replicant-frameworks_native/libs/ui/EventHub.cpp
Jeff Brown 1ad00e96fe Wait for initial device scan to finish before updating config.
This change narrows the opportunity for a race condition setting the
resource Configuration while devices are being updated.

Change-Id: I58efa563f4129ab0fce7108511d16a99dff7e451
2010-10-01 18:55:43 -07:00

1019 lines
33 KiB
C++

//
// Copyright 2005 The Android Open Source Project
//
// Handle events, like key input and vsync.
//
// The goal is to provide an optimized solution for Linux, not an
// implementation that works well across all platforms. We expect
// events to arrive on file descriptors, so that we can use a select()
// select() call to sleep.
//
// We can't select() on anything but network sockets in Windows, so we
// provide an alternative implementation of waitEvent for that platform.
//
#define LOG_TAG "EventHub"
//#define LOG_NDEBUG 0
#include <ui/EventHub.h>
#include <ui/KeycodeLabels.h>
#include <hardware_legacy/power.h>
#include <cutils/properties.h>
#include <utils/Log.h>
#include <utils/Timers.h>
#include <utils/threads.h>
#include <utils/Errors.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <memory.h>
#include <errno.h>
#include <assert.h>
#include "KeyLayoutMap.h"
#include <string.h>
#include <stdint.h>
#include <dirent.h>
#ifdef HAVE_INOTIFY
# include <sys/inotify.h>
#endif
#ifdef HAVE_ANDROID_OS
# include <sys/limits.h> /* not part of Linux */
#endif
#include <sys/poll.h>
#include <sys/ioctl.h>
/* this macro is used to tell if "bit" is set in "array"
* it selects a byte from the array, and does a boolean AND
* operation with a byte that only has the relevant bit set.
* eg. to check for the 12th bit, we do (array[1] & 1<<4)
*/
#define test_bit(bit, array) (array[bit/8] & (1<<(bit%8)))
/* this macro computes the number of bytes needed to represent a bit array of the specified size */
#define sizeof_bit_array(bits) ((bits + 7) / 8)
#define ID_MASK 0x0000ffff
#define SEQ_MASK 0x7fff0000
#define SEQ_SHIFT 16
#ifndef ABS_MT_TOUCH_MAJOR
#define ABS_MT_TOUCH_MAJOR 0x30 /* Major axis of touching ellipse */
#endif
#ifndef ABS_MT_POSITION_X
#define ABS_MT_POSITION_X 0x35 /* Center X ellipse position */
#endif
#ifndef ABS_MT_POSITION_Y
#define ABS_MT_POSITION_Y 0x36 /* Center Y ellipse position */
#endif
#define INDENT " "
#define INDENT2 " "
#define INDENT3 " "
namespace android {
static const char *WAKE_LOCK_ID = "KeyEvents";
static const char *device_path = "/dev/input";
/* return the larger integer */
static inline int max(int v1, int v2)
{
return (v1 > v2) ? v1 : v2;
}
static inline const char* toString(bool value) {
return value ? "true" : "false";
}
EventHub::device_t::device_t(int32_t _id, const char* _path, const char* name)
: id(_id), path(_path), name(name), classes(0)
, keyBitmask(NULL), layoutMap(new KeyLayoutMap()), fd(-1), next(NULL) {
}
EventHub::device_t::~device_t() {
delete [] keyBitmask;
delete layoutMap;
}
EventHub::EventHub(void)
: mError(NO_INIT), mHaveFirstKeyboard(false), mFirstKeyboardId(0)
, mDevicesById(0), mNumDevicesById(0)
, mOpeningDevices(0), mClosingDevices(0)
, mDevices(0), mFDs(0), mFDCount(0), mOpened(false), mNeedToSendFinishedDeviceScan(false)
, mInputBufferIndex(0), mInputBufferCount(0), mInputDeviceIndex(0)
{
acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
#ifdef EV_SW
memset(mSwitches, 0, sizeof(mSwitches));
#endif
}
/*
* Clean up.
*/
EventHub::~EventHub(void)
{
release_wake_lock(WAKE_LOCK_ID);
// we should free stuff here...
