replicant-frameworks_native/opengl/tests/hwc/hwcTestLib.cpp
Andreas Gampe fa59862430 OpenGL tests: Fix unused variables
For build-system CFLAGS clean-up, fix unused variables.

Change-Id: I1863418f7467412d7698dd0ce0c8e40d1bd0348e
2014-11-24 20:02:52 -08:00

1016 lines
34 KiB
C++

/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
/*
* Hardware Composer Test Library
* Utility library functions for use by the Hardware Composer test cases
*/
#include <arpa/inet.h> // For ntohl() and htonl()
#include <cmath>
#include <sstream>
#include <string>
#include "hwcTestLib.h"
#include "EGLUtils.h"
// Defines
#define NUMA(a) (sizeof(a) / sizeof((a)[0]))
// Function Prototypes
static void printGLString(const char *name, GLenum s);
static void checkEglError(const char* op, EGLBoolean returnVal = EGL_TRUE);
static void printEGLConfiguration(EGLDisplay dpy, EGLConfig config);
using namespace std;
using namespace android;
#define BITSPERBYTE 8 // TODO: Obtain from <values.h>, once
// it has been added
// Initialize Display
void hwcTestInitDisplay(bool verbose, EGLDisplay *dpy, EGLSurface *surface,
EGLint *width, EGLint *height)
{
static EGLContext context;
EGLBoolean returnValue;
EGLConfig myConfig = {0};
EGLint contextAttribs[] = { EGL_CONTEXT_CLIENT_VERSION, 2, EGL_NONE };
EGLint sConfigAttribs[] = {
EGL_SURFACE_TYPE, EGL_WINDOW_BIT,
EGL_RENDERABLE_TYPE, EGL_OPENGL_ES2_BIT,
EGL_NONE };
EGLint majorVersion, minorVersion;
checkEglError("<init>");
*dpy = eglGetDisplay(EGL_DEFAULT_DISPLAY);
checkEglError("eglGetDisplay");
if (*dpy == EGL_NO_DISPLAY) {
testPrintE("eglGetDisplay returned EGL_NO_DISPLAY");
exit(70);
}
returnValue = eglInitialize(*dpy, &majorVersion, &minorVersion);
checkEglError("eglInitialize", returnValue);
if (verbose) {
testPrintI("EGL version %d.%d", majorVersion, minorVersion);
}
if (returnValue != EGL_TRUE) {
testPrintE("eglInitialize failed");
exit(71);
}
// The tests want to stop the framework and play with the hardware
// composer, which means it doesn't make sense to use WindowSurface
// here. android_createDisplaySurface() is going away, so just
// politely fail here.
EGLNativeWindowType window = NULL; //android_createDisplaySurface();
if (window == NULL) {
testPrintE("android_createDisplaySurface failed");
exit(72);
}
returnValue = EGLUtils::selectConfigForNativeWindow(*dpy,
sConfigAttribs, window, &myConfig);
if (returnValue) {
testPrintE("EGLUtils::selectConfigForNativeWindow() returned %d",
returnValue);
exit(73);
}
checkEglError("EGLUtils::selectConfigForNativeWindow");
if (verbose) {
testPrintI("Chose this configuration:");
printEGLConfiguration(*dpy, myConfig);
}
*surface = eglCreateWindowSurface(*dpy, myConfig, window, NULL);
checkEglError("eglCreateWindowSurface");
if (*surface == EGL_NO_SURFACE) {
testPrintE("gelCreateWindowSurface failed.");
exit(74);
}
context = eglCreateContext(*dpy, myConfig, EGL_NO_CONTEXT, contextAttribs);
checkEglError("eglCreateContext");
if (context == EGL_NO_CONTEXT) {
testPrintE("eglCreateContext failed");
exit(75);
}
returnValue = eglMakeCurrent(*dpy, *surface, *surface, context);
checkEglError("eglMakeCurrent", returnValue);
if (returnValue != EGL_TRUE) {
testPrintE("eglMakeCurrent failed");
exit(76);
}
eglQuerySurface(*dpy, *surface, EGL_WIDTH, width);
checkEglError("eglQuerySurface");
eglQuerySurface(*dpy, *surface, EGL_HEIGHT, height);
checkEglError("eglQuerySurface");
if (verbose) {
testPrintI("Window dimensions: %d x %d", *width, *height);
printGLString("Version", GL_VERSION);
printGLString("Vendor", GL_VENDOR);
printGLString("Renderer", GL_RENDERER);
