replicant-frameworks_native/services/surfaceflinger/SurfaceFlinger.cpp
Mathias Agopian d0566bc26f Add support for sending VSYNC events to the framework
use gui/DisplayEvent to receive the events. Events are
dispatched through a unix pipe, so the API is compatible
with utils/Looper. see gui/DisplayEvent.h for more info.

Bug: 1475048
Change-Id: Ia720f64d1b950328b47b22c6a86042e481d35f09
2011-11-29 13:10:25 -08:00

2713 lines
86 KiB
C++

/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <math.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <cutils/log.h>
#include <cutils/properties.h>
#include <binder/IPCThreadState.h>
#include <binder/IServiceManager.h>
#include <binder/MemoryHeapBase.h>
#include <binder/PermissionCache.h>
#include <gui/IDisplayEventConnection.h>
#include <utils/String8.h>
#include <utils/String16.h>
#include <utils/StopWatch.h>
#include <ui/GraphicBufferAllocator.h>
#include <ui/GraphicLog.h>
#include <ui/PixelFormat.h>
#include <pixelflinger/pixelflinger.h>
#include <GLES/gl.h>
#include "clz.h"
#include "DisplayEventConnection.h"
#include "EventThread.h"
#include "GLExtensions.h"
#include "DdmConnection.h"
#include "Layer.h"
#include "LayerDim.h"
#include "LayerScreenshot.h"
#include "SurfaceFlinger.h"
#include "DisplayHardware/DisplayHardware.h"
#include "DisplayHardware/HWComposer.h"
#include <private/surfaceflinger/SharedBufferStack.h>
/* ideally AID_GRAPHICS would be in a semi-public header
* or there would be a way to map a user/group name to its id
*/
#ifndef AID_GRAPHICS
#define AID_GRAPHICS 1003
#endif
#define DISPLAY_COUNT 1
namespace android {
// ---------------------------------------------------------------------------
const String16 sHardwareTest("android.permission.HARDWARE_TEST");
const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
const String16 sDump("android.permission.DUMP");
// ---------------------------------------------------------------------------
SurfaceFlinger::SurfaceFlinger()
: BnSurfaceComposer(), Thread(false),
mTransactionFlags(0),
mTransationPending(false),
mLayersRemoved(false),
mBootTime(systemTime()),
mVisibleRegionsDirty(false),
mHwWorkListDirty(false),
mElectronBeamAnimationMode(0),
mDebugRegion(0),
mDebugBackground(0),
mDebugDDMS(0),
mDebugDisableHWC(0),
mDebugDisableTransformHint(0),
mDebugInSwapBuffers(0),
mLastSwapBufferTime(0),
mDebugInTransaction(0),
mLastTransactionTime(0),
mBootFinished(false),
mConsoleSignals(0),
mSecureFrameBuffer(0)
{
init();
}
void SurfaceFlinger::init()
{
LOGI("SurfaceFlinger is starting");
// debugging stuff...
char value[PROPERTY_VALUE_MAX];
property_get("debug.sf.showupdates", value, "0");
mDebugRegion = atoi(value);
property_get("debug.sf.showbackground", value, "0");
mDebugBackground = atoi(value);
property_get("debug.sf.ddms", value, "0");
mDebugDDMS = atoi(value);
if (mDebugDDMS) {
DdmConnection::start(getServiceName());
}
LOGI_IF(mDebugRegion, "showupdates enabled");
LOGI_IF(mDebugBackground, "showbackground enabled");
LOGI_IF(mDebugDDMS, "DDMS debugging enabled");
}
SurfaceFlinger::~SurfaceFlinger()
{
glDeleteTextures(1, &mWormholeTexName);
}
sp<IMemoryHeap> SurfaceFlinger::getCblk() const
{
return mServerHeap;
}
sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
{
sp<ISurfaceComposerClient> bclient;
sp<Client> client(new Client(this));
status_t err = client->initCheck();
if (err == NO_ERROR) {
bclient = client;
}
return bclient;
}
sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
{
sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
return gba;
}
const GraphicPlane& SurfaceFlinger::graphicPlane(int dpy) const
{
LOGE_IF(uint32_t(dpy) >= DISPLAY_COUNT, "Invalid DisplayID %d", dpy);
const GraphicPlane& plane(mGraphicPlanes[dpy]);
return plane;
}
GraphicPlane& SurfaceFlinger::graphicPlane(int dpy)
{
return const_cast<GraphicPlane&>(
const_cast<SurfaceFlinger const *>(this)->graphicPlane(dpy));
}
void SurfaceFlinger::bootFinished()
{
const nsecs_t now = systemTime();
const nsecs_t duration = now - mBootTime;
LOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
mBootFinished = true;
// wait patiently for the window manager death
const String16 name("window");
sp<IBinder> window(defaultServiceManager()->getService(name));
if (window != 0) {
window->linkToDeath(this);
}
// stop boot animation
property_set("ctl.stop", "bootanim");
}
void SurfaceFlinger::binderDied(const wp<IBinder>& who)
{
// the window manager died on us. prepare its eulogy.
// reset screen orientation
setOrientation(0, eOrientationDefault, 0);
// restart the boot-animation
property_set("ctl.start", "bootanim");
}
void SurfaceFlinger::onFirstRef()
{
run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
// Wait for the main thread to be done with its initialization
mReadyToRunBarrier.wait();
}
static inline uint16_t pack565(int r, int g, int b) {
return (r<<11)|(g<<5)|b;
}
status_t SurfaceFlinger::readyToRun()
{
LOGI( "SurfaceFlinger's main thread ready to run. "
"Initializing graphics H/W...");
// we only support one display currently
int dpy = 0;
{
// initialize the main display
GraphicPlane& plane(graphicPlane(dpy));
DisplayHardware* const hw = new DisplayHardware(this, dpy);
plane.setDisplayHardware(hw);
}
// create the shared control-block
mServerHeap = new MemoryHeapBase(4096,
MemoryHeapBase::READ_ONLY, "SurfaceFlinger read-only heap");
LOGE_IF(mServerHeap==0, "can't create shared memory dealer");
mServerCblk = static_cast<surface_flinger_cblk_t*>(mServerHeap->getBase());
LOGE_IF(mServerCblk==0, "can't get to shared control block's address");
new(mServerCblk) surface_flinger_cblk_t;
// initialize primary screen
// (other display should be initialized in the same manner, but
// asynchronously, as they could come and go. None of this is supported
// yet).
const GraphicPlane& plane(graphicPlane(dpy));
const DisplayHardware& hw = plane.displayHardware();
const uint32_t w = hw.getWidth();
const uint32_t h = hw.getHeight();
const uint32_t f = hw.getFormat();
hw.makeCurrent();
// initialize the shared control block
mServerCblk->connected |= 1<<dpy;
display_cblk_t* dcblk = mServerCblk->displays + dpy;
memset(dcblk, 0, sizeof(display_cblk_t));
dcblk->w = plane.getWidth();
dcblk->h = plane.getHeight();
dcblk->format = f;
dcblk->orientation = ISurfaceComposer::eOrientationDefault;
dcblk->xdpi = hw.getDpiX();
dcblk->ydpi = hw.getDpiY();
dcblk->fps = hw.getRefreshRate();
dcblk->density = hw.getDensity();
// Initialize OpenGL|ES
glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
glPixelStorei(GL_PACK_ALIGNMENT, 4);
glEnableClientState(GL_VERTEX_ARRAY);
glEnable(GL_SCISSOR_TEST);
glShadeModel(GL_FLAT);
glDisable(GL_DITHER);
glDisable(GL_CULL_FACE);
const uint16_t g0 = pack565(0x0F,0x1F,0x0F);
const uint16_t g1 = pack565(0x17,0x2f,0x17);
const uint16_t wormholeTexData[4] = { g0, g1, g1, g0 };
glGenTextures(1, &mWormholeTexName);
glBindTexture(GL_TEXTURE_2D, mWormholeTexName);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 2, 2, 0,
GL_RGB, GL_UNSIGNED_SHORT_5_6_5, wormholeTexData);
const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
glGenTextures(1, &mProtectedTexName);
glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
glViewport(0, 0, w, h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
// put the origin in the left-bottom corner
glOrthof(0, w, 0, h, 0, 1); // l=0, r=w ; b=0, t=h
// start the EventThread
mEventThread = new EventThread(this);
/*
* We're now ready to accept clients...