}
status_t EventHub::errorCheck() const
{
return mError;
}
String8 EventHub::getDeviceName(int32_t deviceId) const
{
AutoMutex _l(mLock);
device_t* device = getDeviceLocked(deviceId);
if (device == NULL) return String8();
return device->name;
}
uint32_t EventHub::getDeviceClasses(int32_t deviceId) const
{
AutoMutex _l(mLock);
device_t* device = getDeviceLocked(deviceId);
if (device == NULL) return 0;
return device->classes;
}
status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
RawAbsoluteAxisInfo* outAxisInfo) const {
outAxisInfo->clear();
AutoMutex _l(mLock);
device_t* device = getDeviceLocked(deviceId);
if (device == NULL) return -1;
struct input_absinfo info;
if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
LOGW("Error reading absolute controller %d for device %s fd %d\n",
axis, device->name.string(), device->fd);
return -errno;
}
if (info.minimum != info.maximum) {
outAxisInfo->valid = true;
outAxisInfo->minValue = info.minimum;
outAxisInfo->maxValue = info.maximum;
outAxisInfo->flat = info.flat;
outAxisInfo->fuzz = info.fuzz;
}
return OK;
}
int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
if (scanCode >= 0 && scanCode <= KEY_MAX) {
AutoMutex _l(mLock);
device_t* device = getDeviceLocked(deviceId);
if (device != NULL) {
return getScanCodeStateLocked(device, scanCode);
}
}
return AKEY_STATE_UNKNOWN;
}
int32_t EventHub::getScanCodeStateLocked(device_t* device, int32_t scanCode) const {
uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)];
memset(key_bitmask, 0, sizeof(key_bitmask));
if (ioctl(device->fd,
EVIOCGKEY(sizeof(key_bitmask)), key_bitmask) >= 0) {
return test_bit(scanCode, key_bitmask) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
}
return AKEY_STATE_UNKNOWN;
}
int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
AutoMutex _l(mLock);
device_t* device = getDeviceLocked(deviceId);
if (device != NULL) {
return getKeyCodeStateLocked(device, keyCode);
}
return AKEY_STATE_UNKNOWN;
}
int32_t EventHub::getKeyCodeStateLocked(device_t* device, int32_t keyCode) const {
Vector<int32_t> scanCodes;
device->layoutMap->findScancodes(keyCode, &scanCodes);
uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)];
memset(key_bitmask, 0, sizeof(key_bitmask));
if (ioctl(device->fd, EVIOCGKEY(sizeof(key_bitmask)), key_bitmask) >= 0) {
#if 0
for (size_t i=0; i<=KEY_MAX; i++) {
LOGI("(Scan code %d: down=%d)", i, test_bit(i, key_bitmask));
}
#endif
const size_t N = scanCodes.size();
for (size_t i=0; i<N && i<=KEY_MAX; i++) {
int32_t sc = scanCodes.itemAt(i);
//LOGI("Code %d: down=%d", sc, test_bit(sc, key_bitmask));
if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, key_bitmask)) {
return AKEY_STATE_DOWN;
}
}
return AKEY_STATE_UP;
}
return AKEY_STATE_UNKNOWN;
}
int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
#ifdef EV_SW
if (sw >= 0 && sw <= SW_MAX) {
AutoMutex _l(mLock);
device_t* device = getDeviceLocked(deviceId);
if (device != NULL) {
return getSwitchStateLocked(device, sw);
}
}
#endif
return AKEY_STATE_UNKNOWN;
}
int32_t EventHub::getSwitchStateLocked(device_t* device, int32_t sw) const {
uint8_t sw_bitmask[sizeof_bit_array(SW_MAX + 1)];
memset(sw_bitmask, 0, sizeof(sw_bitmask));
if (ioctl(device->fd,
EVIOCGSW(sizeof(sw_bitmask)), sw_bitmask) >= 0) {
return test_bit(sw, sw_bitmask) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
}
return AKEY_STATE_UNKNOWN;
}
bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes,
const int32_t* keyCodes, uint8_t* outFlags) const {