printGLString("Extensions", GL_EXTENSIONS);
}
}
// Open Hardware Composer Device
void hwcTestOpenHwc(hwc_composer_device_1_t **hwcDevicePtr)
{
int rv;
hw_module_t const *hwcModule;
if ((rv = hw_get_module(HWC_HARDWARE_MODULE_ID, &hwcModule)) != 0) {
testPrintE("hw_get_module failed, rv: %i", rv);
errno = -rv;
perror(NULL);
exit(77);
}
if ((rv = hwc_open_1(hwcModule, hwcDevicePtr)) != 0) {
testPrintE("hwc_open failed, rv: %i", rv);
errno = -rv;
perror(NULL);
exit(78);
}
}
// Color fraction class to string conversion
ColorFract::operator string()
{
ostringstream out;
out << '[' << this->c1() << ", "
<< this->c2() << ", "
<< this->c3() << ']';
return out.str();
}
// Dimension class to string conversion
HwcTestDim::operator string()
{
ostringstream out;
out << '[' << this->width() << ", "
<< this->height() << ']';
return out.str();
}
// Dimension class to hwc_rect conversion
HwcTestDim::operator hwc_rect() const
{
hwc_rect rect;
rect.left = rect.top = 0;
rect.right = this->_w;
rect.bottom = this->_h;
return rect;
}
// Hardware Composer rectangle to string conversion
string hwcTestRect2str(const struct hwc_rect& rect)
{
ostringstream out;
out << '[';
out << rect.left << ", ";
out << rect.top << ", ";
out << rect.right << ", ";
out << rect.bottom;
out << ']';
return out.str();
}
// Parse HWC rectangle description of form [left, top, right, bottom]
struct hwc_rect hwcTestParseHwcRect(istringstream& in, bool& error)
{
struct hwc_rect rect;
char chStart, ch;
// Defensively specify that an error occurred. Will clear
// error flag if all of parsing succeeds.
error = true;
// First character should be a [ or <
in >> chStart;
if (!in || ((chStart != '<') && (chStart != '['))) { return rect; }
// Left
in >> rect.left;
if (!in) { return rect; }
in >> ch;
if (!in || (ch != ',')) { return rect; }
// Top
in >> rect.top;
if (!in) { return rect; }
in >> ch;
if (!in || (ch != ',')) { return rect; }
// Right
in >> rect.right;
if (!in) { return rect; }
in >> ch;
if (!in || (ch != ',')) { return rect; }
// Bottom
in >> rect.bottom;
if (!in) { return rect; }
// Closing > or ]
in >> ch;
if (!in) { return rect; }
if (((chStart == '<') && (ch != '>'))
|| ((chStart == '[') && (ch != ']'))) { return rect; }
// Validate right and bottom are greater than left and top
if ((rect.right <= rect.left) || (rect.bottom <= rect.top)) { return rect; }
// Made It, clear error indicator
error = false;
return rect;
}
// Parse dimension of form [width, height]
HwcTestDim hwcTestParseDim(istringstream& in, bool& error)
{
HwcTestDim dim;
char chStart, ch;
uint32_t val;
// Defensively specify that an error occurred. Will clear
// error flag if all of parsing succeeds.
error = true;
// First character should be a [ or <
in >> chStart;
if (!in || ((chStart != '<') && (chStart != '['))) { return dim; }
// Width
in >> val;
if (!in) { return dim; }
dim.setWidth(val);
in >> ch;
if (!in || (ch != ',')) { return dim; }
// Height
in >> val;
if (!in) { return dim; }
dim.setHeight(val);
// Closing > or ]
in >> ch;
if (!in) { return dim; }
if (((chStart == '<') && (ch != '>'))
|| ((chStart == '[') && (ch != ']'))) { return dim; }
// Validate width and height greater than 0
if ((dim.width() <= 0) || (dim.height() <= 0)) { return dim; }
// Made It, clear error indicator
error = false;
return dim;
}
// Parse fractional color of form [0.##, 0.##, 0.##]
// Fractional values can be from 0.0 to 1.0 inclusive. Note, integer
// values of 0.0 and 1.0, which are non-fractional, are considered valid.
// They are an exception, all other valid inputs are fractions.