*/
mReadyToRunBarrier.open();
// start boot animation
property_set("ctl.start", "bootanim");
return NO_ERROR;
}
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#pragma mark Events Handler
#endif
void SurfaceFlinger::waitForEvent() {
mEventQueue.waitMessage();
}
void SurfaceFlinger::signalEvent() {
mEventQueue.invalidate();
}
status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
nsecs_t reltime, uint32_t flags) {
return mEventQueue.postMessage(msg, reltime);
}
status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
nsecs_t reltime, uint32_t flags) {
status_t res = mEventQueue.postMessage(msg, reltime);
if (res == NO_ERROR) {
msg->wait();
}
return res;
}
// ----------------------------------------------------------------------------
bool SurfaceFlinger::authenticateSurfaceTexture(
const sp<ISurfaceTexture>& surfaceTexture) const {
Mutex::Autolock _l(mStateLock);
sp<IBinder> surfaceTextureBinder(surfaceTexture->asBinder());
// Check the visible layer list for the ISurface
const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
size_t count = currentLayers.size();
for (size_t i=0 ; i<count ; i++) {
const sp<LayerBase>& layer(currentLayers[i]);
sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
if (lbc != NULL) {
wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
if (lbcBinder == surfaceTextureBinder) {
return true;
}
}
}
// Check the layers in the purgatory. This check is here so that if a
// SurfaceTexture gets destroyed before all the clients are done using it,
// the error will not be reported as "surface XYZ is not authenticated", but
// will instead fail later on when the client tries to use the surface,
// which should be reported as "surface XYZ returned an -ENODEV". The
// purgatorized layers are no less authentic than the visible ones, so this
// should not cause any harm.
size_t purgatorySize = mLayerPurgatory.size();
for (size_t i=0 ; i<purgatorySize ; i++) {
const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
if (lbc != NULL) {
wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
if (lbcBinder == surfaceTextureBinder) {
return true;
}
}
}
return false;
}
// ----------------------------------------------------------------------------
sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
sp<DisplayEventConnection> result(new DisplayEventConnection(this));
mEventThread->registerDisplayEventConnection(result);
return result;
}
void SurfaceFlinger::cleanupDisplayEventConnection(
const wp<DisplayEventConnection>& connection) {
mEventThread->unregisterDisplayEventConnection(connection);
}
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#pragma mark Main loop
#endif
bool SurfaceFlinger::threadLoop()
{
waitForEvent();
// check for transactions
if (UNLIKELY(mConsoleSignals)) {
handleConsoleEvents();
}
// if we're in a global transaction, don't do anything.
const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
uint32_t transactionFlags = peekTransactionFlags(mask);
if (UNLIKELY(transactionFlags)) {
handleTransaction(transactionFlags);
}
// post surfaces (if needed)
handlePageFlip();
if (mDirtyRegion.isEmpty()) {
// nothing new to do.
return true;
}
if (UNLIKELY(mHwWorkListDirty)) {
// build the h/w work list
handleWorkList();
}
const DisplayHardware& hw(graphicPlane(0).displayHardware());
if (LIKELY(hw.canDraw())) {
// repaint the framebuffer (if needed)
const int index = hw.getCurrentBufferIndex();
GraphicLog& logger(GraphicLog::getInstance());
logger.log(GraphicLog::SF_REPAINT, index);
handleRepaint();
// inform the h/w that we're done compositing
logger.log(GraphicLog::SF_COMPOSITION_COMPLETE, index);
hw.compositionComplete();
logger.log(GraphicLog::SF_SWAP_BUFFERS, index);
postFramebuffer();
logger.log(GraphicLog::SF_REPAINT_DONE, index);
} else {
// pretend we did the post
hw.compositionComplete();
hw.waitForVSync();
}
return true;
}
void SurfaceFlinger::postFramebuffer()
{
// this should never happen. we do the flip anyways so we don't
// risk to cause a deadlock with hwc
LOGW_IF(mSwapRegion.isEmpty(), "mSwapRegion is empty");
const DisplayHardware& hw(graphicPlane(0).displayHardware());
const nsecs_t now = systemTime();
mDebugInSwapBuffers = now;
hw.flip(mSwapRegion);
mLastSwapBufferTime = systemTime() - now;
mDebugInSwapBuffers = 0;
mSwapRegion.clear();
}
void SurfaceFlinger::handleConsoleEvents()
{
// something to do with the console
const DisplayHardware& hw = graphicPlane(0).displayHardware();
int what = android_atomic_and(0, &mConsoleSignals);
if (what & eConsoleAcquired) {
hw.acquireScreen();
// this is a temporary work-around, eventually this should be called
// by the power-manager
SurfaceFlinger::turnElectronBeamOn(mElectronBeamAnimationMode);
}
if (what & eConsoleReleased) {
if (hw.isScreenAcquired()) {
hw.releaseScreen();
}
}
mDirtyRegion.set(hw.bounds());
}
void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
{
Mutex::Autolock _l(mStateLock);
const nsecs_t now = systemTime();
mDebugInTransaction = now;
// Here we're guaranteed that some transaction flags are set
// so we can call handleTransactionLocked() unconditionally.
// We call getTransactionFlags(), which will also clear the flags,
// with mStateLock held to guarantee that mCurrentState won't change
// until the transaction is committed.
const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
transactionFlags = getTransactionFlags(mask);
handleTransactionLocked(transactionFlags);
mLastTransactionTime = systemTime() - now;
mDebugInTransaction = 0;
invalidateHwcGeometry();
// here the transaction has been committed
}
void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
{
const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
const size_t count = currentLayers.size();
/*
* Traversal of the children
* (perform the transaction for each of them if needed)
*/
const bool layersNeedTransaction = transactionFlags & eTraversalNeeded;
if (layersNeedTransaction) {
for (size_t i=0 ; i<count ; i++) {
const sp<LayerBase>& layer = currentLayers[i];
uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
if (!trFlags) continue;
const uint32_t flags = layer->doTransaction(0);
if (flags & Layer::eVisibleRegion)
mVisibleRegionsDirty = true;
}
}
/*
* Perform our own transaction if needed
*/
if (transactionFlags & eTransactionNeeded) {
if (mCurrentState.orientation != mDrawingState.orientation) {
// the orientation has changed, recompute all visible regions
// and invalidate everything.
const int dpy = 0;
const int orientation = mCurrentState.orientation;
// Currently unused: const uint32_t flags = mCurrentState.orientationFlags;
GraphicPlane& plane(graphicPlane(dpy));
plane.setOrientation(orientation);
// update the shared control block
const DisplayHardware& hw(plane.displayHardware());
volatile display_cblk_t* dcblk = mServerCblk->displays + dpy;
dcblk->orientation = orientation;
dcblk->w = plane.getWidth();
dcblk->h = plane.getHeight();
mVisibleRegionsDirty = true;
mDirtyRegion.set(hw.bounds());
}
if (currentLayers.size() > mDrawingState.layersSortedByZ.size()) {
// layers have been added
mVisibleRegionsDirty = true;
}
// some layers might have been removed, so
// we need to update the regions they're exposing.
if (mLayersRemoved) {
mLayersRemoved = false;
mVisibleRegionsDirty = true;
const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
const size_t count = previousLayers.size();
for (size_t i=0 ; i<count ; i++) {
const sp<LayerBase>& layer(previousLayers[i]);
if (currentLayers.indexOf( layer ) < 0) {
// this layer is not visible anymore
mDirtyRegionRemovedLayer.orSelf(layer->visibleRegionScreen);
}
}
}
}
commitTransaction();
}
void SurfaceFlinger::computeVisibleRegions(
const LayerVector& currentLayers, Region& dirtyRegion, Region& opaqueRegion)
{
const GraphicPlane& plane(graphicPlane(0));
const Transform& planeTransform(plane.transform());
const DisplayHardware& hw(plane.displayHardware());
const Region screenRegion(hw.bounds());
Region aboveOpaqueLayers;
Region aboveCoveredLayers;
Region dirty;
bool secureFrameBuffer = false;
size_t i = currentLayers.size();
while (i--) {
const sp<LayerBase>& layer = currentLayers[i];
layer->validateVisibility(planeTransform);
// start with the whole surface at its current location
const Layer::State& s(layer->drawingState());
/*
* opaqueRegion: area of a surface that is fully opaque.
*/
Region opaqueRegion;
/*
* visibleRegion: area of a surface that is visible on screen
* and not fully transparent. This is essentially the layer's
* footprint minus the opaque regions above it.
* Areas covered by a translucent surface are considered visible.
*/
Region visibleRegion;
/*
* coveredRegion: area of a surface that is covered by all
* visible regions above it (which includes the translucent areas).
*/
Region coveredRegion;
// handle hidden surfaces by setting the visible region to empty
if (LIKELY(!(s.flags & ISurfaceComposer::eLayerHidden) && s.alpha)) {
const bool translucent = !layer->isOpaque();
const Rect bounds(layer->visibleBounds());
visibleRegion.set(bounds);
visibleRegion.andSelf(screenRegion);
if (!visibleRegion.isEmpty()) {
// Remove the transparent area from the visible region
if (translucent) {
visibleRegion.subtractSelf(layer->transparentRegionScreen);
}
// compute the opaque region
const int32_t layerOrientation = layer->getOrientation();
if (s.alpha==255 && !translucent &&
((layerOrientation & Transform::ROT_INVALID) == false)) {
// the opaque region is the layer's footprint
opaqueRegion = visibleRegion;
}
}
}
// Clip the covered region to the visible region
coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
// Update aboveCoveredLayers for next (lower) layer
aboveCoveredLayers.orSelf(visibleRegion);
// subtract the opaque region covered by the layers above us
visibleRegion.subtractSelf(aboveOpaqueLayers);
// compute this layer's dirty region
if (layer->contentDirty) {
// we need to invalidate the whole region
dirty = visibleRegion;
// as well, as the old visible region
dirty.orSelf(layer->visibleRegionScreen);
layer->contentDirty = false;
} else {
/* compute the exposed region:
* the exposed region consists of two components:
* 1) what's VISIBLE now and was COVERED before
* 2) what's EXPOSED now less what was EXPOSED before
*
* note that (1) is conservative, we start with the whole
* visible region but only keep what used to be covered by
* something -- which mean it may have been exposed.
*
* (2) handles areas that were not covered by anything but got
* exposed because of a resize.
