replicant-frameworks_native/include/gui/SurfaceTexture.h
Daniel Lam 6b091c5300 Refactored ISurfaceTexture calls from SurfaceTexture into BufferQueue.
Change-Id: I514f6b802f6b49c9ae27bed37bf0b9d23da03c9a
2012-02-07 13:57:01 -08:00

226 lines
9.4 KiB
C++

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_GUI_SURFACETEXTURE_H
#define ANDROID_GUI_SURFACETEXTURE_H
#include <EGL/egl.h>
#include <EGL/eglext.h>
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#include <gui/ISurfaceTexture.h>
#include <gui/BufferQueue.h>
#include <ui/GraphicBuffer.h>
#include <utils/String8.h>
#include <utils/Vector.h>
#include <utils/threads.h>
#define ANDROID_GRAPHICS_SURFACETEXTURE_JNI_ID "mSurfaceTexture"
namespace android {
// ----------------------------------------------------------------------------
class String8;
class SurfaceTexture : public BufferQueue {
public:
// SurfaceTexture constructs a new SurfaceTexture object. tex indicates the
// name of the OpenGL ES texture to which images are to be streamed. This
// texture name cannot be changed once the SurfaceTexture is created.
// allowSynchronousMode specifies whether or not synchronous mode can be
// enabled. texTarget specifies the OpenGL ES texture target to which the
// texture will be bound in updateTexImage. useFenceSync specifies whether
// fences should be used to synchronize access to buffers if that behavior
// is enabled at compile-time.
SurfaceTexture(GLuint tex, bool allowSynchronousMode = true,
GLenum texTarget = GL_TEXTURE_EXTERNAL_OES, bool useFenceSync = true);
virtual ~SurfaceTexture();
virtual int query(int what, int* value);
// updateTexImage sets the image contents of the target texture to that of
// the most recently queued buffer.
//
// This call may only be made while the OpenGL ES context to which the
// target texture belongs is bound to the calling thread.
status_t updateTexImage();
// setBufferCountServer set the buffer count. If the client has requested
// a buffer count using setBufferCount, the server-buffer count will
// take effect once the client sets the count back to zero.
status_t setBufferCountServer(int bufferCount);
// getTransformMatrix retrieves the 4x4 texture coordinate transform matrix
// associated with the texture image set by the most recent call to
// updateTexImage.
//
// This transform matrix maps 2D homogeneous texture coordinates of the form
// (s, t, 0, 1) with s and t in the inclusive range [0, 1] to the texture
// coordinate that should be used to sample that location from the texture.
// Sampling the texture outside of the range of this transform is undefined.
//
// This transform is necessary to compensate for transforms that the stream
// content producer may implicitly apply to the content. By forcing users of
// a SurfaceTexture to apply this transform we avoid performing an extra
// copy of the data that would be needed to hide the transform from the
// user.
//
// The matrix is stored in column-major order so that it may be passed
// directly to OpenGL ES via the glLoadMatrixf or glUniformMatrix4fv
// functions.
void getTransformMatrix(float mtx[16]);
// getTimestamp retrieves the timestamp associated with the texture image
// set by the most recent call to updateTexImage.
//
// The timestamp is in nanoseconds, and is monotonically increasing. Its
// other semantics (zero point, etc) are source-dependent and should be
// documented by the source.
int64_t getTimestamp();
// setFrameAvailableListener sets the listener object that will be notified
// when a new frame becomes available.
void setFrameAvailableListener(const sp<FrameAvailableListener>& listener);
// getAllocator retrieves the binder object that must be referenced as long
// as the GraphicBuffers dequeued from this SurfaceTexture are referenced.
// Holding this binder reference prevents SurfaceFlinger from freeing the
// buffers before the client is done with them.
sp<IBinder> getAllocator();
// setDefaultBufferSize is used to set the size of buffers returned by
// requestBuffers when a with and height of zero is requested.
// A call to setDefaultBufferSize() may trigger requestBuffers() to
// be called from the client.
// The width and height parameters must be no greater than the minimum of
// GL_MAX_VIEWPORT_DIMS and GL_MAX_TEXTURE_SIZE (see: glGetIntegerv).
