replicant-frameworks_native/opengl/libagl/light.cpp
The Android Open Source Project 7c1b96a165 Initial Contribution
2008-10-21 07:00:00 -07:00

853 lines
25 KiB
C++

/* libs/opengles/light.cpp
**
** Copyright 2006, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include <stdio.h>
#include "context.h"
#include "fp.h"
#include "light.h"
#include "state.h"
#include "matrix.h"
#if defined(__arm__) && defined(__thumb__)
#warning "light.cpp should not be compiled in thumb on ARM."
#endif
namespace android {
// ----------------------------------------------------------------------------
static void invalidate_lighting(ogles_context_t* c);
static void lightVertexValidate(ogles_context_t* c, vertex_t* v);
static void lightVertexNop(ogles_context_t* c, vertex_t* v);
static void lightVertex(ogles_context_t* c, vertex_t* v);
static void lightVertexMaterial(ogles_context_t* c, vertex_t* v);
static inline void vscale3(GLfixed* d, const GLfixed* m, GLfixed s);
static inline void vsub3w(GLfixed* d, const GLfixed* a, const GLfixed* b);
static __attribute__((noinline))
void vnorm3(GLfixed* d, const GLfixed* a);
static inline void vsa3(GLfixed* d,
const GLfixed* m, GLfixed s, const GLfixed* a);
static inline void vmla3(GLfixed* d,
const GLfixed* m0, const GLfixed* m1, const GLfixed* a);
static inline void vmul3(GLfixed* d,
const GLfixed* m0, const GLfixed* m1);
static GLfixed fog_linear(ogles_context_t* c, GLfixed z);
static GLfixed fog_exp(ogles_context_t* c, GLfixed z);
static GLfixed fog_exp2(ogles_context_t* c, GLfixed z);
// ----------------------------------------------------------------------------
static void init_white(vec4_t& c) {
c.r = c.g = c.b = c.a = 0x10000;
}
void ogles_init_light(ogles_context_t* c)
{
for (unsigned int i=0 ; i<OGLES_MAX_LIGHTS ; i++) {
c->lighting.lights[i].ambient.a = 0x10000;
c->lighting.lights[i].position.z = 0x10000;
c->lighting.lights[i].spotDir.z = -0x10000;
c->lighting.lights[i].spotCutoff = gglIntToFixed(180);
c->lighting.lights[i].attenuation[0] = 0x10000;
}
init_white(c->lighting.lights[0].diffuse);
init_white(c->lighting.lights[0].specular);
c->lighting.front.ambient.r =
c->lighting.front.ambient.g =
c->lighting.front.ambient.b = gglFloatToFixed(0.2f);
c->lighting.front.ambient.a = 0x10000;
c->lighting.front.diffuse.r =
c->lighting.front.diffuse.g =
c->lighting.front.diffuse.b = gglFloatToFixed(0.8f);
c->lighting.front.diffuse.a = 0x10000;
c->lighting.front.specular.a = 0x10000;
c->lighting.front.emission.a = 0x10000;
c->lighting.lightModel.ambient.r =
c->lighting.lightModel.ambient.g =
c->lighting.lightModel.ambient.b = gglFloatToFixed(0.2f);
c->lighting.lightModel.ambient.a = 0x10000;
c->lighting.colorMaterial.face = GL_FRONT_AND_BACK;
c->lighting.colorMaterial.mode = GL_AMBIENT_AND_DIFFUSE;
c->fog.mode = GL_EXP;
c->fog.fog = fog_exp;
c->fog.density = 0x10000;
c->fog.end = 0x10000;
c->fog.invEndMinusStart = 0x10000;
invalidate_lighting(c);
c->rasterizer.procs.shadeModel(c, GL_SMOOTH);
c->lighting.shadeModel = GL_SMOOTH;
}
void ogles_uninit_light(ogles_context_t* c)
{
}