*/
const Region newExposed = visibleRegion - coveredRegion;
const Region oldVisibleRegion = layer->visibleRegionScreen;
const Region oldCoveredRegion = layer->coveredRegionScreen;
const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
}
dirty.subtractSelf(aboveOpaqueLayers);
// accumulate to the screen dirty region
dirtyRegion.orSelf(dirty);
// Update aboveOpaqueLayers for next (lower) layer
aboveOpaqueLayers.orSelf(opaqueRegion);
// Store the visible region is screen space
layer->setVisibleRegion(visibleRegion);
layer->setCoveredRegion(coveredRegion);
// If a secure layer is partially visible, lock-down the screen!
if (layer->isSecure() && !visibleRegion.isEmpty()) {
secureFrameBuffer = true;
}
}
// invalidate the areas where a layer was removed
dirtyRegion.orSelf(mDirtyRegionRemovedLayer);
mDirtyRegionRemovedLayer.clear();
mSecureFrameBuffer = secureFrameBuffer;
opaqueRegion = aboveOpaqueLayers;
}
void SurfaceFlinger::commitTransaction()
{
mDrawingState = mCurrentState;
mTransationPending = false;
mTransactionCV.broadcast();
}
void SurfaceFlinger::handlePageFlip()
{
bool visibleRegions = mVisibleRegionsDirty;
const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
visibleRegions |= lockPageFlip(currentLayers);
const DisplayHardware& hw = graphicPlane(0).displayHardware();
const Region screenRegion(hw.bounds());
if (visibleRegions) {
Region opaqueRegion;
computeVisibleRegions(currentLayers, mDirtyRegion, opaqueRegion);
/*
* rebuild the visible layer list
*/
const size_t count = currentLayers.size();
mVisibleLayersSortedByZ.clear();
mVisibleLayersSortedByZ.setCapacity(count);
for (size_t i=0 ; i<count ; i++) {
if (!currentLayers[i]->visibleRegionScreen.isEmpty())
mVisibleLayersSortedByZ.add(currentLayers[i]);
}
mWormholeRegion = screenRegion.subtract(opaqueRegion);
mVisibleRegionsDirty = false;
invalidateHwcGeometry();
}
unlockPageFlip(currentLayers);
mDirtyRegion.orSelf(getAndClearInvalidateRegion());
mDirtyRegion.andSelf(screenRegion);
}
void SurfaceFlinger::invalidateHwcGeometry()
{
mHwWorkListDirty = true;
}
bool SurfaceFlinger::lockPageFlip(const LayerVector& currentLayers)
{
bool recomputeVisibleRegions = false;
size_t count = currentLayers.size();
sp<LayerBase> const* layers = currentLayers.array();
for (size_t i=0 ; i<count ; i++) {
const sp<LayerBase>& layer(layers[i]);
layer->lockPageFlip(recomputeVisibleRegions);
}
return recomputeVisibleRegions;
}
void SurfaceFlinger::unlockPageFlip(const LayerVector& currentLayers)
{
const GraphicPlane& plane(graphicPlane(0));
const Transform& planeTransform(plane.transform());
size_t count = currentLayers.size();
sp<LayerBase> const* layers = currentLayers.array();
for (size_t i=0 ; i<count ; i++) {
const sp<LayerBase>& layer(layers[i]);
layer->unlockPageFlip(planeTransform, mDirtyRegion);
}
}
void SurfaceFlinger::handleWorkList()
{
mHwWorkListDirty = false;
HWComposer& hwc(graphicPlane(0).displayHardware().getHwComposer());
if (hwc.initCheck() == NO_ERROR) {
const Vector< sp<LayerBase> >& currentLayers(mVisibleLayersSortedByZ);
const size_t count = currentLayers.size();
hwc.createWorkList(count);
hwc_layer_t* const cur(hwc.getLayers());
for (size_t i=0 ; cur && i<count ; i++) {
currentLayers[i]->setGeometry(&cur[i]);
if (mDebugDisableHWC || mDebugRegion) {
cur[i].compositionType = HWC_FRAMEBUFFER;
cur[i].flags |= HWC_SKIP_LAYER;
}
}
}
}
void SurfaceFlinger::handleRepaint()
{
// compute the invalid region
mSwapRegion.orSelf(mDirtyRegion);
if (UNLIKELY(mDebugRegion)) {
debugFlashRegions();
}
// set the frame buffer
const DisplayHardware& hw(graphicPlane(0).displayHardware());
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
uint32_t flags = hw.getFlags();
if ((flags & DisplayHardware::SWAP_RECTANGLE) ||
(flags & DisplayHardware::BUFFER_PRESERVED))
{
// we can redraw only what's dirty, but since SWAP_RECTANGLE only
// takes a rectangle, we must make sure to update that whole
// rectangle in that case
if (flags & DisplayHardware::SWAP_RECTANGLE) {
// TODO: we really should be able to pass a region to
// SWAP_RECTANGLE so that we don't have to redraw all this.
mDirtyRegion.set(mSwapRegion.bounds());
} else {
// in the BUFFER_PRESERVED case, obviously, we can update only
// what's needed and nothing more.
// NOTE: this is NOT a common case, as preserving the backbuffer
// is costly and usually involves copying the whole update back.
}
} else {
if (flags & DisplayHardware::PARTIAL_UPDATES) {
// We need to redraw the rectangle that will be updated
// (pushed to the framebuffer).
// This is needed because PARTIAL_UPDATES only takes one
// rectangle instead of a region (see DisplayHardware::flip())
mDirtyRegion.set(mSwapRegion.bounds());
} else {
// we need to redraw everything (the whole screen)
mDirtyRegion.set(hw.bounds());
mSwapRegion = mDirtyRegion;
}
}
setupHardwareComposer(mDirtyRegion);
composeSurfaces(mDirtyRegion);
// update the swap region and clear the dirty region
mSwapRegion.orSelf(mDirtyRegion);
mDirtyRegion.clear();
}
void SurfaceFlinger::setupHardwareComposer(Region& dirtyInOut)
{
const DisplayHardware& hw(graphicPlane(0).displayHardware());
HWComposer& hwc(hw.getHwComposer());
hwc_layer_t* const cur(hwc.getLayers());
if (!cur) {
return;
}
const Vector< sp<LayerBase> >& layers(mVisibleLayersSortedByZ);
size_t count = layers.size();
LOGE_IF(hwc.getNumLayers() != count,
"HAL number of layers (%d) doesn't match surfaceflinger (%d)",
hwc.getNumLayers(), count);
// just to be extra-safe, use the smallest count
if (hwc.initCheck() == NO_ERROR) {
count = count < hwc.getNumLayers() ? count : hwc.getNumLayers();
}
/*
* update the per-frame h/w composer data for each layer
* and build the transparent region of the FB
*/
for (size_t i=0 ; i<count ; i++) {
const sp<LayerBase>& layer(layers[i]);
layer->setPerFrameData(&cur[i]);
}
const size_t fbLayerCount = hwc.getLayerCount(HWC_FRAMEBUFFER);
status_t err = hwc.prepare();
LOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
if (err == NO_ERROR) {
// what's happening here is tricky.
// we want to clear all the layers with the CLEAR_FB flags
// that are opaque.
// however, since some GPU are efficient at preserving
// the backbuffer, we want to take advantage of that so we do the
// clear only in the dirty region (other areas will be preserved
// on those GPUs).
// NOTE: on non backbuffer preserving GPU, the dirty region
// has already been expanded as needed, so the code is correct
// there too.
//
// However, the content of the framebuffer cannot be trusted when
// we switch to/from FB/OVERLAY, in which case we need to
// expand the dirty region to those areas too.
//
// Note also that there is a special case when switching from
// "no layers in FB" to "some layers in FB", where we need to redraw
// the entire FB, since some areas might contain uninitialized
// data.
//
// Also we want to make sure to not clear areas that belong to
// layers above that won't redraw (we would just be erasing them),
// that is, we can't erase anything outside the dirty region.
Region transparent;
if (!fbLayerCount && hwc.getLayerCount(HWC_FRAMEBUFFER)) {
transparent.set(hw.getBounds());
dirtyInOut = transparent;
} else {
for (size_t i=0 ; i<count ; i++) {
const sp<LayerBase>& layer(layers[i]);
if ((cur[i].hints & HWC_HINT_CLEAR_FB) && layer->isOpaque()) {
transparent.orSelf(layer->visibleRegionScreen);
}
bool isOverlay = (cur[i].compositionType != HWC_FRAMEBUFFER);
if (isOverlay != layer->isOverlay()) {
// we transitioned to/from overlay, so add this layer
// to the dirty region so the framebuffer can be either
// cleared or redrawn.
dirtyInOut.orSelf(layer->visibleRegionScreen);
}
layer->setOverlay(isOverlay);
}
// don't erase stuff outside the dirty region
transparent.andSelf(dirtyInOut);
}
/*
* clear the area of the FB that need to be transparent
*/
if (!transparent.isEmpty()) {
glClearColor(0,0,0,0);
Region::const_iterator it = transparent.begin();
Region::const_iterator const end = transparent.end();
const int32_t height = hw.getHeight();
while (it != end) {
const Rect& r(*it++);
const GLint sy = height - (r.top + r.height());
glScissor(r.left, sy, r.width(), r.height());
glClear(GL_COLOR_BUFFER_BIT);
}
}
}
}
void SurfaceFlinger::composeSurfaces(const Region& dirty)
{
const DisplayHardware& hw(graphicPlane(0).displayHardware());
HWComposer& hwc(hw.getHwComposer());
const size_t fbLayerCount = hwc.getLayerCount(HWC_FRAMEBUFFER);
if (UNLIKELY(fbLayerCount && !mWormholeRegion.isEmpty())) {
// should never happen unless the window manager has a bug
// draw something...
drawWormhole();
}
/*
* and then, render the layers targeted at the framebuffer
*/
hwc_layer_t* const cur(hwc.getLayers());
const Vector< sp<LayerBase> >& layers(mVisibleLayersSortedByZ);
size_t count = layers.size();
for (size_t i=0 ; i<count ; i++) {
if (cur && (cur[i].compositionType != HWC_FRAMEBUFFER)) {
continue;
}
const sp<LayerBase>& layer(layers[i]);
const Region clip(dirty.intersect(layer->visibleRegionScreen));
if (!clip.isEmpty()) {
layer->draw(clip);
}
}
}
void SurfaceFlinger::debugFlashRegions()
{
const DisplayHardware& hw(graphicPlane(0).displayHardware());
const uint32_t flags = hw.getFlags();
const int32_t height = hw.getHeight();
if (mSwapRegion.isEmpty()) {
return;
}
if (!((flags & DisplayHardware::SWAP_RECTANGLE) ||
(flags & DisplayHardware::BUFFER_PRESERVED))) {
const Region repaint((flags & DisplayHardware::PARTIAL_UPDATES) ?