ColorFract hwcTestParseColor(istringstream& in, bool& error)
{
ColorFract color;
char chStart, ch;
float c1, c2, c3;
// Defensively specify that an error occurred. Will clear
// error flag if all of parsing succeeds.
error = true;
// First character should be a [ or <
in >> chStart;
if (!in || ((chStart != '<') && (chStart != '['))) { return color; }
// 1st Component
in >> c1;
if (!in) { return color; }
if ((c1 < 0.0) || (c1 > 1.0)) { return color; }
in >> ch;
if (!in || (ch != ',')) { return color; }
// 2nd Component
in >> c2;
if (!in) { return color; }
if ((c2 < 0.0) || (c2 > 1.0)) { return color; }
in >> ch;
if (!in || (ch != ',')) { return color; }
// 3rd Component
in >> c3;
if (!in) { return color; }
if ((c3 < 0.0) || (c3 > 1.0)) { return color; }
// Closing > or ]
in >> ch;
if (!in) { return color; }
if (((chStart == '<') && (ch != '>'))
|| ((chStart == '[') && (ch != ']'))) { return color; }
// Are all the components fractional
if ((c1 < 0.0) || (c1 > 1.0)
|| (c2 < 0.0) || (c2 > 1.0)
|| (c3 < 0.0) || (c3 > 1.0)) { return color; }
// Made It, clear error indicator
error = false;
return ColorFract(c1, c2, c3);
}
// Look up and return pointer to structure with the characteristics
// of the graphic format named by the desc parameter. Search failure
// indicated by the return of NULL.
const struct hwcTestGraphicFormat *hwcTestGraphicFormatLookup(const char *desc)
{
for (unsigned int n1 = 0; n1 < NUMA(hwcTestGraphicFormat); n1++) {
if (string(desc) == string(hwcTestGraphicFormat[n1].desc)) {
return &hwcTestGraphicFormat[n1];
}
}
return NULL;
}
// Look up and return pointer to structure with the characteristics
// of the graphic format specified by the id parameter. Search failure
// indicated by the return of NULL.
const struct hwcTestGraphicFormat *hwcTestGraphicFormatLookup(uint32_t id)
{
for (unsigned int n1 = 0; n1 < NUMA(hwcTestGraphicFormat); n1++) {
if (id == hwcTestGraphicFormat[n1].format) {
return &hwcTestGraphicFormat[n1];
}
}
return NULL;
}
// Given the integer ID of a graphic format, return a pointer to
// a string that describes the format.
const char *hwcTestGraphicFormat2str(uint32_t format)
{
const static char *unknown = "unknown";
for (unsigned int n1 = 0; n1 < NUMA(hwcTestGraphicFormat); n1++) {
if (format == hwcTestGraphicFormat[n1].format) {
return hwcTestGraphicFormat[n1].desc;
}
}
return unknown;
}
/*
* hwcTestCreateLayerList
* Dynamically creates layer list with numLayers worth
* of hwLayers entries.
*/
hwc_display_contents_1_t *hwcTestCreateLayerList(size_t numLayers)
{
hwc_display_contents_1_t *list;
size_t size = sizeof(hwc_display_contents_1_t) + numLayers * sizeof(hwc_layer_1_t);
if ((list = (hwc_display_contents_1_t *) calloc(1, size)) == NULL) {
return NULL;
}
list->flags = HWC_GEOMETRY_CHANGED;
list->numHwLayers = numLayers;
return list;
}
/*
* hwcTestFreeLayerList
* Frees memory previous allocated via hwcTestCreateLayerList().
*/
void hwcTestFreeLayerList(hwc_display_contents_1_t *list)
{
free(list);
}
// Display the settings of the layer list pointed to by list
void hwcTestDisplayList(hwc_display_contents_1_t *list)
{
testPrintI(" flags: %#x%s", list->flags,
(list->flags & HWC_GEOMETRY_CHANGED) ? " GEOMETRY_CHANGED" : "");
testPrintI(" numHwLayers: %u", list->numHwLayers);
for (unsigned int layer = 0; layer < list->numHwLayers; layer++) {
testPrintI(" layer %u compositionType: %#x%s%s", layer,
list->hwLayers[layer].compositionType,
(list->hwLayers[layer].compositionType == HWC_FRAMEBUFFER)
? " FRAMEBUFFER" : "",
(list->hwLayers[layer].compositionType == HWC_OVERLAY)
? " OVERLAY" : "");
testPrintI(" hints: %#x",
list->hwLayers[layer].hints,
(list->hwLayers[layer].hints & HWC_HINT_TRIPLE_BUFFER)
? " TRIPLE_BUFFER" : "",
(list->hwLayers[layer].hints & HWC_HINT_CLEAR_FB)
? " CLEAR_FB" : "");
testPrintI(" flags: %#x%s",
list->hwLayers[layer].flags,
(list->hwLayers[layer].flags & HWC_SKIP_LAYER)
? " SKIP_LAYER" : "");
testPrintI(" handle: %p",
list->hwLayers[layer].handle);
// Intentionally skipped display of ROT_180 & ROT_270,
// which are formed from combinations of the other flags.
