region has changed (this test is
|
|
// conservative, but that's fine, worst case we're doing
|
|
// a bit of extra work), we latch the new one and we
|
|
// trigger a visible-region recompute.
|
|
if (!front.activeTransparentRegion.isTriviallyEqual(
|
|
front.requestedTransparentRegion)) {
|
|
front.activeTransparentRegion = front.requestedTransparentRegion;
|
|
|
|
// We also need to update the current state so that
|
|
// we don't end-up overwriting the drawing state with
|
|
// this stale current state during the next transaction
|
|
//
|
|
// NOTE: We don't need to hold the transaction lock here
|
|
// because State::active is only accessed from this thread.
|
|
current.activeTransparentRegion = front.activeTransparentRegion;
|
|
|
|
// recompute visible region
|
|
recomputeVisibleRegions = true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
};
|
|
|
|
Reject r(mDrawingState, getCurrentState(), recomputeVisibleRegions,
|
|
getProducerStickyTransform() != 0);
|
|
|
|
uint64_t maxFrameNumber = 0;
|
|
{
|
|
Mutex::Autolock lock(mQueueItemLock);
|
|
maxFrameNumber = mLastFrameNumberReceived;
|
|
}
|
|
|
|
status_t updateResult = mSurfaceFlingerConsumer->updateTexImage(&r,
|
|
mFlinger->mPrimaryDispSync, maxFrameNumber);
|
|
if (updateResult == BufferQueue::PRESENT_LATER) {
|
|
// Producer doesn't want buffer to be displayed yet. Signal a
|
|
// layer update so we check again at the next opportunity.
|
|
mFlinger->signalLayerUpdate();
|
|
return outDirtyRegion;
|
|
} else if (updateResult == SurfaceFlingerConsumer::BUFFER_REJECTED) {
|
|
// If the buffer has been rejected, remove it from the shadow queue
|
|
// and return early
|
|
Mutex::Autolock lock(mQueueItemLock);
|
|
mQueueItems.removeAt(0);
|
|
android_atomic_dec(&mQueuedFrames);
|
|
return outDirtyRegion;
|
|
} else if (updateResult != NO_ERROR || mUpdateTexImageFailed) {
|
|
// This can occur if something goes wrong when trying to create the
|
|
// EGLImage for this buffer. If this happens, the buffer has already
|
|
// been released, so we need to clean up the queue and bug out
|
|
// early.
|
|
{
|
|
Mutex::Autolock lock(mQueueItemLock);
|
|
mQueueItems.clear();
|
|
android_atomic_and(0, &mQueuedFrames);
|
|
}
|
|
|
|
// Once we have hit this state, the shadow queue may no longer
|
|
// correctly reflect the incoming BufferQueue's contents, so even if
|
|
// updateTexImage starts working, the only safe course of action is
|
|
// to continue to ignore updates.
|
|
mUpdateTexImageFailed = true;
|
|
|
|
return outDirtyRegion;
|
|
}
|
|
|
|
{ // Autolock scope
|
|
auto currentFrameNumber = mSurfaceFlingerConsumer->getFrameNumber();
|
|
|
|
Mutex::Autolock lock(mQueueItemLock);
|
|
|
|
// Remove any stale buffers that have been dropped during
|
|
// updateTexImage
|
|
while (mQueueItems[0].mFrameNumber != currentFrameNumber) {
|
|
mQueueItems.removeAt(0);
|
|
android_atomic_dec(&mQueuedFrames);
|
|
}
|
|
|
|
mQueueItems.removeAt(0);
|
|
}
|
|
|
|
|
|
// Decrement the queued-frames count. Signal another event if we
|
|
// have more frames pending.
|
|
if (android_atomic_dec(&mQueuedFrames) > 1) {
|
|
mFlinger->signalLayerUpdate();
|
|
}
|
|
|
|
if (updateResult != NO_ERROR) {
|
|
// something happened!
|
|
recomputeVisibleRegions = true;
|
|
return outDirtyRegion;
|
|
}
|
|
|
|
// update the active buffer
|
|
mActiveBuffer = mSurfaceFlingerConsumer->getCurrentBuffer();
|
|
if (mActiveBuffer == NULL) {
|
|
// this can only happen if the very first buffer was rejected.
|
|
return outDirtyRegion;
|
|
}
|
|
|
|
mRefreshPending = true;
|
|
mFrameLatencyNeeded = true;
|
|
if (oldActiveBuffer == NULL) {
|
|
// the first time we receive a buffer, we need to trigger a
|
|
// geometry invalidation.
|
|
recomputeVisibleRegions = true;
|
|
}
|
|
|
|
Rect crop(mSurfaceFlingerConsumer->getCurrentCrop());
|
|
const uint32_t transform(mSurfaceFlingerConsumer->getCurrentTransform());
|
|
const uint32_t scalingMode(mSurfaceFlingerConsumer->getCurrentScalingMode());
|
|
if ((crop != mCurrentCrop) ||
|
|
(transform != mCurrentTransform) ||
|
|
(scalingMode != mCurrentScalingMode))
|
|
{
|
|
mCurrentCrop = crop;
|
|
mCurrentTransform = transform;
|
|
mCurrentScalingMode = scalingMode;
|
|
recomputeVisibleRegions = true;
|
|
}
|
|
|
|
if (oldActiveBuffer != NULL) {
|
|
uint32_t bufWidth = mActiveBuffer->getWidth();
|
|
uint32_t bufHeight = mActiveBuffer->getHeight();
|
|
if (bufWidth != uint32_t(oldActiveBuffer->width) ||
|
|
bufHeight != uint32_t(oldActiveBuffer->height)) {
|
|
recomputeVisibleRegions = true;
|
|
}
|
|
}
|
|
|
|
mCurrentOpacity = getOpacityForFormat(mActiveBuffer->format);
|
|
if (oldOpacity != isOpaque(s)) {
|
|
recomputeVisibleRegions = true;
|
|
}
|
|
|
|
// FIXME: postedRegion should be dirty & bounds
|
|
Region dirtyRegion(Rect(s.active.w, s.active.h));
|
|
|
|
// transform the dirty region to window-manager space
|
|
outDirtyRegion = (s.transform.transform(dirtyRegion));
|
|
}
|
|
return outDirtyRegion;
|
|
}
|
|
|
|
uint32_t Layer::getEffectiveUsage(uint32_t usage) const
|
|
{
|
|
// TODO: should we do something special if mSecure is set?