mDirtyRegion.bounds() : hw.bounds());
composeSurfaces(repaint);
}
glDisable(GL_TEXTURE_EXTERNAL_OES);
glDisable(GL_TEXTURE_2D);
glDisable(GL_BLEND);
glDisable(GL_SCISSOR_TEST);
static int toggle = 0;
toggle = 1 - toggle;
if (toggle) {
glColor4f(1, 0, 1, 1);
} else {
glColor4f(1, 1, 0, 1);
}
Region::const_iterator it = mDirtyRegion.begin();
Region::const_iterator const end = mDirtyRegion.end();
while (it != end) {
const Rect& r = *it++;
GLfloat vertices[][2] = {
{ r.left, height - r.top },
{ r.left, height - r.bottom },
{ r.right, height - r.bottom },
{ r.right, height - r.top }
};
glVertexPointer(2, GL_FLOAT, 0, vertices);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
hw.flip(mSwapRegion);
if (mDebugRegion > 1)
usleep(mDebugRegion * 1000);
glEnable(GL_SCISSOR_TEST);
}
void SurfaceFlinger::drawWormhole() const
{
const Region region(mWormholeRegion.intersect(mDirtyRegion));
if (region.isEmpty())
return;
const DisplayHardware& hw(graphicPlane(0).displayHardware());
const int32_t width = hw.getWidth();
const int32_t height = hw.getHeight();
if (LIKELY(!mDebugBackground)) {
glClearColor(0,0,0,0);
Region::const_iterator it = region.begin();
Region::const_iterator const end = region.end();
while (it != end) {
const Rect& r = *it++;
const GLint sy = height - (r.top + r.height());
glScissor(r.left, sy, r.width(), r.height());
glClear(GL_COLOR_BUFFER_BIT);
}
} else {
const GLshort vertices[][2] = { { 0, 0 }, { width, 0 },
{ width, height }, { 0, height } };
const GLshort tcoords[][2] = { { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 } };
glVertexPointer(2, GL_SHORT, 0, vertices);
glTexCoordPointer(2, GL_SHORT, 0, tcoords);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glDisable(GL_TEXTURE_EXTERNAL_OES);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, mWormholeTexName);
glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glDisable(GL_BLEND);
glScalef(width*(1.0f/32.0f), height*(1.0f/32.0f), 1);
Region::const_iterator it = region.begin();
Region::const_iterator const end = region.end();
while (it != end) {
const Rect& r = *it++;
const GLint sy = height - (r.top + r.height());
glScissor(r.left, sy, r.width(), r.height());
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glDisable(GL_TEXTURE_2D);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
}
}
void SurfaceFlinger::debugShowFPS() const
{
static int mFrameCount;
static int mLastFrameCount = 0;
static nsecs_t mLastFpsTime = 0;
static float mFps = 0;
mFrameCount++;
nsecs_t now = systemTime();
nsecs_t diff = now - mLastFpsTime;
if (diff > ms2ns(250)) {
mFps = ((mFrameCount - mLastFrameCount) * float(s2ns(1))) / diff;
mLastFpsTime = now;
mLastFrameCount = mFrameCount;
}
// XXX: mFPS has the value we want
}
status_t SurfaceFlinger::addLayer(const sp<LayerBase>& layer)
{
Mutex::Autolock _l(mStateLock);
addLayer_l(layer);
setTransactionFlags(eTransactionNeeded|eTraversalNeeded);
return NO_ERROR;
}
status_t SurfaceFlinger::addLayer_l(const sp<LayerBase>& layer)
{
ssize_t i = mCurrentState.layersSortedByZ.add(layer);
return (i < 0) ? status_t(i) : status_t(NO_ERROR);
}
ssize_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
const sp<LayerBaseClient>& lbc)
{
// attach this layer to the client
size_t name = client->attachLayer(lbc);
Mutex::Autolock _l(mStateLock);
// add this layer to the current state list
addLayer_l(lbc);
return ssize_t(name);
}
status_t SurfaceFlinger::removeLayer(const sp<LayerBase>& layer)
{
Mutex::Autolock _l(mStateLock);
status_t err = purgatorizeLayer_l(layer);
if (err == NO_ERROR)
setTransactionFlags(eTransactionNeeded);
return err;
}
status_t SurfaceFlinger::removeLayer_l(const sp<LayerBase>& layerBase)
{
sp<LayerBaseClient> lbc(layerBase->getLayerBaseClient());
if (lbc != 0) {
mLayerMap.removeItem( lbc->getSurfaceBinder() );
}
ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
if (index >= 0) {
mLayersRemoved = true;
return NO_ERROR;
}
return status_t(index);
}
status_t SurfaceFlinger::purgatorizeLayer_l(const sp<LayerBase>& layerBase)
{
// First add the layer to the purgatory list, which makes sure it won't
// go away, then remove it from the main list (through a transaction).
ssize_t err = removeLayer_l(layerBase);
if (err >= 0) {
mLayerPurgatory.add(layerBase);
}
layerBase->onRemoved();
// it's possible that we don't find a layer, because it might
// have been destroyed already -- this is not technically an error
// from the user because there is a race between Client::destroySurface(),
// ~Client() and ~ISurface().
return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err;
}
status_t SurfaceFlinger::invalidateLayerVisibility(const sp<LayerBase>& layer)
{
layer->forceVisibilityTransaction();
setTransactionFlags(eTraversalNeeded);
return NO_ERROR;
}
uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
{
return android_atomic_release_load(&mTransactionFlags);
}
uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
{
return android_atomic_and(~flags, &mTransactionFlags) & flags;
}
uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
{
uint32_t old = android_atomic_or(flags, &mTransactionFlags);
if ((old & flags)==0) { // wake the server up
signalEvent();
}
return old;
}
void SurfaceFlinger::setTransactionState(const Vector<ComposerState>& state,
int orientation, uint32_t flags) {
Mutex::Autolock _l(mStateLock);
uint32_t transactionFlags = 0;
if (mCurrentState.orientation != orientation) {
if (uint32_t(orientation)<=eOrientation270 || orientation==42) {
mCurrentState.orientation = orientation;
transactionFlags |= eTransactionNeeded;
} else if (orientation != eOrientationUnchanged) {
LOGW("setTransactionState: ignoring unrecognized orientation: %d",
orientation);
}
}
const size_t count = state.size();
for (size_t i=0 ; i<count ; i++) {
const ComposerState& s(state[i]);
sp<Client> client( static_cast<Client *>(s.client.get()) );
transactionFlags |= setClientStateLocked(client, s.state);
}
if (transactionFlags) {
// this triggers the transaction
setTransactionFlags(transactionFlags);
// if this is a synchronous transaction, wait for it to take effect
// before returning.
if (flags & eSynchronous) {
mTransationPending = true;
}
while (mTransationPending) {
status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
if (CC_UNLIKELY(err != NO_ERROR)) {
// just in case something goes wrong in SF, return to the
// called after a few seconds.
LOGW_IF(err == TIMED_OUT, "closeGlobalTransaction timed out!");
mTransationPending = false;
break;
}
}
}
}
int SurfaceFlinger::setOrientation(DisplayID dpy,
int orientation, uint32_t flags)
{
if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
return BAD_VALUE;
Mutex::Autolock _l(mStateLock);
if (mCurrentState.orientation != orientation) {
if (uint32_t(orientation)<=eOrientation270 || orientation==42) {
mCurrentState.orientationFlags = flags;
mCurrentState.orientation = orientation;
setTransactionFlags(eTransactionNeeded);
mTransactionCV.wait(mStateLock);
} else {
orientation = BAD_VALUE;
}
}
return orientation;
}
sp<ISurface> SurfaceFlinger::createSurface(
ISurfaceComposerClient::surface_data_t* params,
const String8& name,
const sp<Client>& client,
DisplayID d, uint32_t w, uint32_t h, PixelFormat format,
uint32_t flags)
{
sp<LayerBaseClient> layer;
sp<ISurface> surfaceHandle;
if (int32_t(w|h) < 0) {
LOGE("createSurface() failed, w or h is negative (w=%d, h=%d)",
int(w), int(h));
return surfaceHandle;
}
//LOGD("createSurface for pid %d (%d x %d)", pid, w, h);
sp<Layer> normalLayer;
switch (flags & eFXSurfaceMask) {
case eFXSurfaceNormal:
normalLayer = createNormalSurface(client, d, w, h, flags, format);
layer = normalLayer;
break;
case eFXSurfaceBlur:
// for now we treat Blur as Dim, until we can implement it
// efficiently.
case eFXSurfaceDim:
layer = createDimSurface(client, d, w, h, flags);
break;
case eFXSurfaceScreenshot:
layer = createScreenshotSurface(client, d, w, h, flags);
break;
}
if (layer != 0) {
layer->initStates(w, h, flags);
layer->setName(name);
ssize_t token = addClientLayer(client, layer);
surfaceHandle = layer->getSurface();
if (surfaceHandle != 0) {
params->token = token;
params->identity = layer->getIdentity();
if (normalLayer != 0) {
Mutex::Autolock _l(mStateLock);
mLayerMap.add(layer->getSurfaceBinder(), normalLayer);
}
}
setTransactionFlags(eTransactionNeeded);
}
return surfaceHandle;
}
sp<Layer> SurfaceFlinger::createNormalSurface(
const sp<Client>& client, DisplayID display,
uint32_t w, uint32_t h, uint32_t flags,
PixelFormat& format)
{
// initialize the surfaces
switch (format) { // TODO: take h/w into account
case PIXEL_FORMAT_TRANSPARENT:
case PIXEL_FORMAT_TRANSLUCENT:
format = PIXEL_FORMAT_RGBA_8888;
break;
case PIXEL_FORMAT_OPAQUE:
#ifdef NO_RGBX_8888
format = PIXEL_FORMAT_RGB_565;
#else
format = PIXEL_FORMAT_RGBX_8888;
#endif
break;
}
#ifdef NO_RGBX_8888
if (format == PIXEL_FORMAT_RGBX_8888)
format = PIXEL_FORMAT_RGBA_8888;
#endif
sp<Layer> layer = new Layer(this, display, client);
status_t err = layer->setBuffers(w, h, format, flags);
if (LIKELY(err != NO_ERROR)) {
LOGE("createNormalSurfaceLocked() failed (%s)", strerror(-err));
layer.clear();
}
return layer;
}
sp<LayerDim> SurfaceFlinger::createDimSurface(
const sp<Client>& client, DisplayID display,
uint32_t w, uint32_t h, uint32_t flags)
{
sp<LayerDim> layer = new LayerDim(this, display, client);
return layer;
}
sp<LayerScreenshot> SurfaceFlinger::createScreenshotSurface(
const sp<Client>& client, DisplayID display,
uint32_t w, uint32_t h, uint32_t flags)
{
sp<LayerScreenshot> layer = new LayerScreenshot(this, display, client);
return layer;
}
status_t SurfaceFlinger::removeSurface(const sp<Client>& client, SurfaceID sid)
{
/*
* called by the window manager, when a surface should be marked for
* destruction.