testPrintI(" transform: %#x%s%s%s",
list->hwLayers[layer].transform,
(list->hwLayers[layer].transform & HWC_TRANSFORM_FLIP_H)
? " FLIP_H" : "",
(list->hwLayers[layer].transform & HWC_TRANSFORM_FLIP_V)
? " FLIP_V" : "",
(list->hwLayers[layer].transform & HWC_TRANSFORM_ROT_90)
? " ROT_90" : "");
testPrintI(" blending: %#x%s%s%s",
list->hwLayers[layer].blending,
(list->hwLayers[layer].blending == HWC_BLENDING_NONE)
? " NONE" : "",
(list->hwLayers[layer].blending == HWC_BLENDING_PREMULT)
? " PREMULT" : "",
(list->hwLayers[layer].blending == HWC_BLENDING_COVERAGE)
? " COVERAGE" : "");
testPrintI(" sourceCrop: %s",
hwcTestRect2str(list->hwLayers[layer].sourceCrop).c_str());
testPrintI(" displayFrame: %s",
hwcTestRect2str(list->hwLayers[layer].displayFrame).c_str());
testPrintI(" scaleFactor: [%f, %f]",
(float) (list->hwLayers[layer].sourceCrop.right
- list->hwLayers[layer].sourceCrop.left)
/ (float) (list->hwLayers[layer].displayFrame.right
- list->hwLayers[layer].displayFrame.left),
(float) (list->hwLayers[layer].sourceCrop.bottom
- list->hwLayers[layer].sourceCrop.top)
/ (float) (list->hwLayers[layer].displayFrame.bottom
- list->hwLayers[layer].displayFrame.top));
}
}
/*
* Display List Prepare Modifiable
*
* Displays the portions of a list that are meant to be modified by
* a prepare call.
*/
void hwcTestDisplayListPrepareModifiable(hwc_display_contents_1_t *list)
{
uint32_t numOverlays = 0;
for (unsigned int layer = 0; layer < list->numHwLayers; layer++) {
if (list->hwLayers[layer].compositionType == HWC_OVERLAY) {
numOverlays++;
}
testPrintI(" layer %u compositionType: %#x%s%s", layer,
list->hwLayers[layer].compositionType,
(list->hwLayers[layer].compositionType == HWC_FRAMEBUFFER)
? " FRAMEBUFFER" : "",
(list->hwLayers[layer].compositionType == HWC_OVERLAY)
? " OVERLAY" : "");
testPrintI(" hints: %#x%s%s",
list->hwLayers[layer].hints,
(list->hwLayers[layer].hints & HWC_HINT_TRIPLE_BUFFER)
? " TRIPLE_BUFFER" : "",
(list->hwLayers[layer].hints & HWC_HINT_CLEAR_FB)
? " CLEAR_FB" : "");
}
testPrintI(" numOverlays: %u", numOverlays);
}
/*
* Display List Handles
*
* Displays the handles of all the graphic buffers in the list.
*/
void hwcTestDisplayListHandles(hwc_display_contents_1_t *list)
{
const unsigned int maxLayersPerLine = 6;
ostringstream str(" layers:");
for (unsigned int layer = 0; layer < list->numHwLayers; layer++) {
str << ' ' << list->hwLayers[layer].handle;
if (((layer % maxLayersPerLine) == (maxLayersPerLine - 1))
&& (layer != list->numHwLayers - 1)) {
testPrintI("%s", str.str().c_str());
str.str(" ");
}
}
testPrintI("%s", str.str().c_str());
}
// Returns a uint32_t that contains a format specific representation of a
// single pixel of the given color and alpha values.