AutoMutex _l(mLock);
device_t* device = getDeviceLocked(deviceId);
if (device != NULL) {
return markSupportedKeyCodesLocked(device, numCodes, keyCodes, outFlags);
}
return false;
}
bool EventHub::markSupportedKeyCodesLocked(device_t* device, size_t numCodes,
const int32_t* keyCodes, uint8_t* outFlags) const {
if (device->layoutMap == NULL || device->keyBitmask == NULL) {
return false;
}
Vector<int32_t> scanCodes;
for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
scanCodes.clear();
status_t err = device->layoutMap->findScancodes(keyCodes[codeIndex], &scanCodes);
if (! err) {
// check the possible scan codes identified by the layout map against the
// map of codes actually emitted by the driver
for (size_t sc = 0; sc < scanCodes.size(); sc++) {
if (test_bit(scanCodes[sc], device->keyBitmask)) {
outFlags[codeIndex] = 1;
break;
}
}
}
}
return true;
}
status_t EventHub::scancodeToKeycode(int32_t deviceId, int scancode,
int32_t* outKeycode, uint32_t* outFlags) const
{
AutoMutex _l(mLock);
device_t* device = getDeviceLocked(deviceId);
if (device != NULL && device->layoutMap != NULL) {
status_t err = device->layoutMap->map(scancode, outKeycode, outFlags);
if (err == NO_ERROR) {
return NO_ERROR;
}
}
if (mHaveFirstKeyboard) {
device = getDeviceLocked(mFirstKeyboardId);
if (device != NULL && device->layoutMap != NULL) {
status_t err = device->layoutMap->map(scancode, outKeycode, outFlags);
if (err == NO_ERROR) {
return NO_ERROR;
}
}
}
*outKeycode = 0;
*outFlags = 0;
return NAME_NOT_FOUND;
}
void EventHub::addExcludedDevice(const char* deviceName)
{
AutoMutex _l(mLock);
String8 name(deviceName);
mExcludedDevices.push_back(name);
}
EventHub::device_t* EventHub::getDeviceLocked(int32_t deviceId) const
{
if (deviceId == 0) deviceId = mFirstKeyboardId;
int32_t id = deviceId & ID_MASK;
if (id >= mNumDevicesById || id < 0) return NULL;
device_t* dev = mDevicesById[id].device;
if (dev == NULL) return NULL;
if (dev->id == deviceId) {
return dev;
}
return NULL;
}
bool EventHub::getEvent(RawEvent* outEvent)
{
outEvent->deviceId = 0;
outEvent->type = 0;
outEvent->scanCode = 0;
outEvent->keyCode = 0;
outEvent->flags = 0;
outEvent->value = 0;
outEvent->when = 0;
// Note that we only allow one caller to getEvent(), so don't need
// to do locking here... only when adding/removing devices.
if (!mOpened) {
mError = openPlatformInput() ? NO_ERROR : UNKNOWN_ERROR;
mOpened = true;
mNeedToSendFinishedDeviceScan = true;
}
for (;;) {
// Report any devices that had last been added/removed.
if (mClosingDevices != NULL) {
device_t* device = mClosingDevices;
LOGV("Reporting device closed: id=0x%x, name=%s\n",
device->id, device->path.string());
mClosingDevices = device->next;
if (device->id == mFirstKeyboardId) {
outEvent->deviceId = 0;
} else {
outEvent->deviceId = device->id;
}
outEvent->type = DEVICE_REMOVED;
delete device;
mNeedToSendFinishedDeviceScan = true;
return true;
}
if (mOpeningDevices != NULL) {
device_t* device = mOpeningDevices;
LOGV("Reporting device opened: id=0x%x, name=%s\n",
device->id, device->path.string());
mOpeningDevices = device->next;
if (device->id == mFirstKeyboardId) {
outEvent->deviceId = 0;
} else {
outEvent->deviceId = device->id;
}
outEvent->type = DEVICE_ADDED;
mNeedToSendFinishedDeviceScan = true;
return true;
}
if (mNeedToSendFinishedDeviceScan) {
mNeedToSendFinishedDeviceScan = false;
outEvent->type = FINISHED_DEVICE_SCAN;
return true;
}
// Grab the next input event.
for (;;) {
// Consume buffered input events, if any.