static inline int32_t clampF(GLfixed f) CONST;
int32_t clampF(GLfixed f) {
f = (f & ~(f>>31));
if (f >= 0x10000)
f = 0x10000;
return f;
}
static GLfixed fog_linear(ogles_context_t* c, GLfixed z) {
return clampF(gglMulx((c->fog.end - z), c->fog.invEndMinusStart));
}
static GLfixed fog_exp(ogles_context_t* c, GLfixed z) {
const float e = fixedToFloat(gglMulx(c->fog.density, z));
return clampF(gglFloatToFixed(fastexpf(-e)));
}
static GLfixed fog_exp2(ogles_context_t* c, GLfixed z) {
const float e = fixedToFloat(gglMulx(c->fog.density, z));
return clampF(gglFloatToFixed(fastexpf(-e*e)));
}
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#pragma mark math helpers
#endif
static inline
void vscale3(GLfixed* d, const GLfixed* m, GLfixed s) {
d[0] = gglMulx(m[0], s);
d[1] = gglMulx(m[1], s);
d[2] = gglMulx(m[2], s);
}
static inline
void vsa3(GLfixed* d, const GLfixed* m, GLfixed s, const GLfixed* a) {
d[0] = gglMulAddx(m[0], s, a[0]);
d[1] = gglMulAddx(m[1], s, a[1]);
d[2] = gglMulAddx(m[2], s, a[2]);
}
static inline
void vsub3w(GLfixed* d, const GLfixed* a, const GLfixed* b) {
const GLfixed wa = a[3];
const GLfixed wb = b[3];
if (ggl_likely(wa == wb)) {
d[0] = a[0] - b[0];
d[1] = a[1] - b[1];
d[2] = a[2] - b[2];
} else {
d[0] = gglMulSubx(a[0], wb, gglMulx(b[0], wa));
d[1] = gglMulSubx(a[1], wb, gglMulx(b[1], wa));
d[2] = gglMulSubx(a[2], wb, gglMulx(b[2], wa));
}
}
static inline
void vmla3(GLfixed* d,
const GLfixed* m0, const GLfixed* m1, const GLfixed* a)
{
d[0] = gglMulAddx(m0[0], m1[0], a[0]);
d[1] = gglMulAddx(m0[1], m1[1], a[1]);
d[2] = gglMulAddx(m0[2], m1[2], a[2]);
}
static inline
void vmul3(GLfixed* d, const GLfixed* m0, const GLfixed* m1) {
d[0] = gglMulx(m0[0], m1[0]);
d[1] = gglMulx(m0[1], m1[1]);
d[2] = gglMulx(m0[2], m1[2]);
}
void vnorm3(GLfixed* d, const GLfixed* a)
{
// we must take care of overflows when normalizing a vector
GLfixed n;
int32_t x = a[0]; x = x>=0 ? x : -x;
int32_t y = a[1]; y = y>=0 ? y : -y;
int32_t z = a[2]; z = z>=0 ? z : -z;
if (ggl_likely(x<=0x6800 && y<=0x6800 && z<= 0x6800)) {
// in this case this will all fit on 32 bits
n = x*x + y*y + z*z;
n = gglSqrtRecipx(n);
n <<= 8;
} else {
// here norm^2 is at least 0x7EC00000 (>>32 == 0.495117)
n = vsquare3(x, y, z);
n = gglSqrtRecipx(n);
}
vscale3(d, a, n);
}
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#pragma mark lighting equations
#endif
static inline void light_picker(ogles_context_t* c)
{
if (ggl_likely(!c->lighting.enable)) {
c->lighting.lightVertex = lightVertexNop;
return;
}
if (c->lighting.colorMaterial.enable) {
c->lighting.lightVertex = lightVertexMaterial;
} else {
c->lighting.lightVertex = lightVertex;
}
}
static inline void validate_light_mvi(ogles_context_t* c)
{
uint32_t en = c->lighting.enabledLights;
while (en) {
const int i = 31 - gglClz(en);
en &= ~(1<<i);
light_t& l = c->lighting.lights[i];
c->transforms.mvui.point3(&c->transforms.mvui,
&l.objPosition, &l.position);
vnorm3(l.normalizedObjPosition.v, l.objPosition.v);
}
}
static inline void validate_light(ogles_context_t* c)
{
// if colorMaterial is enabled, we get the color from the vertex