uint32_t hwcTestColor2Pixel(uint32_t format, ColorFract color, float alpha)
{
const struct attrib {
uint32_t format;
bool hostByteOrder;
size_t bytes;
size_t c1Offset;
size_t c1Size;
size_t c2Offset;
size_t c2Size;
size_t c3Offset;
size_t c3Size;
size_t aOffset;
size_t aSize;
} attributes[] = {
{HAL_PIXEL_FORMAT_RGBA_8888, false, 4, 0, 8, 8, 8, 16, 8, 24, 8},
{HAL_PIXEL_FORMAT_RGBX_8888, false, 4, 0, 8, 8, 8, 16, 8, 0, 0},
{HAL_PIXEL_FORMAT_RGB_888, false, 3, 0, 8, 8, 8, 16, 8, 0, 0},
{HAL_PIXEL_FORMAT_RGB_565, true, 2, 0, 5, 5, 6, 11, 5, 0, 0},
{HAL_PIXEL_FORMAT_BGRA_8888, false, 4, 16, 8, 8, 8, 0, 8, 24, 8},
{HAL_PIXEL_FORMAT_YV12, true, 3, 16, 8, 8, 8, 0, 8, 0, 0},
};
const struct attrib *attrib;
for (attrib = attributes; attrib < attributes + NUMA(attributes);
attrib++) {
if (attrib->format == format) { break; }
}
if (attrib >= attributes + NUMA(attributes)) {
testPrintE("colorFract2Pixel unsupported format of: %u", format);
exit(80);
}
uint32_t pixel;
pixel = htonl((uint32_t) round((((1 << attrib->c1Size) - 1) * color.c1()))
<< ((sizeof(pixel) * BITSPERBYTE)
- (attrib->c1Offset + attrib->c1Size)));
pixel |= htonl((uint32_t) round((((1 << attrib->c2Size) - 1) * color.c2()))
<< ((sizeof(pixel) * BITSPERBYTE)
- (attrib->c2Offset + attrib->c2Size)));
pixel |= htonl((uint32_t) round((((1 << attrib->c3Size) - 1) * color.c3()))
<< ((sizeof(pixel) * BITSPERBYTE)
- (attrib->c3Offset + attrib->c3Size)));
if (attrib->aSize) {
pixel |= htonl((uint32_t) round((((1 << attrib->aSize) - 1) * alpha))
<< ((sizeof(pixel) * BITSPERBYTE)
- (attrib->aOffset + attrib->aSize)));
}
if (attrib->hostByteOrder) {
pixel = ntohl(pixel);
pixel >>= sizeof(pixel) * BITSPERBYTE - attrib->bytes * BITSPERBYTE;
}
return pixel;
}
// Sets the pixel at the given x and y coordinates to the color and alpha
// value given by pixel. The contents of pixel is format specific. It's
// value should come from a call to hwcTestColor2Pixel().
void hwcTestSetPixel(GraphicBuffer *gBuf, unsigned char *buf,
uint32_t x, uint32_t y, uint32_t pixel)
{
const struct attrib {
int format;
size_t bytes;
} attributes[] = {
{HAL_PIXEL_FORMAT_RGBA_8888, 4},
{HAL_PIXEL_FORMAT_RGBX_8888, 4},
{HAL_PIXEL_FORMAT_RGB_888, 3},
{HAL_PIXEL_FORMAT_RGB_565, 2},
{HAL_PIXEL_FORMAT_BGRA_8888, 4},
};
if (gBuf->getPixelFormat() == HAL_PIXEL_FORMAT_YV12) {
uint32_t yPlaneOffset, uPlaneOffset, vPlaneOffset;
uint32_t yPlaneStride = gBuf->getStride();
uint32_t uPlaneStride = ((gBuf->getStride() / 2) + 0xf) & ~0xf;
uint32_t vPlaneStride = uPlaneStride;
yPlaneOffset = 0;
vPlaneOffset = yPlaneOffset + yPlaneStride * gBuf->getHeight();
uPlaneOffset = vPlaneOffset
+ vPlaneStride * (gBuf->getHeight() / 2);
*(buf + yPlaneOffset + y * yPlaneStride + x) = pixel & 0xff;
*(buf + uPlaneOffset + (y / 2) * uPlaneStride + (x / 2))
= (pixel & 0xff00) >> 8;
*(buf + vPlaneOffset + (y / 2) * vPlaneStride + (x / 2))
= (pixel & 0xff0000) >> 16;
return;
}
const struct attrib *attrib;
for (attrib = attributes; attrib < attributes + NUMA(attributes);
attrib++) {
if (attrib->format == gBuf->getPixelFormat()) { break; }
}
if (attrib >= attributes + NUMA(attributes)) {
testPrintE("setPixel unsupported format of: %u",
gBuf->getPixelFormat());
exit(90);
}
memmove(buf + ((gBuf->getStride() * attrib->bytes) * y)
+ (attrib->bytes * x), &pixel, attrib->bytes);
}
// Fill a given graphic buffer with a uniform color and alpha
void hwcTestFillColor(GraphicBuffer *gBuf, ColorFract color, float alpha)
{
unsigned char* buf = NULL;
status_t err;
uint32_t pixel;
pixel = hwcTestColor2Pixel(gBuf->getPixelFormat(), color, alpha);
err = gBuf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&buf));
if (err != 0) {
testPrintE("hwcTestFillColor lock failed: %d", err);
exit(100);
}
for (unsigned int x = 0; x < gBuf->getStride(); x++) {
for (unsigned int y = 0; y < gBuf->getHeight(); y++) {
hwcTestSetPixel(gBuf, buf, x, y, (x < gBuf->getWidth())
? pixel : testRand());
}
}
err = gBuf->unlock();
if (err != 0) {
testPrintE("hwcTestFillColor unlock failed: %d", err);
exit(101);
}
}
// Fill the given buffer with a horizontal blend of colors, with the left
// side color given by startColor and the right side color given by
// endColor. The startColor and endColor values are specified in the format
// given by colorFormat, which might be different from the format of the
// graphic buffer. When different, a color conversion is done when possible
// to the graphic format of the graphic buffer. A color of black is
// produced for cases where the conversion is impossible (e.g. out of gamut
// values).
