cd554e36a8
Change-Id: Ied0918ffa2be5f9382e693f442b142b3e068e735
177 lines
6.0 KiB
C++
177 lines
6.0 KiB
C++
/*
|
|
* Copyright 2013 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "Daltonizer.h"
|
|
#include <ui/mat4.h>
|
|
|
|
namespace android {
|
|
|
|
Daltonizer::Daltonizer() :
|
|
mType(deuteranomaly), mMode(simulation), mDirty(true) {
|
|
}
|
|
|
|
Daltonizer::~Daltonizer() {
|
|
}
|
|
|
|
void Daltonizer::setType(Daltonizer::ColorBlindnessTypes type) {
|
|
if (type != mType) {
|
|
mDirty = true;
|
|
mType = type;
|
|
}
|
|
}
|
|
|
|
void Daltonizer::setMode(Daltonizer::Mode mode) {
|
|
if (mode != mMode) {
|
|
mDirty = true;
|
|
mMode = mode;
|
|
}
|
|
}
|
|
|
|
const mat4& Daltonizer::operator()() {
|
|
if (mDirty) {
|
|
mDirty = false;
|
|
update();
|
|
}
|
|
return mColorTransform;
|
|
}
|
|
|
|
void Daltonizer::update() {
|
|
// converts a linear RGB color to the XYZ space
|
|
const mat4 rgb2xyz( 0.4124, 0.2126, 0.0193, 0,
|
|
0.3576, 0.7152, 0.1192, 0,
|
|
0.1805, 0.0722, 0.9505, 0,
|
|
0 , 0 , 0 , 1);
|
|
|
|
// converts a XYZ color to the LMS space.
|
|
const mat4 xyz2lms( 0.7328,-0.7036, 0.0030, 0,
|
|
0.4296, 1.6975, 0.0136, 0,
|
|
-0.1624, 0.0061, 0.9834, 0,
|
|
0 , 0 , 0 , 1);
|
|
|
|
// Direct conversion from linear RGB to LMS
|
|
const mat4 rgb2lms(xyz2lms*rgb2xyz);
|
|
|
|
// And back from LMS to linear RGB
|
|
const mat4 lms2rgb(inverse(rgb2lms));
|
|
|
|
// To simulate color blindness we need to "remove" the data lost by the absence of
|
|
// a cone. This cannot be done by just zeroing out the corresponding LMS component
|
|
// because it would create a color outside of the RGB gammut.
|
|
// Instead we project the color along the axis of the missing component onto a plane
|
|
// within the RGB gammut:
|
|
// - since the projection happens along the axis of the missing component, a
|
|
// color blind viewer perceives the projected color the same.
|
|
// - We use the plane defined by 3 points in LMS space: black, white and
|
|
// blue and red for protanopia/deuteranopia and tritanopia respectively.
|
|
|
|
// LMS space red
|
|
const vec3& lms_r(rgb2lms[0].rgb);
|
|
// LMS space blue
|
|
const vec3& lms_b(rgb2lms[2].rgb);
|
|
// LMS space white
|
|
const vec3 lms_w((rgb2lms * vec4(1)).rgb);
|
|
|
|
// To find the planes we solve the a*L + b*M + c*S = 0 equation for the LMS values
|
|
// of the three known points. This equation is trivially solved, and has for
|
|
// solution the following cross-products:
|
|
const vec3 p0 = cross(lms_w, lms_b); // protanopia/deuteranopia
|
|
const vec3 p1 = cross(lms_w, lms_r); // tritanopia
|
|
|
|
// The following 3 matrices perform the projection of a LMS color onto the given plane
|
|
// along the selected axis
|
|
|
|
// projection for protanopia (L = 0)
|
|
const mat4 lms2lmsp( 0.0000, 0.0000, 0.0000, 0,
|
|
-p0.y / p0.x, 1.0000, 0.0000, 0,
|
|
-p0.z / p0.x, 0.0000, 1.0000, 0,
|
|
0 , 0 , 0 , 1);
|
|
|
|
// projection for deuteranopia (M = 0)
|
|
const mat4 lms2lmsd( 1.0000, -p0.x / p0.y, 0.0000, 0,
|
|
0.0000, 0.0000, 0.0000, 0,
|
|
0.0000, -p0.z / p0.y, 1.0000, 0,
|
|
0 , 0 , 0 , 1);
|
|
|
|
// projection for tritanopia (S = 0)
|
|
const mat4 lms2lmst( 1.0000, 0.0000, -p1.x / p1.z, 0,
|
|
0.0000, 1.0000, -p1.y / p1.z, 0,
|
|
0.0000, 0.0000, 0.0000, 0,
|
|
0 , 0 , 0 , 1);
|
|
|
|
// We will calculate the error between the color and the color viewed by
|
|
// a color blind user and "spread" this error onto the healthy cones.
|
|
// The matrices below perform this last step and have been chosen arbitrarily.
|
|
|
|
// The amount of correction can be adjusted here.
|
|
|
|
// error spread for protanopia
|
|
const mat4 errp( 1.0, 0.7, 0.7, 0,
|
|
0.0, 1.0, 0.0, 0,
|
|
0.0, 0.0, 1.0, 0,
|
|
0, 0, 0, 1);
|
|
|
|
// error spread for deuteranopia
|
|
const mat4 errd( 1.0, 0.0, 0.0, 0,
|
|
0.7, 1.0, 0.7, 0,
|
|
0.0, 0.0, 1.0, 0,
|
|
0, 0, 0, 1);
|
|
|
|
// error spread for tritanopia
|
|
const mat4 errt( 1.0, 0.0, 0.0, 0,
|
|
0.0, 1.0, 0.0, 0,
|
|
0.7, 0.7, 1.0, 0,
|
|
0, 0, 0, 1);
|
|
|
|
const mat4 identity;
|
|
|
|
// And the magic happens here...
|
|
// We construct the matrix that will perform the whole correction.
|
|
|
|
// simulation: type of color blindness to simulate:
|
|
// set to either lms2lmsp, lms2lmsd, lms2lmst
|
|
mat4 simulation;
|
|
|
|
// correction: type of color blindness correction (should match the simulation above):
|
|
// set to identity, errp, errd, errt ([0] for simulation only)
|
|
mat4 correction(0);
|
|
|
|
switch (mType) {
|
|
case protanopia:
|
|
case protanomaly:
|
|
simulation = lms2lmsp;
|
|
if (mMode == Daltonizer::correction)
|
|
correction = errp;
|
|
break;
|
|
case deuteranopia:
|
|
case deuteranomaly:
|
|
simulation = lms2lmsd;
|
|
if (mMode == Daltonizer::correction)
|
|
correction = errd;
|
|
break;
|
|
case tritanopia:
|
|
case tritanomaly:
|
|
simulation = lms2lmst;
|
|
if (mMode == Daltonizer::correction)
|
|
correction = errt;
|
|
break;
|
|
}
|
|
|
|
mColorTransform = lms2rgb *
|
|
(simulation * rgb2lms + correction * (rgb2lms - simulation * rgb2lms));
|
|
}
|
|
|
|
} /* namespace android */
|