if (!c->lighting.colorMaterial.enable) {
material_t& material = c->lighting.front;
uint32_t en = c->lighting.enabledLights;
while (en) {
const int i = 31 - gglClz(en);
en &= ~(1<<i);
light_t& l = c->lighting.lights[i];
vmul3(l.implicitAmbient.v, material.ambient.v, l.ambient.v);
vmul3(l.implicitDiffuse.v, material.diffuse.v, l.diffuse.v);
vmul3(l.implicitSpecular.v, material.specular.v, l.specular.v);
// this is just a flag to tell if we have a specular component
l.implicitSpecular.v[3] =
l.implicitSpecular.r |
l.implicitSpecular.g |
l.implicitSpecular.b;
l.rConstAttenuation = (l.attenuation[1] | l.attenuation[2])==0;
if (l.rConstAttenuation)
l.rConstAttenuation = gglRecipFast(l.attenuation[0]);
}
// emission and ambient for the whole scene
vmla3( c->lighting.implicitSceneEmissionAndAmbient.v,
c->lighting.lightModel.ambient.v,
material.ambient.v,
material.emission.v);
c->lighting.implicitSceneEmissionAndAmbient.a = material.diffuse.a;
}
validate_light_mvi(c);
}
void invalidate_lighting(ogles_context_t* c)
{
// TODO: pick lightVertexValidate or lightVertexValidateMVI
// instead of systematically the heavier lightVertexValidate()
c->lighting.lightVertex = lightVertexValidate;
}
void ogles_invalidate_lighting_mvui(ogles_context_t* c)
{
invalidate_lighting(c);
}
void lightVertexNop(ogles_context_t*, vertex_t* v)
{
// we should never end-up here
}
void lightVertexValidateMVI(ogles_context_t* c, vertex_t* v)
{
validate_light_mvi(c);
light_picker(c);
c->lighting.lightVertex(c, v);
}
void lightVertexValidate(ogles_context_t* c, vertex_t* v)
{
validate_light(c);
light_picker(c);
c->lighting.lightVertex(c, v);
}
void lightVertexMaterial(ogles_context_t* c, vertex_t* v)
{
// fetch the material color
const GLvoid* cp = c->arrays.color.element(
v->index & vertex_cache_t::INDEX_MASK);
c->arrays.color.fetch(c, v->color.v, cp);
// acquire the color-material from the vertex
material_t& material = c->lighting.front;
material.ambient =
material.diffuse = v->color;
// implicit arguments need to be computed per/vertex
uint32_t en = c->lighting.enabledLights;
while (en) {
const int i = 31 - gglClz(en);
en &= ~(1<<i);
light_t& l = c->lighting.lights[i];
vmul3(l.implicitAmbient.v, material.ambient.v, l.ambient.v);
vmul3(l.implicitDiffuse.v, material.diffuse.v, l.diffuse.v);
vmul3(l.implicitSpecular.v, material.specular.v, l.specular.v);
}
// emission and ambient for the whole scene
vmla3( c->lighting.implicitSceneEmissionAndAmbient.v,
c->lighting.lightModel.ambient.v,
material.ambient.v,
material.emission.v);
c->lighting.implicitSceneEmissionAndAmbient.a = material.diffuse.a;
// now we can light our vertex as usual
lightVertex(c, v);
}
void lightVertex(ogles_context_t* c, vertex_t* v)
{
// emission and ambient for the whole scene
vec4_t r = c->lighting.implicitSceneEmissionAndAmbient;
uint32_t en = c->lighting.enabledLights;
if (ggl_likely(en)) {
// since we do the lighting in object-space, we don't need to
// transform each normal. However, we might still have to normalize
// it if GL_NORMALIZE is enabled.