*
* The surface is removed from the current and drawing lists, but placed
* in the purgatory queue, so it's not destroyed right-away (we need
* to wait for all client's references to go away first).
*/
status_t err = NAME_NOT_FOUND;
Mutex::Autolock _l(mStateLock);
sp<LayerBaseClient> layer = client->getLayerUser(sid);
if (layer != 0) {
err = purgatorizeLayer_l(layer);
if (err == NO_ERROR) {
setTransactionFlags(eTransactionNeeded);
}
}
return err;
}
status_t SurfaceFlinger::destroySurface(const wp<LayerBaseClient>& layer)
{
// called by ~ISurface() when all references are gone
status_t err = NO_ERROR;
sp<LayerBaseClient> l(layer.promote());
if (l != NULL) {
Mutex::Autolock _l(mStateLock);
err = removeLayer_l(l);
if (err == NAME_NOT_FOUND) {
// The surface wasn't in the current list, which means it was
// removed already, which means it is in the purgatory,
// and need to be removed from there.
ssize_t idx = mLayerPurgatory.remove(l);
LOGE_IF(idx < 0,
"layer=%p is not in the purgatory list", l.get());
}
LOGE_IF(err<0 && err != NAME_NOT_FOUND,
"error removing layer=%p (%s)", l.get(), strerror(-err));
}
return err;
}
uint32_t SurfaceFlinger::setClientStateLocked(
const sp<Client>& client,
const layer_state_t& s)
{
uint32_t flags = 0;
sp<LayerBaseClient> layer(client->getLayerUser(s.surface));
if (layer != 0) {
const uint32_t what = s.what;
if (what & ePositionChanged) {
if (layer->setPosition(s.x, s.y))
flags |= eTraversalNeeded;
}
if (what & eLayerChanged) {
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
if (layer->setLayer(s.z)) {
mCurrentState.layersSortedByZ.removeAt(idx);
mCurrentState.layersSortedByZ.add(layer);
// we need traversal (state changed)
// AND transaction (list changed)
flags |= eTransactionNeeded|eTraversalNeeded;
}
}
if (what & eSizeChanged) {
if (layer->setSize(s.w, s.h)) {
flags |= eTraversalNeeded;
}
}
if (what & eAlphaChanged) {
if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
flags |= eTraversalNeeded;
}
if (what & eMatrixChanged) {
if (layer->setMatrix(s.matrix))
flags |= eTraversalNeeded;
}
if (what & eTransparentRegionChanged) {
if (layer->setTransparentRegionHint(s.transparentRegion))
flags |= eTraversalNeeded;
}
if (what & eVisibilityChanged) {
if (layer->setFlags(s.flags, s.mask))
flags |= eTraversalNeeded;
}
}
return flags;
}
void SurfaceFlinger::screenReleased(int dpy)
{
// this may be called by a signal handler, we can't do too much in here
android_atomic_or(eConsoleReleased, &mConsoleSignals);
signalEvent();
}
void SurfaceFlinger::screenAcquired(int dpy)
{
// this may be called by a signal handler, we can't do too much in here
android_atomic_or(eConsoleAcquired, &mConsoleSignals);
signalEvent();
}
status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
{
const size_t SIZE = 4096;
char buffer[SIZE];
String8 result;
if (!PermissionCache::checkCallingPermission(sDump)) {
snprintf(buffer, SIZE, "Permission Denial: "
"can't dump SurfaceFlinger from pid=%d, uid=%d\n",
IPCThreadState::self()->getCallingPid(),
IPCThreadState::self()->getCallingUid());
result.append(buffer);
} else {
// figure out if we're stuck somewhere
const nsecs_t now = systemTime();
const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
const nsecs_t inTransaction(mDebugInTransaction);
nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
// Try to get the main lock, but don't insist if we can't
// (this would indicate SF is stuck, but we want to be able to
// print something in dumpsys).
int retry = 3;
while (mStateLock.tryLock()<0 && --retry>=0) {
usleep(1000000);
}
const bool locked(retry >= 0);
if (!locked) {
snprintf(buffer, SIZE,
"SurfaceFlinger appears to be unresponsive, "
"dumping anyways (no locks held)\n");
result.append(buffer);
}
/*
* Dump the visible layer list
*/
const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
const size_t count = currentLayers.size();
snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
result.append(buffer);
for (size_t i=0 ; i<count ; i++) {
const sp<LayerBase>& layer(currentLayers[i]);
layer->dump(result, buffer, SIZE);
const Layer::State& s(layer->drawingState());
s.transparentRegion.dump(result, "transparentRegion");
layer->transparentRegionScreen.dump(result, "transparentRegionScreen");
layer->visibleRegionScreen.dump(result, "visibleRegionScreen");
}
/*
* Dump the layers in the purgatory
*/
const size_t purgatorySize = mLayerPurgatory.size();
snprintf(buffer, SIZE, "Purgatory state (%d entries)\n", purgatorySize);
result.append(buffer);
for (size_t i=0 ; i<purgatorySize ; i++) {
const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
layer->shortDump(result, buffer, SIZE);
}
/*
* Dump SurfaceFlinger global state
*/
snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
result.append(buffer);
const GLExtensions& extensions(GLExtensions::getInstance());
snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
extensions.getVendor(),
extensions.getRenderer(),
extensions.getVersion());
result.append(buffer);
snprintf(buffer, SIZE, "EXTS: %s\n", extensions.getExtension());
result.append(buffer);
mWormholeRegion.dump(result, "WormholeRegion");
const DisplayHardware& hw(graphicPlane(0).displayHardware());
snprintf(buffer, SIZE,
" orientation=%d, canDraw=%d\n",
mCurrentState.orientation, hw.canDraw());
result.append(buffer);
snprintf(buffer, SIZE,
" last eglSwapBuffers() time: %f us\n"
" last transaction time : %f us\n"
" refresh-rate : %f fps\n"
" x-dpi : %f\n"
" y-dpi : %f\n",
mLastSwapBufferTime/1000.0,
mLastTransactionTime/1000.0,
hw.getRefreshRate(),
hw.getDpiX(),
hw.getDpiY());
result.append(buffer);
if (inSwapBuffersDuration || !locked) {
snprintf(buffer, SIZE, " eglSwapBuffers time: %f us\n",
inSwapBuffersDuration/1000.0);
result.append(buffer);
}
if (inTransactionDuration || !locked) {
snprintf(buffer, SIZE, " transaction time: %f us\n",
inTransactionDuration/1000.0);
result.append(buffer);
}
/*
* VSYNC state
*/
mEventThread->dump(result, buffer, SIZE);
/*
* Dump HWComposer state
*/
HWComposer& hwc(hw.getHwComposer());
snprintf(buffer, SIZE, "h/w composer state:\n");
result.append(buffer);
snprintf(buffer, SIZE, " h/w composer %s and %s\n",
hwc.initCheck()==NO_ERROR ? "present" : "not present",
(mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
result.append(buffer);
hwc.dump(result, buffer, SIZE, mVisibleLayersSortedByZ);
/*
* Dump gralloc state
*/
const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
alloc.dump(result);
hw.dump(result);
if (locked) {
mStateLock.unlock();
}
}
write(fd, result.string(), result.size());
return NO_ERROR;
}
status_t SurfaceFlinger::onTransact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
switch (code) {
case CREATE_CONNECTION:
case SET_TRANSACTION_STATE:
case SET_ORIENTATION:
case BOOT_FINISHED:
case TURN_ELECTRON_BEAM_OFF:
case TURN_ELECTRON_BEAM_ON:
{
// codes that require permission check
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_GRAPHICS) &&
!PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
LOGE("Permission Denial: "
"can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
break;
}
case CAPTURE_SCREEN:
{
// codes that require permission check
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
if ((uid != AID_GRAPHICS) &&
!PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
LOGE("Permission Denial: "
"can't read framebuffer pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
break;
}
}
status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
CHECK_INTERFACE(ISurfaceComposer, data, reply);
if (UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
LOGE("Permission Denial: "
"can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
int n;
switch (code) {
case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
return NO_ERROR;
case 1002: // SHOW_UPDATES
n = data.readInt32();
mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
invalidateHwcGeometry();
repaintEverything();
return NO_ERROR;
case 1003: // SHOW_BACKGROUND
n = data.readInt32();
mDebugBackground = n ? 1 : 0;
return NO_ERROR;
case 1004:{ // repaint everything
repaintEverything();
return NO_ERROR;
}
case 1005:{ // force transaction
setTransactionFlags(eTransactionNeeded|eTraversalNeeded);
return NO_ERROR;
}
case 1006:{ // enable/disable GraphicLog
int enabled = data.readInt32();
GraphicLog::getInstance().setEnabled(enabled);
return NO_ERROR;
}
case 1008: // toggle use of hw composer
n = data.readInt32();
mDebugDisableHWC = n ? 1 : 0;
invalidateHwcGeometry();
repaintEverything();
return NO_ERROR;
case 1009: // toggle use of transform hint
n = data.readInt32();
mDebugDisableTransformHint = n ? 1 : 0;
invalidateHwcGeometry();
repaintEverything();
return NO_ERROR;
case 1010: // interrogate.