void hwcTestFillColorHBlend(GraphicBuffer *gBuf, uint32_t colorFormat,
ColorFract startColor, ColorFract endColor)
{
status_t err;
unsigned char* buf = NULL;
const uint32_t width = gBuf->getWidth();
const uint32_t height = gBuf->getHeight();
const uint32_t stride = gBuf->getStride();
err = gBuf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&buf));
if (err != 0) {
testPrintE("hwcTestFillColorHBlend lock failed: %d", err);
exit(110);
}
for (unsigned int x = 0; x < stride; x++) {
uint32_t pixel;
if (x < width) {
ColorFract color(startColor.c1() + (endColor.c1() - startColor.c1())
* ((float) x / (float) (width - 1)),
startColor.c2() + (endColor.c2() - startColor.c2())
* ((float) x / (float) (width - 1)),
startColor.c3() + (endColor.c3() - startColor.c3())
* ((float) x / (float) (width - 1)));
// When formats differ, convert colors.
// Important to not convert when formats are the same, since
// out of gamut colors are always converted to black.
if (colorFormat != (uint32_t) gBuf->getPixelFormat()) {
hwcTestColorConvert(colorFormat, gBuf->getPixelFormat(), color);
}
pixel = hwcTestColor2Pixel(gBuf->getPixelFormat(), color, 1.0);
} else {
// Fill pad with random values
pixel = testRand();
}
for (unsigned int y = 0; y < height; y++) {
hwcTestSetPixel(gBuf, buf, x, y, pixel);
}
}
err = gBuf->unlock();
if (err != 0) {
testPrintE("hwcTestFillColorHBlend unlock failed: %d", err);
exit(111);
}
}
/*
* When possible, converts color specified as a full range value in
* the fromFormat, into an equivalent full range color in the toFormat.
* When conversion is impossible (e.g. out of gamut color) a color
* or black in the full range output format is produced. The input
* color is given as a fractional color in the parameter named color.
* The produced color is written over the same parameter used to
* provide the input color.
*
* Each graphic format has 3 color components and each of these
* components has both a full and in gamut range. This function uses
* a table that provides the full and in gamut ranges of each of the
* supported graphic formats. The full range is given by members named
* c[123]Min to c[123]Max, while the in gamut range is given by members
* named c[123]Low to c[123]High. In most cases the full and in gamut
* ranges are equivalent. This occurs when the c[123]Min == c[123]Low and
* c[123]High == c[123]Max.
*
* The input and produced colors are both specified as a fractional amount
* of the full range. The diagram below provides an overview of the
* conversion process. The main steps are:
*
* 1. Produce black if the input color is out of gamut.
*
* 2. Convert the in gamut color into the fraction of the fromFromat
* in gamut range.
*
* 3. Convert from the fraction of the in gamut from format range to
* the fraction of the in gamut to format range. Produce black
* if an equivalent color does not exists.
*
* 4. Covert from the fraction of the in gamut to format to the
* fraction of the full range to format.