vec4_t n;
c->arrays.normal.fetch(c, n.v,
c->arrays.normal.element(v->index & vertex_cache_t::INDEX_MASK));
if (c->transforms.rescaleNormals == GL_NORMALIZE)
vnorm3(n.v, n.v);
const material_t& material = c->lighting.front;
const int twoSide = c->lighting.lightModel.twoSide;
while (en) {
const int i = 31 - gglClz(en);
en &= ~(1<<i);
const light_t& l = c->lighting.lights[i];
vec4_t d, t;
GLfixed s;
GLfixed sqDist = 0x10000;
// compute vertex-to-light vector
if (ggl_unlikely(l.position.w)) {
vsub3w(d.v, l.objPosition.v, v->obj.v);
sqDist = dot3(d.v, d.v);
vscale3(d.v, d.v, gglSqrtRecipx(sqDist));
} else {
// TODO: avoid copy here
d = l.normalizedObjPosition;
}
// ambient & diffuse
s = dot3(n.v, d.v);
s = (s<0) ? (twoSide?(-s):0) : s;
vsa3(t.v, l.implicitDiffuse.v, s, l.implicitAmbient.v);
// specular
if (ggl_unlikely(s && l.implicitSpecular.v[3])) {
vec4_t h;
h.x = d.x;
h.y = d.y;
h.z = d.z + 0x10000;
vnorm3(h.v, h.v);
s = dot3(n.v, h.v);
s = (s<0) ? (twoSide?(-s):0) : s;
if (s > 0) {
s = gglPowx(s, material.shininess);
vsa3(t.v, l.implicitSpecular.v, s, t.v);
}
}
// spot
if (ggl_unlikely(l.spotCutoff != gglIntToFixed(180))) {
GLfixed spotAtt = -dot3(l.normalizedSpotDir.v, d.v);
if (spotAtt >= l.spotCutoffCosine) {
vscale3(t.v, t.v, gglPowx(spotAtt, l.spotExp));
}
}
// attenuation
if (ggl_unlikely(l.position.w)) {
if (l.rConstAttenuation) {
s = l.rConstAttenuation;
} else {
s = gglMulAddx(sqDist, l.attenuation[2], l.attenuation[0]);
if (l.attenuation[1])
s = gglMulAddx(gglSqrtx(sqDist), l.attenuation[1], s);
s = gglRecipFast(s);
}
vscale3(t.v, t.v, s);
}
r.r += t.r;
r.g += t.g;
r.b += t.b;
}
}
v->color.r = gglClampx(r.r);
v->color.g = gglClampx(r.g);
v->color.b = gglClampx(r.b);
v->color.a = gglClampx(r.a);
v->flags |= vertex_t::LIT;
}
static void lightModelx(GLenum pname, GLfixed param, ogles_context_t* c)
{
if (ggl_unlikely(pname != GL_LIGHT_MODEL_TWO_SIDE)) {
ogles_error(c, GL_INVALID_ENUM);
return;
}
c->lighting.lightModel.twoSide = param ? GL_TRUE : GL_FALSE;
invalidate_lighting(c);
}
static void lightx(GLenum i, GLenum pname, GLfixed param, ogles_context_t* c)
{
if (ggl_unlikely(uint32_t(i-GL_LIGHT0) >= OGLES_MAX_LIGHTS)) {
ogles_error(c, GL_INVALID_ENUM);
return;
}
light_t& light = c->lighting.lights[i-GL_LIGHT0];
const GLfixed kDegToRad = GLfixed((M_PI * gglIntToFixed(1)) / 180.0f);
switch (pname) {
case GL_SPOT_EXPONENT:
if (GGLfixed(param) >= gglIntToFixed(128)) {
ogles_error(c, GL_INVALID_VALUE);
return;
}
light.spotExp = param;
break;
case GL_SPOT_CUTOFF:
if (param!=gglIntToFixed(180) && GGLfixed(param)>=gglIntToFixed(90)) {
ogles_error(c, GL_INVALID_VALUE);
return;
}
light.spotCutoff = param;
light.spotCutoffCosine =
gglFloatToFixed(cosinef((M_PI/(180.0f*65536.0f))*param));
break;
case GL_CONSTANT_ATTENUATION:
if (param < 0) {
ogles_error(c, GL_INVALID_VALUE);
return;
}
light.attenuation[0] = param;
break;
case GL_LINEAR_ATTENUATION:
if (param < 0) {
ogles_error(c, GL_INVALID_VALUE);
return;
}