if (mInputBufferIndex < mInputBufferCount) {
const struct input_event& iev = mInputBufferData[mInputBufferIndex++];
const device_t* device = mDevices[mInputDeviceIndex];
LOGV("%s got: t0=%d, t1=%d, type=%d, code=%d, v=%d", device->path.string(),
(int) iev.time.tv_sec, (int) iev.time.tv_usec, iev.type, iev.code, iev.value);
if (device->id == mFirstKeyboardId) {
outEvent->deviceId = 0;
} else {
outEvent->deviceId = device->id;
}
outEvent->type = iev.type;
outEvent->scanCode = iev.code;
if (iev.type == EV_KEY) {
status_t err = device->layoutMap->map(iev.code,
& outEvent->keyCode, & outEvent->flags);
LOGV("iev.code=%d keyCode=%d flags=0x%08x err=%d\n",
iev.code, outEvent->keyCode, outEvent->flags, err);
if (err != 0) {
outEvent->keyCode = AKEYCODE_UNKNOWN;
outEvent->flags = 0;
}
} else {
outEvent->keyCode = iev.code;
}
outEvent->value = iev.value;
// Use an event timestamp in the same timebase as
// java.lang.System.nanoTime() and android.os.SystemClock.uptimeMillis()
// as expected by the rest of the system.
outEvent->when = systemTime(SYSTEM_TIME_MONOTONIC);
return true;
}
// Finish reading all events from devices identified in previous poll().
// This code assumes that mInputDeviceIndex is initially 0 and that the
// revents member of pollfd is initialized to 0 when the device is first added.
// Since mFDs[0] is used for inotify, we process regular events starting at index 1.
mInputDeviceIndex += 1;
if (mInputDeviceIndex >= mFDCount) {
mInputDeviceIndex = 0;
break;
}
const struct pollfd &pfd = mFDs[mInputDeviceIndex];
if (pfd.revents & POLLIN) {
int32_t readSize = read(pfd.fd, mInputBufferData,
sizeof(struct input_event) * INPUT_BUFFER_SIZE);
if (readSize < 0) {
if (errno != EAGAIN && errno != EINTR) {
LOGW("could not get event (errno=%d)", errno);
}
} else if ((readSize % sizeof(struct input_event)) != 0) {
LOGE("could not get event (wrong size: %d)", readSize);
} else {
mInputBufferCount = readSize / sizeof(struct input_event);
mInputBufferIndex = 0;
}
}
}
// readNotify() will modify mFDs and mFDCount, so this must be done after
// processing all other events.
if(mFDs[0].revents & POLLIN) {
readNotify(mFDs[0].fd);
}
// Poll for events. Mind the wake lock dance!
// We hold a wake lock at all times except during poll(). This works due to some
// subtle choreography. When a device driver has pending (unread) events, it acquires
// a kernel wake lock. However, once the last pending event has been read, the device
// driver will release the kernel wake lock. To prevent the system from going to sleep
// when this happens, the EventHub holds onto its own user wake lock while the client
// is processing events. Thus the system can only sleep if there are no events
// pending or currently being processed.
release_wake_lock(WAKE_LOCK_ID);
int pollResult = poll(mFDs, mFDCount, -1);
acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
if (pollResult <= 0) {
if (errno != EINTR) {
LOGW("select failed (errno=%d)\n", errno);
usleep(100000);
}
}
}
}
/*
* Open the platform-specific input device.
*/
bool EventHub::openPlatformInput(void)
{
/*
* Open platform-specific input device(s).
*/
int res;
mFDCount = 1;
mFDs = (pollfd *)calloc(1, sizeof(mFDs[0]));
mDevices = (device_t **)calloc(1, sizeof(mDevices[0]));
mFDs[0].events = POLLIN;
mFDs[0].revents = 0;
mDevices[0] = NULL;
#ifdef HAVE_INOTIFY
mFDs[0].fd = inotify_init();
res = inotify_add_watch(mFDs[0].fd, device_path, IN_DELETE | IN_CREATE);
if(res < 0) {
LOGE("could not add watch for %s, %s\n", device_path, strerror(errno));
}
#else
/*
* The code in EventHub::getEvent assumes that mFDs[0] is an inotify fd.
