replicant-frameworks_native/include/utils/BackupHelpers.h
Christopher Tate d78797f6e6 Full local backup infrastructure
This is the basic infrastructure for pulling a full(*) backup of the
device's data over an adb(**) connection to the local device.  The
basic process consists of these interacting pieces:

1. The framework's BackupManagerService, which coordinates the
   collection of app data and routing to the destination.

2. A new framework-provided BackupAgent implementation called
   FullBackupAgent, which is instantiated in the target applications'
   processes in turn, and knows how to emit a datastream that contains
   all of the app's saved data files.

3. A new shell-level program called "bu" that is used to bridge from
   adb to the framework's Backup Manager.

4. adb itself, which now knows how to use 'bu' to kick off a backup
   operation and pull the resulting data stream to the desktop host.

5. A system-provided application that verifies with the user that
   an attempted backup/restore operation is in fact expected and to
   be allowed.

The full agent implementation is not used during normal operation of
the delta-based app-customized remote backup process.  Instead it's
used during user-confirmed *full* backup of applications and all their
data to a local destination, e.g. via the adb connection.

The output format is 'tar'.  This makes it very easy for the end
user to examine the resulting dataset, e.g. for purpose of extracting
files for debug purposes; as well as making it easy to contemplate
adding things like a direct gzip stage to the data pipeline during
backup/restore.  It also makes it convenient to construct and maintain
synthetic backup datasets for testing purposes.

Within the tar format, certain artificial conventions are used.
All files are stored within top-level directories according to
their semantic origin:

apps/pkgname/a/  : Application .apk file itself
apps/pkgname/obb/: The application's associated .obb containers
apps/pkgname/f/  : The subtree rooted at the getFilesDir() location
apps/pkgname/db/ : The subtree rooted at the getDatabasePath() parent
apps/pkgname/sp/ : The subtree rooted at the getSharedPrefsFile() parent
apps/pkgname/r/  : Files stored relative to the root of the app's file tree
apps/pkgname/c/  : Reserved for the app's getCacheDir() tree; not stored.

For each package, the first entry in the tar stream is a file called
"_manifest", nominally rooted at apps/pkgname.  This file contains some
metadata about the package whose data is stored in the archive.

The contents of shared storage can optionally be included in the tar
stream. It is placed in the synthetic location:

shared/...

uid/gid are ignored; app uids are assigned at install time, and the
app's data is handled from within its own execution environment, so
will automatically have the app's correct uid.

Forward-locked .apk files are never backed up.  System-partition
.apk files are not backed up unless they have been overridden by a
post-factory upgrade, in which case the current .apk *is* backed up --
i.e. the .apk that matches the on-disk data.  The manifest preceding
each application's portion of the tar stream provides version numbers
and signature blocks for version checking, as well as an indication
of whether the restore logic should expect to install the .apk before
extracting the data.

System packages can designate their own full backup agents.  This is
to manage things like the settings provider which (a) cannot be shut
down on the fly in order to do a clean snapshot of their file trees,
and (b) manage data that is not only irrelevant but actively hostile
to non-identical devices -- CDMA telephony settings would seriously
mess up a GSM device if emplaced there blind, for example.

When a full backup or restore is initiated from adb, the system will
present a confirmation UI that the user must explicitly respond to
within a short [~ 30 seconds] timeout.  This is to avoid the
possibility of malicious desktop-side software secretly grabbing a copy
of all the user's data for nefarious purposes.

(*) The backup is not strictly a full mirror.  In particular, the
    settings database is not cloned; it is handled the same way that
    it is in cloud backup/restore.  This is because some settings
    are actively destructive if cloned onto a different (or
    especially a different-model) device: telephony settings and
    AndroidID are good examples of this.

(**) On the framework side it doesn't care that it's adb; it just
    sends the tar stream to a file descriptor.  This can easily be
    retargeted around whatever transport we might decide to use
    in the future.