light.attenuation[1] = param;
break;
case GL_QUADRATIC_ATTENUATION:
if (param < 0) {
ogles_error(c, GL_INVALID_VALUE);
return;
}
light.attenuation[2] = param;
break;
default:
ogles_error(c, GL_INVALID_ENUM);
return;
}
invalidate_lighting(c);
}
static void lightxv(GLenum i, GLenum pname, const GLfixed *params, ogles_context_t* c)
{
if (ggl_unlikely(uint32_t(i-GL_LIGHT0) >= OGLES_MAX_LIGHTS)) {
ogles_error(c, GL_INVALID_ENUM);
return;
}
GLfixed* what;
light_t& light = c->lighting.lights[i-GL_LIGHT0];
switch (pname) {
case GL_AMBIENT:
what = light.ambient.v;
break;
case GL_DIFFUSE:
what = light.diffuse.v;
break;
case GL_SPECULAR:
what = light.specular.v;
break;
case GL_POSITION: {
ogles_validate_transform(c, transform_state_t::MODELVIEW);
transform_t& mv = c->transforms.modelview.transform;
memcpy(light.position.v, params, sizeof(light.position.v));
mv.point4(&mv, &light.position, &light.position);
invalidate_lighting(c);
return;
}
case GL_SPOT_DIRECTION: {
ogles_validate_transform(c, transform_state_t::MVUI);
transform_t& mvui = c->transforms.mvui;
mvui.point3(&mvui, &light.spotDir, (vec4_t*)params);
vnorm3(light.normalizedSpotDir.v, light.spotDir.v);
invalidate_lighting(c);
return;
}
default:
lightx(i, pname, params[0], c);
return;
}
what[0] = params[0];
what[1] = params[1];
what[2] = params[2];
what[3] = params[3];
invalidate_lighting(c);
}
static void materialx(GLenum face, GLenum pname, GLfixed param, ogles_context_t* c)
{
if (ggl_unlikely(face != GL_FRONT_AND_BACK)) {
ogles_error(c, GL_INVALID_ENUM);
return;
}
if (ggl_unlikely(pname != GL_SHININESS)) {
ogles_error(c, GL_INVALID_ENUM);
return;
}
c->lighting.front.shininess = param;
invalidate_lighting(c);
}
static void fogx(GLenum pname, GLfixed param, ogles_context_t* c)
{
switch (pname) {
case GL_FOG_DENSITY:
if (param >= 0) {
c->fog.density = param;
break;
}
ogles_error(c, GL_INVALID_VALUE);
break;
case GL_FOG_START:
c->fog.start = gglClampx(param);
c->fog.invEndMinusStart = gglRecip(c->fog.end - c->fog.start);
break;
case GL_FOG_END:
c->fog.end = gglClampx(param);
c->fog.invEndMinusStart = gglRecip(c->fog.end - c->fog.start);
break;
case GL_FOG_MODE:
switch (param) {
case GL_LINEAR:
c->fog.mode = param;
c->fog.fog = fog_linear;
break;
case GL_EXP:
c->fog.mode = param;
c->fog.fog = fog_exp;
break;
case GL_EXP2:
c->fog.mode = param;
c->fog.fog = fog_exp2;
break;
default:
ogles_error(c, GL_INVALID_ENUM);
break;
}
break;
default:
ogles_error(c, GL_INVALID_ENUM);
break;
}
}
// ----------------------------------------------------------------------------
}; // namespace android
// ----------------------------------------------------------------------------
using namespace android;
#if 0
#pragma mark -
#pragma mark lighting APIs
#endif
void glShadeModel(GLenum mode)
{
ogles_context_t* c = ogles_context_t::get();
if (ggl_unlikely(mode != GL_SMOOTH && mode != GL_FLAT)) {
ogles_error(c, GL_INVALID_ENUM);
return;
}
c->lighting.shadeModel = mode;
}