* We allocate space for it and set it to something invalid.
*/
mFDs[0].fd = -1;
#endif
res = scanDir(device_path);
if(res < 0) {
LOGE("scan dir failed for %s\n", device_path);
}
return true;
}
// ----------------------------------------------------------------------------
static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) {
const uint8_t* end = array + endIndex;
array += startIndex;
while (array != end) {
if (*(array++) != 0) {
return true;
}
}
return false;
}
static const int32_t GAMEPAD_KEYCODES[] = {
AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C,
AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z,
AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1,
AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2,
AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR,
AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE
};
int EventHub::openDevice(const char *deviceName) {
int version;
int fd;
struct pollfd *new_mFDs;
device_t **new_devices;
char **new_device_names;
char name[80];
char location[80];
char idstr[80];
struct input_id id;
LOGV("Opening device: %s", deviceName);
AutoMutex _l(mLock);
fd = open(deviceName, O_RDWR);
if(fd < 0) {
LOGE("could not open %s, %s\n", deviceName, strerror(errno));
return -1;
}
if(ioctl(fd, EVIOCGVERSION, &version)) {
LOGE("could not get driver version for %s, %s\n", deviceName, strerror(errno));
return -1;
}
if(ioctl(fd, EVIOCGID, &id)) {
LOGE("could not get driver id for %s, %s\n", deviceName, strerror(errno));
return -1;
}
name[sizeof(name) - 1] = '\0';
location[sizeof(location) - 1] = '\0';
idstr[sizeof(idstr) - 1] = '\0';
if(ioctl(fd, EVIOCGNAME(sizeof(name) - 1), &name) < 1) {
//fprintf(stderr, "could not get device name for %s, %s\n", deviceName, strerror(errno));
name[0] = '\0';
}
// check to see if the device is on our excluded list
List<String8>::iterator iter = mExcludedDevices.begin();
List<String8>::iterator end = mExcludedDevices.end();
for ( ; iter != end; iter++) {
const char* test = *iter;
if (strcmp(name, test) == 0) {
LOGI("ignoring event id %s driver %s\n", deviceName, test);
close(fd);
return -1;
}
}
if(ioctl(fd, EVIOCGPHYS(sizeof(location) - 1), &location) < 1) {
//fprintf(stderr, "could not get location for %s, %s\n", deviceName, strerror(errno));
location[0] = '\0';
}
if(ioctl(fd, EVIOCGUNIQ(sizeof(idstr) - 1), &idstr) < 1) {
//fprintf(stderr, "could not get idstring for %s, %s\n", deviceName, strerror(errno));
idstr[0] = '\0';
}
if (fcntl(fd, F_SETFL, O_NONBLOCK)) {
LOGE("Error %d making device file descriptor non-blocking.", errno);
close(fd);
return -1;
}
int devid = 0;
while (devid < mNumDevicesById) {
if (mDevicesById[devid].device == NULL) {
break;
}
devid++;
}
if (devid >= mNumDevicesById) {
device_ent* new_devids = (device_ent*)realloc(mDevicesById,
sizeof(mDevicesById[0]) * (devid + 1));
if (new_devids == NULL) {
LOGE("out of memory");
return -1;
}
mDevicesById = new_devids;
mNumDevicesById = devid+1;
mDevicesById[devid].device = NULL;
mDevicesById[devid].seq = 0;
}
mDevicesById[devid].seq = (mDevicesById[devid].seq+(1<<SEQ_SHIFT))&SEQ_MASK;
if (mDevicesById[devid].seq == 0) {
mDevicesById[devid].seq = 1<<SEQ_SHIFT;
}
new_mFDs = (pollfd*)realloc(mFDs, sizeof(mFDs[0]) * (mFDCount + 1));
new_devices = (device_t**)realloc(mDevices, sizeof(mDevices[0]) * (mFDCount + 1));
if (new_mFDs == NULL || new_devices == NULL) {
LOGE("out of memory");
return -1;
}
mFDs = new_mFDs;
mDevices = new_devices;
#if 0
LOGI("add device %d: %s\n", mFDCount, deviceName);
LOGI(" bus: %04x\n"
" vendor %04x\n"
" product %04x\n"
" version %04x\n",
id.bustype, id.vendor, id.product, id.version);
LOGI(" name: \"%s\"\n", name);
LOGI(" location: \"%s\"\n"
" id: \"%s\"\n", location, idstr);
LOGI(" version: %d.%d.%d\n",
version >> 16, (version >> 8) & 0xff, version & 0xff);
#endif
device_t* device = new device_t(devid|mDevicesById[devid].seq, deviceName, name);
if (device == NULL) {
LOGE("out of memory");
return -1;
}
device->fd = fd;
mFDs[mFDCount].fd = fd;
mFDs[mFDCount].events = POLLIN;
mFDs[mFDCount].revents = 0;
// Figure out the kinds of events the device reports.
uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)];
memset(key_bitmask, 0, sizeof(key_bitmask));
LOGV("Getting keys...");
if (ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(key_bitmask)), key_bitmask) >= 0) {
//LOGI("MAP\n");
//for (int i = 0; i < sizeof(key_bitmask); i++) {
// LOGI("%d: 0x%02x\n", i, key_bitmask[i]);
//}
// See if this is a keyboard. Ignore everything in the button range except for
// gamepads which are also considered keyboards.
if (containsNonZeroByte(key_bitmask, 0, sizeof_bit_array(BTN_MISC))
|| containsNonZeroByte(key_bitmask, sizeof_bit_array(BTN_GAMEPAD),
sizeof_bit_array(BTN_DIGI))
|| containsNonZeroByte(key_bitmask, sizeof_bit_array(KEY_OK),
sizeof_bit_array(KEY_MAX + 1))) {
device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
device->keyBitmask = new uint8_t[sizeof(key_bitmask)];
if (device->keyBitmask != NULL) {
memcpy(device->keyBitmask, key_bitmask, sizeof(key_bitmask));
} else {
delete device;
LOGE("out of memory allocating key bitmask");
return -1;
}
}
}
// See if this is a trackball (or mouse).
if (test_bit(BTN_MOUSE, key_bitmask)) {
uint8_t rel_bitmask[sizeof_bit_array(REL_MAX + 1)];
memset(rel_bitmask, 0, sizeof(rel_bitmask));
LOGV("Getting relative controllers...");
if (ioctl(fd, EVIOCGBIT(EV_REL, sizeof(rel_bitmask)), rel_bitmask) >= 0) {
if (test_bit(REL_X, rel_bitmask) && test_bit(REL_Y, rel_bitmask)) {
device->classes |= INPUT_DEVICE_CLASS_TRACKBALL;
}
}
}
// See if this is a touch pad.
uint8_t abs_bitmask[sizeof_bit_array(ABS_MAX + 1)];
memset(abs_bitmask, 0, sizeof(abs_bitmask));
LOGV("Getting absolute controllers...");
if (ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(abs_bitmask)), abs_bitmask) >= 0) {
// Is this a new modern multi-touch driver?
if (test_bit(ABS_MT_POSITION_X, abs_bitmask)
&& test_bit(ABS_MT_POSITION_Y, abs_bitmask)) {
device->classes |= INPUT_DEVICE_CLASS_TOUCHSCREEN | INPUT_DEVICE_CLASS_TOUCHSCREEN_MT;
// Is this an old style single-touch driver?