reply->writeInt32(0);
reply->writeInt32(0);
reply->writeInt32(mDebugRegion);
reply->writeInt32(mDebugBackground);
return NO_ERROR;
case 1013: {
Mutex::Autolock _l(mStateLock);
const DisplayHardware& hw(graphicPlane(0).displayHardware());
reply->writeInt32(hw.getPageFlipCount());
}
return NO_ERROR;
}
}
return err;
}
void SurfaceFlinger::repaintEverything() {
const DisplayHardware& hw(graphicPlane(0).displayHardware());
const Rect bounds(hw.getBounds());
setInvalidateRegion(Region(bounds));
signalEvent();
}
void SurfaceFlinger::setInvalidateRegion(const Region& reg) {
Mutex::Autolock _l(mInvalidateLock);
mInvalidateRegion = reg;
}
Region SurfaceFlinger::getAndClearInvalidateRegion() {
Mutex::Autolock _l(mInvalidateLock);
Region reg(mInvalidateRegion);
mInvalidateRegion.clear();
return reg;
}
// ---------------------------------------------------------------------------
status_t SurfaceFlinger::renderScreenToTexture(DisplayID dpy,
GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
{
Mutex::Autolock _l(mStateLock);
return renderScreenToTextureLocked(dpy, textureName, uOut, vOut);
}
status_t SurfaceFlinger::renderScreenToTextureLocked(DisplayID dpy,
GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
{
if (!GLExtensions::getInstance().haveFramebufferObject())
return INVALID_OPERATION;
// get screen geometry
const DisplayHardware& hw(graphicPlane(dpy).displayHardware());
const uint32_t hw_w = hw.getWidth();
const uint32_t hw_h = hw.getHeight();
GLfloat u = 1;
GLfloat v = 1;
// make sure to clear all GL error flags
while ( glGetError() != GL_NO_ERROR ) ;
// create a FBO
GLuint name, tname;
glGenTextures(1, &tname);
glBindTexture(GL_TEXTURE_2D, tname);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
hw_w, hw_h, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
if (glGetError() != GL_NO_ERROR) {
while ( glGetError() != GL_NO_ERROR ) ;
GLint tw = (2 << (31 - clz(hw_w)));
GLint th = (2 << (31 - clz(hw_h)));
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
tw, th, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
u = GLfloat(hw_w) / tw;
v = GLfloat(hw_h) / th;
}
glGenFramebuffersOES(1, &name);
glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
// redraw the screen entirely...
glDisable(GL_TEXTURE_EXTERNAL_OES);
glDisable(GL_TEXTURE_2D);
glDisable(GL_SCISSOR_TEST);
glClearColor(0,0,0,1);
glClear(GL_COLOR_BUFFER_BIT);
glEnable(GL_SCISSOR_TEST);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
const Vector< sp<LayerBase> >& layers(mVisibleLayersSortedByZ);
const size_t count = layers.size();
for (size_t i=0 ; i<count ; ++i) {
const sp<LayerBase>& layer(layers[i]);
layer->drawForSreenShot();
}
hw.compositionComplete();
// back to main framebuffer
glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
glDisable(GL_SCISSOR_TEST);
glDeleteFramebuffersOES(1, &name);
*textureName = tname;
*uOut = u;
*vOut = v;
return NO_ERROR;
}
// ---------------------------------------------------------------------------
status_t SurfaceFlinger::electronBeamOffAnimationImplLocked()
{
// get screen geometry
const DisplayHardware& hw(graphicPlane(0).displayHardware());
const uint32_t hw_w = hw.getWidth();
const uint32_t hw_h = hw.getHeight();
const Region screenBounds(hw.getBounds());
GLfloat u, v;
GLuint tname;
status_t result = renderScreenToTextureLocked(0, &tname, &u, &v);
if (result != NO_ERROR) {
return result;
}
GLfloat vtx[8];
const GLfloat texCoords[4][2] = { {0,0}, {0,v}, {u,v}, {u,0} };
glBindTexture(GL_TEXTURE_2D, tname);
glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glVertexPointer(2, GL_FLOAT, 0, vtx);
/*
* Texture coordinate mapping
*
* u
* 1 +----------+---+
* | | | | image is inverted
* | V | | w.r.t. the texture
* 1-v +----------+ | coordinates
* | |
* | |
* | |
* 0 +--------------+
* 0 1
*
*/
class s_curve_interpolator {
const float nbFrames, s, v;
public:
s_curve_interpolator(int nbFrames, float s)
: nbFrames(1.0f / (nbFrames-1)), s(s),
v(1.0f + expf(-s + 0.5f*s)) {
}
float operator()(int f) {
const float x = f * nbFrames;
return ((1.0f/(1.0f + expf(-x*s + 0.5f*s))) - 0.5f) * v + 0.5f;
}
};
class v_stretch {
const GLfloat hw_w, hw_h;
public:
v_stretch(uint32_t hw_w, uint32_t hw_h)
: hw_w(hw_w), hw_h(hw_h) {
}
void operator()(GLfloat* vtx, float v) {
const GLfloat w = hw_w + (hw_w * v);
const GLfloat h = hw_h - (hw_h * v);
const GLfloat x = (hw_w - w) * 0.5f;
const GLfloat y = (hw_h - h) * 0.5f;
vtx[0] = x; vtx[1] = y;
vtx[2] = x; vtx[3] = y + h;
vtx[4] = x + w; vtx[5] = y + h;
vtx[6] = x + w; vtx[7] = y;
}
};
class h_stretch {
const GLfloat hw_w, hw_h;
public:
h_stretch(uint32_t hw_w, uint32_t hw_h)
: hw_w(hw_w), hw_h(hw_h) {
}
void operator()(GLfloat* vtx, float v) {
const GLfloat w = hw_w - (hw_w * v);
const GLfloat h = 1.0f;
const GLfloat x = (hw_w - w) * 0.5f;
const GLfloat y = (hw_h - h) * 0.5f;
vtx[0] = x; vtx[1] = y;
vtx[2] = x; vtx[3] = y + h;
vtx[4] = x + w; vtx[5] = y + h;
vtx[6] = x + w; vtx[7] = y;
}
};
// the full animation is 24 frames
char value[PROPERTY_VALUE_MAX];
property_get("debug.sf.electron_frames", value, "24");
int nbFrames = (atoi(value) + 1) >> 1;
if (nbFrames <= 0) // just in case
nbFrames = 24;
s_curve_interpolator itr(nbFrames, 7.5f);
s_curve_interpolator itg(nbFrames, 8.0f);
s_curve_interpolator itb(nbFrames, 8.5f);
v_stretch vverts(hw_w, hw_h);
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE);
for (int i=0 ; i<nbFrames ; i++) {
float x, y, w, h;
const float vr = itr(i);
const float vg = itg(i);
const float vb = itb(i);
// clear screen
glColorMask(1,1,1,1);
glClear(GL_COLOR_BUFFER_BIT);
glEnable(GL_TEXTURE_2D);
// draw the red plane
vverts(vtx, vr);
glColorMask(1,0,0,1);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
// draw the green plane
vverts(vtx, vg);
glColorMask(0,1,0,1);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
// draw the blue plane
vverts(vtx, vb);
glColorMask(0,0,1,1);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
// draw the white highlight (we use the last vertices)
glDisable(GL_TEXTURE_2D);
glColorMask(1,1,1,1);
glColor4f(vg, vg, vg, 1);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
hw.flip(screenBounds);
}
h_stretch hverts(hw_w, hw_h);
glDisable(GL_BLEND);
glDisable(GL_TEXTURE_2D);
glColorMask(1,1,1,1);
for (int i=0 ; i<nbFrames ; i++) {
const float v = itg(i);
hverts(vtx, v);
glClear(GL_COLOR_BUFFER_BIT);
glColor4f(1-v, 1-v, 1-v, 1);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
hw.flip(screenBounds);
}
glColorMask(1,1,1,1);
glEnable(GL_SCISSOR_TEST);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glDeleteTextures(1, &tname);
glDisable(GL_TEXTURE_2D);
glDisable(GL_BLEND);
return NO_ERROR;
}
status_t SurfaceFlinger::electronBeamOnAnimationImplLocked()
{
status_t result = PERMISSION_DENIED;
if (!GLExtensions::getInstance().haveFramebufferObject())
return INVALID_OPERATION;
// get screen geometry
const DisplayHardware& hw(graphicPlane(0).displayHardware());
const uint32_t hw_w = hw.getWidth();
const uint32_t hw_h = hw.getHeight();
const Region screenBounds(hw.bounds());
GLfloat u, v;
GLuint tname;