void glLightModelf(GLenum pname, GLfloat param)
{
ogles_context_t* c = ogles_context_t::get();
lightModelx(pname, gglFloatToFixed(param), c);
}
void glLightModelx(GLenum pname, GLfixed param)
{
ogles_context_t* c = ogles_context_t::get();
lightModelx(pname, param, c);
}
void glLightModelfv(GLenum pname, const GLfloat *params)
{
ogles_context_t* c = ogles_context_t::get();
if (pname == GL_LIGHT_MODEL_TWO_SIDE) {
lightModelx(pname, gglFloatToFixed(params[0]), c);
return;
}
if (ggl_unlikely(pname != GL_LIGHT_MODEL_AMBIENT)) {
ogles_error(c, GL_INVALID_ENUM);
return;
}
c->lighting.lightModel.ambient.r = gglFloatToFixed(params[0]);
c->lighting.lightModel.ambient.g = gglFloatToFixed(params[1]);
c->lighting.lightModel.ambient.b = gglFloatToFixed(params[2]);
c->lighting.lightModel.ambient.a = gglFloatToFixed(params[3]);
invalidate_lighting(c);
}
void glLightModelxv(GLenum pname, const GLfixed *params)
{
ogles_context_t* c = ogles_context_t::get();
if (pname == GL_LIGHT_MODEL_TWO_SIDE) {
lightModelx(pname, params[0], c);
return;
}
if (ggl_unlikely(pname != GL_LIGHT_MODEL_AMBIENT)) {
ogles_error(c, GL_INVALID_ENUM);
return;
}
c->lighting.lightModel.ambient.r = params[0];
c->lighting.lightModel.ambient.g = params[1];
c->lighting.lightModel.ambient.b = params[2];
c->lighting.lightModel.ambient.a = params[3];
invalidate_lighting(c);
}
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#endif
void glLightf(GLenum i, GLenum pname, GLfloat param)
{
ogles_context_t* c = ogles_context_t::get();
lightx(i, pname, gglFloatToFixed(param), c);
}
void glLightx(GLenum i, GLenum pname, GLfixed param)
{
ogles_context_t* c = ogles_context_t::get();
lightx(i, pname, param, c);
}
void glLightfv(GLenum i, GLenum pname, const GLfloat *params)
{
ogles_context_t* c = ogles_context_t::get();
switch (pname) {
case GL_SPOT_EXPONENT:
case GL_SPOT_CUTOFF:
case GL_CONSTANT_ATTENUATION:
case GL_LINEAR_ATTENUATION:
case GL_QUADRATIC_ATTENUATION:
lightx(i, pname, gglFloatToFixed(params[0]), c);
return;
}
GLfixed paramsx[4];
paramsx[0] = gglFloatToFixed(params[0]);
paramsx[1] = gglFloatToFixed(params[1]);
paramsx[2] = gglFloatToFixed(params[2]);
if (pname != GL_SPOT_DIRECTION)
paramsx[3] = gglFloatToFixed(params[3]);
lightxv(i, pname, paramsx, c);
}
void glLightxv(GLenum i, GLenum pname, const GLfixed *params)
{
ogles_context_t* c = ogles_context_t::get();
lightxv(i, pname, params, c);
}
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#endif
void glMaterialf(GLenum face, GLenum pname, GLfloat param)
{
ogles_context_t* c = ogles_context_t::get();
materialx(face, pname, gglFloatToFixed(param), c);
}
void glMaterialx(GLenum face, GLenum pname, GLfixed param)
{
ogles_context_t* c = ogles_context_t::get();
materialx(face, pname, param, c);
}
void glMaterialfv(
GLenum face, GLenum pname, const GLfloat *params)
{
ogles_context_t* c = ogles_context_t::get();
if (ggl_unlikely(face != GL_FRONT_AND_BACK)) {
ogles_error(c, GL_INVALID_ENUM);
return;
}
GLfixed* what=0;