|
|
if (mProtectedByApp) {
|
|
// need a hardware-protected path to external video sink
|
|
usage |= GraphicBuffer::USAGE_PROTECTED;
|
|
}
|
|
if (mPotentialCursor) {
|
|
usage |= GraphicBuffer::USAGE_CURSOR;
|
|
}
|
|
usage |= GraphicBuffer::USAGE_HW_COMPOSER;
|
|
return usage;
|
|
}
|
|
|
|
void Layer::updateTransformHint(const sp<const DisplayDevice>& hw) const {
|
|
uint32_t orientation = 0;
|
|
if (!mFlinger->mDebugDisableTransformHint) {
|
|
// The transform hint is used to improve performance, but we can
|
|
// only have a single transform hint, it cannot
|
|
// apply to all displays.
|
|
const Transform& planeTransform(hw->getTransform());
|
|
orientation = planeTransform.getOrientation();
|
|
if (orientation & Transform::ROT_INVALID) {
|
|
orientation = 0;
|
|
}
|
|
}
|
|
mSurfaceFlingerConsumer->setTransformHint(orientation);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// debugging
|
|
// ----------------------------------------------------------------------------
|
|
|
|
void Layer::dump(String8& result, Colorizer& colorizer) const
|
|
{
|
|
const Layer::State& s(getDrawingState());
|
|
|
|
colorizer.colorize(result, Colorizer::GREEN);
|
|
result.appendFormat(
|
|
"+ %s %p (%s)\n",
|
|
getTypeId(), this, getName().string());
|
|
colorizer.reset(result);
|
|
|
|
s.activeTransparentRegion.dump(result, "transparentRegion");
|
|
visibleRegion.dump(result, "visibleRegion");
|
|
surfaceDamageRegion.dump(result, "surfaceDamageRegion");
|
|
sp<Client> client(mClientRef.promote());
|
|
|
|
result.appendFormat( " "
|
|
"layerStack=%4d, z=%9d, pos=(%g,%g), size=(%4d,%4d), crop=(%4d,%4d,%4d,%4d), "
|
|
"isOpaque=%1d, invalidate=%1d, "
|
|
"alpha=0x%02x, flags=0x%08x, tr=[%.2f, %.2f][%.2f, %.2f]\n"
|
|
" client=%p\n",
|
|
s.layerStack, s.z, s.transform.tx(), s.transform.ty(), s.active.w, s.active.h,
|
|
s.active.crop.left, s.active.crop.top,
|
|
s.active.crop.right, s.active.crop.bottom,
|
|
isOpaque(s), contentDirty,
|
|
s.alpha, s.flags,
|
|
s.transform[0][0], s.transform[0][1],
|
|
s.transform[1][0], s.transform[1][1],
|
|
client.get());
|
|
|
|
sp<const GraphicBuffer> buf0(mActiveBuffer);
|
|
uint32_t w0=0, h0=0, s0=0, f0=0;
|
|
if (buf0 != 0) {
|
|
w0 = buf0->getWidth();
|
|
h0 = buf0->getHeight();
|
|
s0 = buf0->getStride();
|
|
f0 = buf0->format;
|
|
}
|
|
result.appendFormat(
|
|
" "
|
|
"format=%2d, activeBuffer=[%4ux%4u:%4u,%3X],"
|
|
" queued-frames=%d, mRefreshPending=%d\n",
|
|
mFormat, w0, h0, s0,f0,
|
|
mQueuedFrames, mRefreshPending);
|
|
|
|
if (mSurfaceFlingerConsumer != 0) {
|
|
mSurfaceFlingerConsumer->dump(result, " ");
|
|
}
|
|
}
|
|
|
|
void Layer::dumpFrameStats(String8& result) const {
|
|
mFrameTracker.dumpStats(result);
|
|
}
|
|
|
|
void Layer::clearFrameStats() {
|
|
mFrameTracker.clearStats();
|
|
}
|
|
|
|
void Layer::logFrameStats() {
|
|
mFrameTracker.logAndResetStats(mName);
|
|
}
|
|
|
|
void Layer::getFrameStats(FrameStats* outStats) const {
|
|
mFrameTracker.getStats(outStats);
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
Layer::LayerCleaner::LayerCleaner(const sp<SurfaceFlinger>& flinger,
|
|
const sp<Layer>& layer)
|
|
: mFlinger(flinger), mLayer(layer) {
|
|
}
|
|
|
|
Layer::LayerCleaner::~LayerCleaner() {
|
|
// destroy client resources
|
|
mFlinger->onLayerDestroyed(mLayer);
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
}; // namespace android
|
|
|
|
#if defined(__gl_h_)
|
|
#error "don't include gl/gl.h in this file"
|
|
#endif
|
|
|
|
#if defined(__gl2_h_)
|
|
#error "don't include gl2/gl2.h in this file"
|
|
#endif
|