result = renderScreenToTextureLocked(0, &tname, &u, &v);
if (result != NO_ERROR) {
return result;
}
GLfloat vtx[8];
const GLfloat texCoords[4][2] = { {0,v}, {0,0}, {u,0}, {u,v} };
glBindTexture(GL_TEXTURE_2D, tname);
glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glVertexPointer(2, GL_FLOAT, 0, vtx);
class s_curve_interpolator {
const float nbFrames, s, v;
public:
s_curve_interpolator(int nbFrames, float s)
: nbFrames(1.0f / (nbFrames-1)), s(s),
v(1.0f + expf(-s + 0.5f*s)) {
}
float operator()(int f) {
const float x = f * nbFrames;
return ((1.0f/(1.0f + expf(-x*s + 0.5f*s))) - 0.5f) * v + 0.5f;
}
};
class v_stretch {
const GLfloat hw_w, hw_h;
public:
v_stretch(uint32_t hw_w, uint32_t hw_h)
: hw_w(hw_w), hw_h(hw_h) {
}
void operator()(GLfloat* vtx, float v) {
const GLfloat w = hw_w + (hw_w * v);
const GLfloat h = hw_h - (hw_h * v);
const GLfloat x = (hw_w - w) * 0.5f;
const GLfloat y = (hw_h - h) * 0.5f;
vtx[0] = x; vtx[1] = y;
vtx[2] = x; vtx[3] = y + h;
vtx[4] = x + w; vtx[5] = y + h;
vtx[6] = x + w; vtx[7] = y;
}
};
class h_stretch {
const GLfloat hw_w, hw_h;
public:
h_stretch(uint32_t hw_w, uint32_t hw_h)
: hw_w(hw_w), hw_h(hw_h) {
}
void operator()(GLfloat* vtx, float v) {
const GLfloat w = hw_w - (hw_w * v);
const GLfloat h = 1.0f;
const GLfloat x = (hw_w - w) * 0.5f;
const GLfloat y = (hw_h - h) * 0.5f;
vtx[0] = x; vtx[1] = y;
vtx[2] = x; vtx[3] = y + h;
vtx[4] = x + w; vtx[5] = y + h;
vtx[6] = x + w; vtx[7] = y;
}
};
// the full animation is 12 frames
int nbFrames = 8;
s_curve_interpolator itr(nbFrames, 7.5f);
s_curve_interpolator itg(nbFrames, 8.0f);
s_curve_interpolator itb(nbFrames, 8.5f);
h_stretch hverts(hw_w, hw_h);
glDisable(GL_BLEND);
glDisable(GL_TEXTURE_2D);
glColorMask(1,1,1,1);
for (int i=nbFrames-1 ; i>=0 ; i--) {
const float v = itg(i);
hverts(vtx, v);
glClear(GL_COLOR_BUFFER_BIT);
glColor4f(1-v, 1-v, 1-v, 1);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
hw.flip(screenBounds);
}
nbFrames = 4;
v_stretch vverts(hw_w, hw_h);
glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE);
for (int i=nbFrames-1 ; i>=0 ; i--) {
float x, y, w, h;
const float vr = itr(i);
const float vg = itg(i);
const float vb = itb(i);
// clear screen
glColorMask(1,1,1,1);
glClear(GL_COLOR_BUFFER_BIT);
glEnable(GL_TEXTURE_2D);
// draw the red plane
vverts(vtx, vr);
glColorMask(1,0,0,1);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
// draw the green plane
vverts(vtx, vg);
glColorMask(0,1,0,1);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
// draw the blue plane
vverts(vtx, vb);
glColorMask(0,0,1,1);
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
hw.flip(screenBounds);
}
glColorMask(1,1,1,1);
glEnable(GL_SCISSOR_TEST);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glDeleteTextures(1, &tname);
glDisable(GL_TEXTURE_2D);
glDisable(GL_BLEND);
return NO_ERROR;
}
// ---------------------------------------------------------------------------
status_t SurfaceFlinger::turnElectronBeamOffImplLocked(int32_t mode)
{
DisplayHardware& hw(graphicPlane(0).editDisplayHardware());
if (!hw.canDraw()) {
// we're already off
return NO_ERROR;
}
// turn off hwc while we're doing the animation
hw.getHwComposer().disable();
// and make sure to turn it back on (if needed) next time we compose
invalidateHwcGeometry();
if (mode & ISurfaceComposer::eElectronBeamAnimationOff) {
electronBeamOffAnimationImplLocked();
}
// always clear the whole screen at the end of the animation
glClearColor(0,0,0,1);
glDisable(GL_SCISSOR_TEST);
glClear(GL_COLOR_BUFFER_BIT);
glEnable(GL_SCISSOR_TEST);
hw.flip( Region(hw.bounds()) );
return NO_ERROR;
}
status_t SurfaceFlinger::turnElectronBeamOff(int32_t mode)
{
class MessageTurnElectronBeamOff : public MessageBase {
SurfaceFlinger* flinger;
int32_t mode;
status_t result;
public:
MessageTurnElectronBeamOff(SurfaceFlinger* flinger, int32_t mode)
: flinger(flinger), mode(mode), result(PERMISSION_DENIED) {
}
status_t getResult() const {
return result;
}
virtual bool handler() {
Mutex::Autolock _l(flinger->mStateLock);
result = flinger->turnElectronBeamOffImplLocked(mode);
return true;
}
};
sp<MessageBase> msg = new MessageTurnElectronBeamOff(this, mode);
status_t res = postMessageSync(msg);
if (res == NO_ERROR) {
res = static_cast<MessageTurnElectronBeamOff*>( msg.get() )->getResult();
// work-around: when the power-manager calls us we activate the
// animation. eventually, the "on" animation will be called
// by the power-manager itself
mElectronBeamAnimationMode = mode;
}
return res;
}
// ---------------------------------------------------------------------------
status_t SurfaceFlinger::turnElectronBeamOnImplLocked(int32_t mode)
{
DisplayHardware& hw(graphicPlane(0).editDisplayHardware());
if (hw.canDraw()) {
// we're already on
return NO_ERROR;
}
if (mode & ISurfaceComposer::eElectronBeamAnimationOn) {
electronBeamOnAnimationImplLocked();
}
// make sure to redraw the whole screen when the animation is done
mDirtyRegion.set(hw.bounds());
signalEvent();
return NO_ERROR;
}
status_t SurfaceFlinger::turnElectronBeamOn(int32_t mode)
{
class MessageTurnElectronBeamOn : public MessageBase {
SurfaceFlinger* flinger;
int32_t mode;
status_t result;
public:
MessageTurnElectronBeamOn(SurfaceFlinger* flinger, int32_t mode)
: flinger(flinger), mode(mode), result(PERMISSION_DENIED) {
}
status_t getResult() const {
return result;
}
virtual bool handler() {
Mutex::Autolock _l(flinger->mStateLock);
result = flinger->turnElectronBeamOnImplLocked(mode);
return true;
}
};
postMessageAsync( new MessageTurnElectronBeamOn(this, mode) );
return NO_ERROR;
}
// ---------------------------------------------------------------------------
status_t SurfaceFlinger::captureScreenImplLocked(DisplayID dpy,
sp<IMemoryHeap>* heap,
uint32_t* w, uint32_t* h, PixelFormat* f,
uint32_t sw, uint32_t sh,
uint32_t minLayerZ, uint32_t maxLayerZ)
{
status_t result = PERMISSION_DENIED;
// only one display supported for now
if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
return BAD_VALUE;
if (!GLExtensions::getInstance().haveFramebufferObject())
return INVALID_OPERATION;
// get screen geometry
const DisplayHardware& hw(graphicPlane(dpy).displayHardware());
const uint32_t hw_w = hw.getWidth();
const uint32_t hw_h = hw.getHeight();
if ((sw > hw_w) || (sh > hw_h))
return BAD_VALUE;
sw = (!sw) ? hw_w : sw;
sh = (!sh) ? hw_h : sh;
const size_t size = sw * sh * 4;
//LOGD("screenshot: sw=%d, sh=%d, minZ=%d, maxZ=%d",
// sw, sh, minLayerZ, maxLayerZ);
// make sure to clear all GL error flags
while ( glGetError() != GL_NO_ERROR ) ;
// create a FBO
GLuint name, tname;
glGenRenderbuffersOES(1, &tname);
glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, sw, sh);
glGenFramebuffersOES(1, &name);
glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
// invert everything, b/c glReadPixel() below will invert the FB
glViewport(0, 0, sw, sh);
glScissor(0, 0, sw, sh);
glEnable(GL_SCISSOR_TEST);
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
glOrthof(0, hw_w, hw_h, 0, 0, 1);
glMatrixMode(GL_MODELVIEW);
// redraw the screen entirely...