*
* From Format To Format
* max high high max
* ----+ +-----------+
* high \ / \ high
* ------\-------------+ +-------->
* \
* \ +--- black --+
* \ / \
* \ / +-->
* low \ / low
* -------- ---+-- black --+
* min low low min
* ^ ^ ^ ^ ^
* | | | | |
* | | | | +-- fraction of full range
* | | | +-- fraction of valid range
* | | +-- fromFormat to toFormat color conversion
* | +-- fraction of valid range
* +-- fraction of full range
*/
void hwcTestColorConvert(uint32_t fromFormat, uint32_t toFormat,
ColorFract& color)
{
const struct attrib {
uint32_t format;
bool rgb;
bool yuv;
int c1Min, c1Low, c1High, c1Max;
int c2Min, c2Low, c2High, c2Max;
int c3Min, c3Low, c3High, c3Max;
} attributes[] = {
{HAL_PIXEL_FORMAT_RGBA_8888, true, false,
0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255},
{HAL_PIXEL_FORMAT_RGBX_8888, true, false,
0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255},
{HAL_PIXEL_FORMAT_RGB_888, true, false,
0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255},
{HAL_PIXEL_FORMAT_RGB_565, true, false,
0, 0, 31, 31, 0, 0, 63, 63, 0, 0, 31, 31},
{HAL_PIXEL_FORMAT_BGRA_8888, true, false,
0, 0, 255, 255, 0, 0, 255, 255, 0, 0, 255, 255},
{HAL_PIXEL_FORMAT_YV12, false, true,
0, 16, 235, 255, 0, 16, 240, 255, 0, 16, 240, 255},
};
const struct attrib *fromAttrib;
for (fromAttrib = attributes; fromAttrib < attributes + NUMA(attributes);
fromAttrib++) {
if (fromAttrib->format == fromFormat) { break; }
}
if (fromAttrib >= attributes + NUMA(attributes)) {
testPrintE("hwcTestColorConvert unsupported from format of: %u",
fromFormat);
exit(120);
}
const struct attrib *toAttrib;
for (toAttrib = attributes; toAttrib < attributes + NUMA(attributes);
toAttrib++) {
if (toAttrib->format == toFormat) { break; }
}
if (toAttrib >= attributes + NUMA(attributes)) {
testPrintE("hwcTestColorConvert unsupported to format of: %u",
toFormat);
exit(121);
}
// Produce black if any of the from components are outside the
// valid color range
float c1Val = fromAttrib->c1Min
+ ((float) (fromAttrib->c1Max - fromAttrib->c1Min) * color.c1());
float c2Val = fromAttrib->c2Min
+ ((float) (fromAttrib->c2Max - fromAttrib->c2Min) * color.c2());
float c3Val = fromAttrib->c3Min
+ ((float) (fromAttrib->c3Max - fromAttrib->c3Min) * color.c3());
if ((c1Val < fromAttrib->c1Low) || (c1Val > fromAttrib->c1High)
|| (c2Val < fromAttrib->c2Low) || (c2Val > fromAttrib->c2High)
|| (c3Val < fromAttrib->c3Low) || (c3Val > fromAttrib->c3High)) {
// Return black
// Will use representation of black from RGBA8888 graphic format
// and recursively convert it to the requested graphic format.
color = ColorFract(0.0, 0.0, 0.0);
hwcTestColorConvert(HAL_PIXEL_FORMAT_RGBA_8888, toFormat, color);
return;
}
// Within from format, convert from fraction of full range
// to fraction of valid range
color = ColorFract((c1Val - fromAttrib->c1Low)
/ (fromAttrib->c1High - fromAttrib->c1Low),
(c2Val - fromAttrib->c2Low)
/ (fromAttrib->c2High - fromAttrib->c2Low),
(c3Val - fromAttrib->c3Low)
/ (fromAttrib->c3High - fromAttrib->c3Low));
// If needed perform RGB to YUV conversion
float wr = 0.2126, wg = 0.7152, wb = 0.0722; // ITU709 recommended constants
if (fromAttrib->rgb && toAttrib->yuv) {
float r = color.c1(), g = color.c2(), b = color.c3();
float y = wr * r + wg * g + wb * b;
float u = 0.5 * ((b - y) / (1.0 - wb)) + 0.5;
float v = 0.5 * ((r - y) / (1.0 - wr)) + 0.5;
// Produce black if color is outside the YUV gamut
if ((y < 0.0) || (y > 1.0)
|| (u < 0.0) || (u > 1.0)
|| (v < 0.0) || (v > 1.0)) {
y = 0.0;
u = v = 0.5;
}
color = ColorFract(y, u, v);