GLfixed* other=0;
switch (pname) {
case GL_AMBIENT: what = c->lighting.front.ambient.v; break;
case GL_DIFFUSE: what = c->lighting.front.diffuse.v; break;
case GL_SPECULAR: what = c->lighting.front.specular.v; break;
case GL_EMISSION: what = c->lighting.front.emission.v; break;
case GL_AMBIENT_AND_DIFFUSE:
what = c->lighting.front.ambient.v; break;
other = c->lighting.front.diffuse.v; break;
break;
case GL_SHININESS:
c->lighting.front.shininess = gglFloatToFixed(params[0]);
invalidate_lighting(c);
return;
default:
ogles_error(c, GL_INVALID_ENUM);
return;
}
what[0] = gglFloatToFixed(params[0]);
what[1] = gglFloatToFixed(params[1]);
what[2] = gglFloatToFixed(params[2]);
what[3] = gglFloatToFixed(params[3]);
if (other) {
other[0] = what[0];
other[1] = what[1];
other[2] = what[2];
other[3] = what[3];
}
invalidate_lighting(c);
}
void glMaterialxv(
GLenum face, GLenum pname, const GLfixed *params)
{
ogles_context_t* c = ogles_context_t::get();
if (ggl_unlikely(face != GL_FRONT_AND_BACK)) {
ogles_error(c, GL_INVALID_ENUM);
return;
}
GLfixed* what=0;
GLfixed* other=0;
switch (pname) {
case GL_AMBIENT: what = c->lighting.front.ambient.v; break;
case GL_DIFFUSE: what = c->lighting.front.diffuse.v; break;
case GL_SPECULAR: what = c->lighting.front.specular.v; break;
case GL_EMISSION: what = c->lighting.front.emission.v; break;
case GL_AMBIENT_AND_DIFFUSE:
what = c->lighting.front.ambient.v; break;
other= c->lighting.front.diffuse.v; break;
break;
case GL_SHININESS:
c->lighting.front.shininess = gglFloatToFixed(params[0]);
invalidate_lighting(c);
return;
default:
ogles_error(c, GL_INVALID_ENUM);
return;
}
what[0] = params[0];
what[1] = params[1];
what[2] = params[2];
what[3] = params[3];
if (other) {
other[0] = what[0];
other[1] = what[1];
other[2] = what[2];
other[3] = what[3];
}
invalidate_lighting(c);
}
// ----------------------------------------------------------------------------
#if 0
#pragma mark -
#pragma mark fog
#endif
void glFogf(GLenum pname, GLfloat param) {
ogles_context_t* c = ogles_context_t::get();
GLfixed paramx = (GLfixed)param;
if (pname != GL_FOG_MODE)
paramx = gglFloatToFixed(param);
fogx(pname, paramx, c);
}
void glFogx(GLenum pname, GLfixed param) {
ogles_context_t* c = ogles_context_t::get();
fogx(pname, param, c);
}
void glFogfv(GLenum pname, const GLfloat *params)
{
ogles_context_t* c = ogles_context_t::get();
if (pname != GL_FOG_COLOR) {
GLfixed paramx = (GLfixed)params[0];
if (pname != GL_FOG_MODE)
paramx = gglFloatToFixed(params[0]);
fogx(pname, paramx, c);
return;
}
GLfixed paramsx[4];
paramsx[0] = gglFloatToFixed(params[0]);
paramsx[1] = gglFloatToFixed(params[1]);
paramsx[2] = gglFloatToFixed(params[2]);
paramsx[3] = gglFloatToFixed(params[3]);
c->rasterizer.procs.fogColor3xv(c, paramsx);
}
void glFogxv(GLenum pname, const GLfixed *params)
{
ogles_context_t* c = ogles_context_t::get();
if (pname != GL_FOG_COLOR) {
fogx(pname, params[0], c);
return;
}
c->rasterizer.procs.fogColor3xv(c, params);
}