glClearColor(0,0,0,1);
glClear(GL_COLOR_BUFFER_BIT);
const LayerVector& layers(mDrawingState.layersSortedByZ);
const size_t count = layers.size();
for (size_t i=0 ; i<count ; ++i) {
const sp<LayerBase>& layer(layers[i]);
const uint32_t flags = layer->drawingState().flags;
if (!(flags & ISurfaceComposer::eLayerHidden)) {
const uint32_t z = layer->drawingState().z;
if (z >= minLayerZ && z <= maxLayerZ) {
layer->drawForSreenShot();
}
}
}
// XXX: this is needed on tegra
glEnable(GL_SCISSOR_TEST);
glScissor(0, 0, sw, sh);
// check for errors and return screen capture
if (glGetError() != GL_NO_ERROR) {
// error while rendering
result = INVALID_OPERATION;
} else {
// allocate shared memory large enough to hold the
// screen capture
sp<MemoryHeapBase> base(
new MemoryHeapBase(size, 0, "screen-capture") );
void* const ptr = base->getBase();
if (ptr) {
// capture the screen with glReadPixels()
glReadPixels(0, 0, sw, sh, GL_RGBA, GL_UNSIGNED_BYTE, ptr);
if (glGetError() == GL_NO_ERROR) {
*heap = base;
*w = sw;
*h = sh;
*f = PIXEL_FORMAT_RGBA_8888;
result = NO_ERROR;
}
} else {
result = NO_MEMORY;
}
}
glEnable(GL_SCISSOR_TEST);
glViewport(0, 0, hw_w, hw_h);
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
} else {
result = BAD_VALUE;
}
// release FBO resources
glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
glDeleteRenderbuffersOES(1, &tname);
glDeleteFramebuffersOES(1, &name);
hw.compositionComplete();
// LOGD("screenshot: result = %s", result<0 ? strerror(result) : "OK");
return result;
}
status_t SurfaceFlinger::captureScreen(DisplayID dpy,
sp<IMemoryHeap>* heap,
uint32_t* width, uint32_t* height, PixelFormat* format,
uint32_t sw, uint32_t sh,
uint32_t minLayerZ, uint32_t maxLayerZ)
{
// only one display supported for now
if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
return BAD_VALUE;
if (!GLExtensions::getInstance().haveFramebufferObject())
return INVALID_OPERATION;
class MessageCaptureScreen : public MessageBase {
SurfaceFlinger* flinger;
DisplayID dpy;
sp<IMemoryHeap>* heap;
uint32_t* w;
uint32_t* h;
PixelFormat* f;
uint32_t sw;
uint32_t sh;
uint32_t minLayerZ;
uint32_t maxLayerZ;
status_t result;
public:
MessageCaptureScreen(SurfaceFlinger* flinger, DisplayID dpy,
sp<IMemoryHeap>* heap, uint32_t* w, uint32_t* h, PixelFormat* f,
uint32_t sw, uint32_t sh,
uint32_t minLayerZ, uint32_t maxLayerZ)
: flinger(flinger), dpy(dpy),
heap(heap), w(w), h(h), f(f), sw(sw), sh(sh),
minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
result(PERMISSION_DENIED)
{
}
status_t getResult() const {
return result;
}
virtual bool handler() {
Mutex::Autolock _l(flinger->mStateLock);
// if we have secure windows, never allow the screen capture
if (flinger->mSecureFrameBuffer)
return true;
result = flinger->captureScreenImplLocked(dpy,
heap, w, h, f, sw, sh, minLayerZ, maxLayerZ);
return true;
}
};
sp<MessageBase> msg = new MessageCaptureScreen(this,
dpy, heap, width, height, format, sw, sh, minLayerZ, maxLayerZ);
status_t res = postMessageSync(msg);
if (res == NO_ERROR) {
res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
}
return res;
}
// ---------------------------------------------------------------------------
sp<Layer> SurfaceFlinger::getLayer(const sp<ISurface>& sur) const
{
sp<Layer> result;
Mutex::Autolock _l(mStateLock);
result = mLayerMap.valueFor( sur->asBinder() ).promote();
return result;
}
// ---------------------------------------------------------------------------
Client::Client(const sp<SurfaceFlinger>& flinger)
: mFlinger(flinger), mNameGenerator(1)
{
}
Client::~Client()
{
const size_t count = mLayers.size();
for (size_t i=0 ; i<count ; i++) {
sp<LayerBaseClient> layer(mLayers.valueAt(i).promote());
if (layer != 0) {
mFlinger->removeLayer(layer);
}
}
}
status_t Client::initCheck() const {
return NO_ERROR;
}
size_t Client::attachLayer(const sp<LayerBaseClient>& layer)
{
Mutex::Autolock _l(mLock);
size_t name = mNameGenerator++;
mLayers.add(name, layer);
return name;
}
void Client::detachLayer(const LayerBaseClient* layer)
{
Mutex::Autolock _l(mLock);
// we do a linear search here, because this doesn't happen often
const size_t count = mLayers.size();
for (size_t i=0 ; i<count ; i++) {
if (mLayers.valueAt(i) == layer) {
mLayers.removeItemsAt(i, 1);
break;
}
}
}
sp<LayerBaseClient> Client::getLayerUser(int32_t i) const
{
Mutex::Autolock _l(mLock);
sp<LayerBaseClient> lbc;
wp<LayerBaseClient> layer(mLayers.valueFor(i));
if (layer != 0) {
lbc = layer.promote();
LOGE_IF(lbc==0, "getLayerUser(name=%d) is dead", int(i));
}
return lbc;
}
status_t Client::onTransact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
// these must be checked
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
const int self_pid = getpid();
if (UNLIKELY(pid != self_pid && uid != AID_GRAPHICS && uid != 0)) {
// we're called from a different process, do the real check
if (!PermissionCache::checkCallingPermission(sAccessSurfaceFlinger))
{
LOGE("Permission Denial: "
"can't openGlobalTransaction pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
}
return BnSurfaceComposerClient::onTransact(code, data, reply, flags);
}
sp<ISurface> Client::createSurface(
ISurfaceComposerClient::surface_data_t* params,
const String8& name,
DisplayID display, uint32_t w, uint32_t h, PixelFormat format,
uint32_t flags)
{
/*
* createSurface must be called from the GL thread so that it can
* have access to the GL context.
*/
class MessageCreateSurface : public MessageBase {
sp<ISurface> result;
SurfaceFlinger* flinger;
ISurfaceComposerClient::surface_data_t* params;
Client* client;
const String8& name;
DisplayID display;
uint32_t w, h;
PixelFormat format;
uint32_t flags;
public:
MessageCreateSurface(SurfaceFlinger* flinger,
ISurfaceComposerClient::surface_data_t* params,
const String8& name, Client* client,
DisplayID display, uint32_t w, uint32_t h, PixelFormat format,
uint32_t flags)
: flinger(flinger), params(params), client(client), name(name),
display(display), w(w), h(h), format(format), flags(flags)
{
}
sp<ISurface> getResult() const { return result; }
virtual bool handler() {
result = flinger->createSurface(params, name, client,
display, w, h, format, flags);
return true;
}
};
sp<MessageBase> msg = new MessageCreateSurface(mFlinger.get(),
params, name, this, display, w, h, format, flags);
mFlinger->postMessageSync(msg);
return static_cast<MessageCreateSurface*>( msg.get() )->getResult();
}
status_t Client::destroySurface(SurfaceID sid) {
return mFlinger->removeSurface(this, sid);
}
// ---------------------------------------------------------------------------
GraphicBufferAlloc::GraphicBufferAlloc() {}
GraphicBufferAlloc::~GraphicBufferAlloc() {}
sp<GraphicBuffer> GraphicBufferAlloc::createGraphicBuffer(uint32_t w, uint32_t h,
PixelFormat format, uint32_t usage, status_t* error) {
sp<GraphicBuffer> graphicBuffer(new GraphicBuffer(w, h, format, usage));
status_t err = graphicBuffer->initCheck();
*error = err;
if (err != 0 || graphicBuffer->handle == 0) {
if (err == NO_MEMORY) {
GraphicBuffer::dumpAllocationsToSystemLog();
}
LOGE("GraphicBufferAlloc::createGraphicBuffer(w=%d, h=%d) "
"failed (%s), handle=%p",
w, h, strerror(-err), graphicBuffer->handle);
return 0;
}
return graphicBuffer;
}
// ---------------------------------------------------------------------------
GraphicPlane::GraphicPlane()
: mHw(0)
{
}
GraphicPlane::~GraphicPlane() {
delete mHw;
}
bool GraphicPlane::initialized() const {
return mHw ? true : false;
}
int GraphicPlane::getWidth() const {
return mWidth;
}
int GraphicPlane::getHeight() const {
return mHeight;
}
void GraphicPlane::setDisplayHardware(DisplayHardware *hw)
{
mHw = hw;
// initialize the display orientation transform.
// it's a constant that should come from the display driver.
int displayOrientation = ISurfaceComposer::eOrientationDefault;
char property[PROPERTY_VALUE_MAX];
if (property_get("ro.sf.hwrotation", property, NULL) > 0) {
//displayOrientation
switch (atoi(property)) {
case 90:
displayOrientation = ISurfaceComposer::eOrientation90;
break;
case 270:
displayOrientation = ISurfaceComposer::eOrientation270;
break;
}
}
const float w = hw->getWidth();
const float h = hw->getHeight();
GraphicPlane::orientationToTransfrom(displayOrientation, w, h,
&mDisplayTransform);
if (displayOrientation & ISurfaceComposer::eOrientationSwapMask) {
mDisplayWidth = h;
mDisplayHeight = w;
} else {
mDisplayWidth = w;
mDisplayHeight = h;
}
setOrientation(ISurfaceComposer::eOrientationDefault);
}
status_t GraphicPlane::orientationToTransfrom(
int orientation, int w, int h, Transform* tr)
{
uint32_t flags = 0;
switch (orientation) {
case ISurfaceComposer::eOrientationDefault:
flags = Transform::ROT_0;
break;
case ISurfaceComposer::eOrientation90:
flags = Transform::ROT_90;
break;
case ISurfaceComposer::eOrientation180:
flags = Transform::ROT_180;
break;
case ISurfaceComposer::eOrientation270:
flags = Transform::ROT_270;
break;
default:
return BAD_VALUE;
}
tr->set(flags, w, h);
return NO_ERROR;
}
status_t GraphicPlane::setOrientation(int orientation)
{
// If the rotation can be handled in hardware, this is where
// the magic should happen.
const DisplayHardware& hw(displayHardware());
const float w = mDisplayWidth;
const float h = mDisplayHeight;
mWidth = int(w);
mHeight = int(h);
Transform orientationTransform;
GraphicPlane::orientationToTransfrom(orientation, w, h,
&orientationTransform);
if (orientation & ISurfaceComposer::eOrientationSwapMask) {
mWidth = int(h);
mHeight = int(w);
}
mOrientation = orientation;
mGlobalTransform = mDisplayTransform * orientationTransform;
return NO_ERROR;
}
const DisplayHardware& GraphicPlane::displayHardware() const {
return *mHw;
}
DisplayHardware& GraphicPlane::editDisplayHardware() {
return *mHw;
}
const Transform& GraphicPlane::transform() const {
return mGlobalTransform;
}
EGLDisplay GraphicPlane::getEGLDisplay() const {
return mHw->getEGLDisplay();
}
// ---------------------------------------------------------------------------
}; // namespace android