}
// If needed perform YUV to RGB conversion
// Equations determined from the ITU709 equations for RGB to YUV
// conversion, plus the following algebra:
//
// u = 0.5 * ((b - y) / (1.0 - wb)) + 0.5
// 0.5 * ((b - y) / (1.0 - wb)) = u - 0.5
// (b - y) / (1.0 - wb) = 2 * (u - 0.5)
// b - y = 2 * (u - 0.5) * (1.0 - wb)
// b = 2 * (u - 0.5) * (1.0 - wb) + y
//
// v = 0.5 * ((r -y) / (1.0 - wr)) + 0.5
// 0.5 * ((r - y) / (1.0 - wr)) = v - 0.5
// (r - y) / (1.0 - wr) = 2 * (v - 0.5)
// r - y = 2 * (v - 0.5) * (1.0 - wr)
// r = 2 * (v - 0.5) * (1.0 - wr) + y
//
// y = wr * r + wg * g + wb * b
// wr * r + wg * g + wb * b = y
// wg * g = y - wr * r - wb * b
// g = (y - wr * r - wb * b) / wg
if (fromAttrib->yuv && toAttrib->rgb) {
float y = color.c1(), u = color.c2(), v = color.c3();
float r = 2.0 * (v - 0.5) * (1.0 - wr) + y;
float b = 2.0 * (u - 0.5) * (1.0 - wb) + y;
float g = (y - wr * r - wb * b) / wg;
// Produce black if color is outside the RGB gamut
if ((r < 0.0) || (r > 1.0)
|| (g < 0.0) || (g > 1.0)
|| (b < 0.0) || (b > 1.0)) {
r = g = b = 0.0;
}
color = ColorFract(r, g, b);
}
// Within to format, convert from fraction of valid range
// to fraction of full range
c1Val = (toAttrib->c1Low
+ (float) (toAttrib->c1High - toAttrib->c1Low) * color.c1());
c2Val = (toAttrib->c1Low
+ (float) (toAttrib->c2High - toAttrib->c2Low) * color.c2());
c3Val = (toAttrib->c1Low
+ (float) (toAttrib->c3High - toAttrib->c3Low) * color.c3());
color = ColorFract((float) (c1Val - toAttrib->c1Min)
/ (float) (toAttrib->c1Max - toAttrib->c1Min),
(float) (c2Val - toAttrib->c2Min)
/ (float) (toAttrib->c2Max - toAttrib->c2Min),
(float) (c3Val - toAttrib->c3Min)
/ (float) (toAttrib->c3Max - toAttrib->c3Min));
}
// TODO: Use PrintGLString, CechckGlError, and PrintEGLConfiguration
// from libglTest
static void printGLString(const char *name, GLenum s)
{
const char *v = (const char *) glGetString(s);
if (v == NULL) {
testPrintI("GL %s unknown", name);
} else {
testPrintI("GL %s = %s", name, v);
}
}
static void checkEglError(const char* op, EGLBoolean returnVal)
{
if (returnVal != EGL_TRUE) {
testPrintE("%s() returned %d", op, returnVal);
}
for (EGLint error = eglGetError(); error != EGL_SUCCESS; error
= eglGetError()) {
testPrintE("after %s() eglError %s (0x%x)",
op, EGLUtils::strerror(error), error);
}
}
static void printEGLConfiguration(EGLDisplay dpy, EGLConfig config)
{
#define X(VAL) {VAL, #VAL}
struct {EGLint attribute; const char* name;} names[] = {
X(EGL_BUFFER_SIZE),
X(EGL_ALPHA_SIZE),
X(EGL_BLUE_SIZE),
X(EGL_GREEN_SIZE),
X(EGL_RED_SIZE),
X(EGL_DEPTH_SIZE),
X(EGL_STENCIL_SIZE),
X(EGL_CONFIG_CAVEAT),
X(EGL_CONFIG_ID),
X(EGL_LEVEL),
X(EGL_MAX_PBUFFER_HEIGHT),
X(EGL_MAX_PBUFFER_PIXELS),
X(EGL_MAX_PBUFFER_WIDTH),
X(EGL_NATIVE_RENDERABLE),
X(EGL_NATIVE_VISUAL_ID),
X(EGL_NATIVE_VISUAL_TYPE),
X(EGL_SAMPLES),
X(EGL_SAMPLE_BUFFERS),
X(EGL_SURFACE_TYPE),
X(EGL_TRANSPARENT_TYPE),
X(EGL_TRANSPARENT_RED_VALUE),
X(EGL_TRANSPARENT_GREEN_VALUE),
X(EGL_TRANSPARENT_BLUE_VALUE),
X(EGL_BIND_TO_TEXTURE_RGB),
X(EGL_BIND_TO_TEXTURE_RGBA),
X(EGL_MIN_SWAP_INTERVAL),
X(EGL_MAX_SWAP_INTERVAL),
X(EGL_LUMINANCE_SIZE),
X(EGL_ALPHA_MASK_SIZE),
X(EGL_COLOR_BUFFER_TYPE),
X(EGL_RENDERABLE_TYPE),
X(EGL_CONFORMANT),
};
#undef X
for (size_t j = 0; j < sizeof(names) / sizeof(names[0]); j++) {
EGLint value = -1;
EGLint returnVal = eglGetConfigAttrib(dpy, config, names[j].attribute,
&value);
EGLint error = eglGetError();
if (returnVal && error == EGL_SUCCESS) {
testPrintI(" %s: %d (%#x)", names[j].name, value, value);
}
}
testPrintI("");
}