KNOWN ISSUES:

* the security UI is desperately ugly; no proper designs have yet
  been done for it
* restore is not yet implemented
* shared storage backup is not yet implemented
* symlinks aren't yet handled, though some infrastructure for
  dealing with them has been put in place.

Change-Id: Ia8347611e23b398af36ea22c36dff0a276b1ce91
2011-05-10 17:52:51 -07:00

170 lines
4.2 KiB
C++

/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _UTILS_BACKUP_HELPERS_H
#define _UTILS_BACKUP_HELPERS_H
#include <utils/Errors.h>
#include <utils/String8.h>
#include <utils/KeyedVector.h>
namespace android {
enum {
BACKUP_HEADER_ENTITY_V1 = 0x61746144, // Data (little endian)
};
typedef struct {
int type; // BACKUP_HEADER_ENTITY_V1
int keyLen; // length of the key name, not including the null terminator
int dataSize; // size of the data, not including the padding, -1 means delete
} entity_header_v1;
struct SnapshotHeader {
int magic0;
int fileCount;
int magic1;
int totalSize;
};
struct FileState {
int modTime_sec;
int modTime_nsec;
int mode;
int size;
int crc32;
int nameLen;
};
struct FileRec {
String8 file;
bool deleted;
FileState s;
};
/**
* Writes the data.
*
* If an error occurs, it poisons this object and all write calls will fail
* with the error that occurred.
*/
class BackupDataWriter
{
public:
BackupDataWriter(int fd);
// does not close fd
~BackupDataWriter();
status_t WriteEntityHeader(const String8& key, size_t dataSize);
/* Note: WriteEntityData will write arbitrary data into the file without
* validation or a previously-supplied header. The full backup implementation
* uses it this way to generate a controlled binary stream that is not
* entity-structured. If the implementation here is changed, either this
* use case must remain valid, or the full backup implementation should be
* adjusted to use some other appropriate mechanism.
*/
status_t WriteEntityData(const void* data, size_t size);
void SetKeyPrefix(const String8& keyPrefix);
private:
explicit BackupDataWriter();
status_t write_padding_for(int n);
int m_fd;
status_t m_status;
ssize_t m_pos;
int m_entityCount;
String8 m_keyPrefix;
};
/**
* Reads the data.
*
* If an error occurs, it poisons this object and all write calls will fail
* with the error that occurred.
*/
class BackupDataReader
{
public:
BackupDataReader(int fd);
// does not close fd
~BackupDataReader();
status_t Status();
status_t ReadNextHeader(bool* done, int* type);
bool HasEntities();
status_t ReadEntityHeader(String8* key, size_t* dataSize);
status_t SkipEntityData(); // must be called with the pointer at the beginning of the data.
ssize_t ReadEntityData(void* data, size_t size);
private:
explicit BackupDataReader();
status_t skip_padding();
int m_fd;
bool m_done;
status_t m_status;
ssize_t m_pos;
ssize_t m_dataEndPos;
int m_entityCount;
union {
int type;
entity_header_v1 entity;
} m_header;
String8 m_key;
};
int back_up_files(int oldSnapshotFD, BackupDataWriter* dataStream, int newSnapshotFD,
char const* const* files, char const* const *keys, int fileCount);
int write_tarfile(const String8& packageName, const String8& domain,
const String8& rootPath, const String8& filePath, BackupDataWriter* outputStream);
class RestoreHelperBase
{
public:
RestoreHelperBase();
~RestoreHelperBase();
status_t WriteFile(const String8& filename, BackupDataReader* in);
status_t WriteSnapshot(int fd);
private:
void* m_buf;
bool m_loggedUnknownMetadata;
KeyedVector<String8,FileRec> m_files;
};
#define TEST_BACKUP_HELPERS 1
#if TEST_BACKUP_HELPERS
int backup_helper_test_empty();
int backup_helper_test_four();
int backup_helper_test_files();
int backup_helper_test_null_base();
int backup_helper_test_missing_file();
int backup_helper_test_data_writer();
int backup_helper_test_data_reader();
#endif
} // namespace android
#endif // _UTILS_BACKUP_HELPERS_H