} else if (test_bit(BTN_TOUCH, key_bitmask)
&& test_bit(ABS_X, abs_bitmask) && test_bit(ABS_Y, abs_bitmask)) {
device->classes |= INPUT_DEVICE_CLASS_TOUCHSCREEN;
}
}
#ifdef EV_SW
// figure out the switches this device reports
uint8_t sw_bitmask[sizeof_bit_array(SW_MAX + 1)];
memset(sw_bitmask, 0, sizeof(sw_bitmask));
bool hasSwitches = false;
if (ioctl(fd, EVIOCGBIT(EV_SW, sizeof(sw_bitmask)), sw_bitmask) >= 0) {
for (int i=0; i<EV_SW; i++) {
//LOGI("Device 0x%x sw %d: has=%d", device->id, i, test_bit(i, sw_bitmask));
if (test_bit(i, sw_bitmask)) {
hasSwitches = true;
if (mSwitches[i] == 0) {
mSwitches[i] = device->id;
}
}
}
}
if (hasSwitches) {
device->classes |= INPUT_DEVICE_CLASS_SWITCH;
}
#endif
if ((device->classes & INPUT_DEVICE_CLASS_KEYBOARD) != 0) {
char tmpfn[sizeof(name)];
char keylayoutFilename[300];
// a more descriptive name
device->name = name;
// replace all the spaces with underscores
strcpy(tmpfn, name);
for (char *p = strchr(tmpfn, ' '); p && *p; p = strchr(tmpfn, ' '))
*p = '_';
// find the .kl file we need for this device
const char* root = getenv("ANDROID_ROOT");
snprintf(keylayoutFilename, sizeof(keylayoutFilename),
"%s/usr/keylayout/%s.kl", root, tmpfn);
bool defaultKeymap = false;
if (access(keylayoutFilename, R_OK)) {
snprintf(keylayoutFilename, sizeof(keylayoutFilename),
"%s/usr/keylayout/%s", root, "qwerty.kl");
defaultKeymap = true;
}
status_t status = device->layoutMap->load(keylayoutFilename);
if (status) {
LOGE("Error %d loading key layout.", status);
}
// tell the world about the devname (the descriptive name)
if (!mHaveFirstKeyboard && !defaultKeymap && strstr(name, "-keypad")) {
// the built-in keyboard has a well-known device ID of 0,
// this device better not go away.
mHaveFirstKeyboard = true;
mFirstKeyboardId = device->id;
property_set("hw.keyboards.0.devname", name);
} else {
// ensure mFirstKeyboardId is set to -something-.
if (mFirstKeyboardId == 0) {
mFirstKeyboardId = device->id;
}
}
char propName[100];
sprintf(propName, "hw.keyboards.%u.devname", device->id);
property_set(propName, name);
// 'Q' key support = cheap test of whether this is an alpha-capable kbd
if (hasKeycodeLocked(device, AKEYCODE_Q)) {
device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY;
}
// See if this device has a DPAD.
if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) &&
hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) &&
hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) &&
hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) &&
hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) {
device->classes |= INPUT_DEVICE_CLASS_DPAD;
}
// See if this device has a gamepad.
for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES); i++) {
if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) {
device->classes |= INPUT_DEVICE_CLASS_GAMEPAD;
break;
}
}
LOGI("New keyboard: device->id=0x%x devname='%s' propName='%s' keylayout='%s'\n",
device->id, name, propName, keylayoutFilename);
}
// If the device isn't recognized as something we handle, don't monitor it.
if (device->classes == 0) {
LOGV("Dropping device %s %p, id = %d\n", deviceName, device, devid);
close(fd);
delete device;
return -1;
}
LOGI("New device: path=%s name=%s id=0x%x (of 0x%x) index=%d fd=%d classes=0x%x\n",
deviceName, name, device->id, mNumDevicesById, mFDCount, fd, device->classes);
LOGV("Adding device %s %p at %d, id = %d, classes = 0x%x\n",
deviceName, device, mFDCount, devid, device->classes);
mDevicesById[devid].device = device;
device->next = mOpeningDevices;
mOpeningDevices = device;
mDevices[mFDCount] = device;
mFDCount++;
return 0;
}
bool EventHub::hasKeycodeLocked(device_t* device, int keycode) const
{
if (device->keyBitmask == NULL || device->layoutMap == NULL) {
return false;
}
Vector<int32_t> scanCodes;
device->layoutMap->findScancodes(keycode, &scanCodes);
const size_t N = scanCodes.size();
for (size_t i=0; i<N && i<=KEY_MAX; i++) {
int32_t sc = scanCodes.itemAt(i);
if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) {
return true;
}
}
return false;
}
int EventHub::closeDevice(const char *deviceName) {
AutoMutex _l(mLock);
int i;
for(i = 1; i < mFDCount; i++) {
if(strcmp(mDevices[i]->path.string(), deviceName) == 0) {
//LOGD("remove device %d: %s\n", i, deviceName);
device_t* device = mDevices[i];
LOGI("Removed device: path=%s name=%s id=0x%x (of 0x%x) index=%d fd=%d classes=0x%x\n",
device->path.string(), device->name.string(), device->id,
mNumDevicesById, mFDCount, mFDs[i].fd, device->classes);
// Clear this device's entry.