// An error due to invalid dimensions might not be reported until
// updateTexImage() is called.
status_t setDefaultBufferSize(uint32_t width, uint32_t height);
// getCurrentBuffer returns the buffer associated with the current image.
sp<GraphicBuffer> getCurrentBuffer() const;
// getCurrentTextureTarget returns the texture target of the current
// texture as returned by updateTexImage().
GLenum getCurrentTextureTarget() const;
// getCurrentCrop returns the cropping rectangle of the current buffer
Rect getCurrentCrop() const;
// getCurrentTransform returns the transform of the current buffer
uint32_t getCurrentTransform() const;
// getCurrentScalingMode returns the scaling mode of the current buffer
uint32_t getCurrentScalingMode() const;
// isSynchronousMode returns whether the SurfaceTexture is currently in
// synchronous mode.
bool isSynchronousMode() const;
// abandon frees all the buffers and puts the SurfaceTexture into the
// 'abandoned' state. Once put in this state the SurfaceTexture can never
// leave it. When in the 'abandoned' state, all methods of the
// ISurfaceTexture interface will fail with the NO_INIT error.
//
// Note that while calling this method causes all the buffers to be freed
// from the perspective of the the SurfaceTexture, if there are additional
// references on the buffers (e.g. if a buffer is referenced by a client or
// by OpenGL ES as a texture) then those buffer will remain allocated.
void abandon();
// set the name of the SurfaceTexture that will be used to identify it in
// log messages.
void setName(const String8& name);
// dump our state in a String
void dump(String8& result) const;
void dump(String8& result, const char* prefix, char* buffer, size_t SIZE) const;
protected:
static bool isExternalFormat(uint32_t format);
private:
// createImage creates a new EGLImage from a GraphicBuffer.
EGLImageKHR createImage(EGLDisplay dpy,
const sp<GraphicBuffer>& graphicBuffer);
// computeCurrentTransformMatrix computes the transform matrix for the
// current texture. It uses mCurrentTransform and the current GraphicBuffer
// to compute this matrix and stores it in mCurrentTransformMatrix.
void computeCurrentTransformMatrix();
// mCurrentTextureBuf is the graphic buffer of the current texture. It's
// possible that this buffer is not associated with any buffer slot, so we
// must track it separately in order to support the getCurrentBuffer method.
sp<GraphicBuffer> mCurrentTextureBuf;
// mCurrentCrop is the crop rectangle that applies to the current texture.
// It gets set each time updateTexImage is called.
Rect mCurrentCrop;
// mCurrentTransform is the transform identifier for the current texture. It
// gets set each time updateTexImage is called.
uint32_t mCurrentTransform;
// mCurrentScalingMode is the scaling mode for the current texture. It gets
// set to each time updateTexImage is called.
uint32_t mCurrentScalingMode;
// mCurrentTransformMatrix is the transform matrix for the current texture.
// It gets computed by computeTransformMatrix each time updateTexImage is
// called.
float mCurrentTransformMatrix[16];
// mCurrentTimestamp is the timestamp for the current texture. It
// gets set each time updateTexImage is called.
int64_t mCurrentTimestamp;
// mTexName is the name of the OpenGL texture to which streamed images will
// be bound when updateTexImage is called. It is set at construction time
// changed with a call to setTexName.
const GLuint mTexName;
// mUseFenceSync indicates whether creation of the EGL_KHR_fence_sync
// extension should be used to prevent buffers from being dequeued before
// it's safe for them to be written. It gets set at construction time and
// never changes.
const bool mUseFenceSync;
// mTexTarget is the GL texture target with which the GL texture object is
// associated. It is set in the constructor and never changed. It is
// almost always GL_TEXTURE_EXTERNAL_OES except for one use case in Android
// Browser. In that case it is set to GL_TEXTURE_2D to allow
// glCopyTexSubImage to read from the texture. This is a hack to work
// around a GL driver limitation on the number of FBO attachments, which the
// browser's tile cache exceeds.
const GLenum mTexTarget;
};
// ----------------------------------------------------------------------------
}; // namespace android
#endif // ANDROID_GUI_SURFACETEXTURE_H