int index = (device->id&ID_MASK);
mDevicesById[index].device = NULL;
// Close the file descriptor and compact the fd array.
close(mFDs[i].fd);
int count = mFDCount - i - 1;
memmove(mDevices + i, mDevices + i + 1, sizeof(mDevices[0]) * count);
memmove(mFDs + i, mFDs + i + 1, sizeof(mFDs[0]) * count);
mFDCount--;
#ifdef EV_SW
for (int j=0; j<EV_SW; j++) {
if (mSwitches[j] == device->id) {
mSwitches[j] = 0;
}
}
#endif
device->next = mClosingDevices;
mClosingDevices = device;
if (device->id == mFirstKeyboardId) {
LOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
device->path.string(), mFirstKeyboardId);
mFirstKeyboardId = 0;
property_set("hw.keyboards.0.devname", NULL);
}
// clear the property
char propName[100];
sprintf(propName, "hw.keyboards.%u.devname", device->id);
property_set(propName, NULL);
return 0;
}
}
LOGE("remove device: %s not found\n", deviceName);
return -1;
}
int EventHub::readNotify(int nfd) {
#ifdef HAVE_INOTIFY
int res;
char devname[PATH_MAX];
char *filename;
char event_buf[512];
int event_size;
int event_pos = 0;
struct inotify_event *event;
LOGV("EventHub::readNotify nfd: %d\n", nfd);
res = read(nfd, event_buf, sizeof(event_buf));
if(res < (int)sizeof(*event)) {
if(errno == EINTR)
return 0;
LOGW("could not get event, %s\n", strerror(errno));
return 1;
}
//printf("got %d bytes of event information\n", res);
strcpy(devname, device_path);
filename = devname + strlen(devname);
*filename++ = '/';
while(res >= (int)sizeof(*event)) {
event = (struct inotify_event *)(event_buf + event_pos);
//printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : "");
if(event->len) {
strcpy(filename, event->name);
if(event->mask & IN_CREATE) {
openDevice(devname);
}
else {
closeDevice(devname);
}
}
event_size = sizeof(*event) + event->len;
res -= event_size;
event_pos += event_size;
}
#endif
return 0;
}
int EventHub::scanDir(const char *dirname)
{
char devname[PATH_MAX];
char *filename;
DIR *dir;
struct dirent *de;
dir = opendir(dirname);
if(dir == NULL)
return -1;
strcpy(devname, dirname);
filename = devname + strlen(devname);
*filename++ = '/';
while((de = readdir(dir))) {
if(de->d_name[0] == '.' &&
(de->d_name[1] == '\0' ||
(de->d_name[1] == '.' && de->d_name[2] == '\0')))
continue;
strcpy(filename, de->d_name);
openDevice(devname);
}
closedir(dir);
return 0;
}
void EventHub::dump(String8& dump) {
dump.append("Event Hub State:\n");
{ // acquire lock
AutoMutex _l(mLock);
dump.appendFormat(INDENT "HaveFirstKeyboard: %s\n", toString(mHaveFirstKeyboard));
dump.appendFormat(INDENT "FirstKeyboardId: 0x%x\n", mFirstKeyboardId);
dump.append(INDENT "Devices:\n");
for (int i = 0; i < mNumDevicesById; i++) {
const device_t* device = mDevicesById[i].device;
if (device) {
if (mFirstKeyboardId == device->id) {
dump.appendFormat(INDENT2 "0x%x: %s (aka device 0 - first keyboard)\n",
device->id, device->name.string());
} else {
dump.appendFormat(INDENT2 "0x%x: %s\n", device->id, device->name.string());
}
dump.appendFormat(INDENT3 "Classes: 0x%08x\n", device->classes);
dump.appendFormat(INDENT3 "Path: %s\n", device->path.string());
dump.appendFormat(INDENT3 "KeyLayoutFile: %s\n", device->keylayoutFilename.string());
}
}
} // release lock
}
}; // namespace android