a4650a50a0
This changes the way that SurfaceFlinger's shadow buffer management works such that instead of tracking the size of the shadow queue in the BufferQueue, SF tracks the last frame number it has seen, and passes that into the acquireBuffer call. BufferQueueConsumer then ensures that it never returns a buffer newer than that frame number, even if that means that it must return PRESENT_LATER for an otherwise valid buffer. Change-Id: I3fcb45f683ed660c3f18a8b85ae1f8a962ba6f0e
559 lines
20 KiB
C++
559 lines
20 KiB
C++
/*
|
|
* Copyright 2014 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <inttypes.h>
|
|
|
|
#define LOG_TAG "BufferQueueConsumer"
|
|
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
|
|
//#define LOG_NDEBUG 0
|
|
|
|
#include <gui/BufferItem.h>
|
|
#include <gui/BufferQueueConsumer.h>
|
|
#include <gui/BufferQueueCore.h>
|
|
#include <gui/IConsumerListener.h>
|
|
#include <gui/IProducerListener.h>
|
|
|
|
namespace android {
|
|
|
|
BufferQueueConsumer::BufferQueueConsumer(const sp<BufferQueueCore>& core) :
|
|
mCore(core),
|
|
mSlots(core->mSlots),
|
|
mConsumerName() {}
|
|
|
|
BufferQueueConsumer::~BufferQueueConsumer() {}
|
|
|
|
status_t BufferQueueConsumer::acquireBuffer(BufferItem* outBuffer,
|
|
nsecs_t expectedPresent, uint64_t maxFrameNumber) {
|
|
ATRACE_CALL();
|
|
Mutex::Autolock lock(mCore->mMutex);
|
|
|
|
// Check that the consumer doesn't currently have the maximum number of
|
|
// buffers acquired. We allow the max buffer count to be exceeded by one
|
|
// buffer so that the consumer can successfully set up the newly acquired
|
|
// buffer before releasing the old one.
|
|
int numAcquiredBuffers = 0;
|
|
for (int s = 0; s < BufferQueueDefs::NUM_BUFFER_SLOTS; ++s) {
|
|
if (mSlots[s].mBufferState == BufferSlot::ACQUIRED) {
|
|
++numAcquiredBuffers;
|
|
}
|
|
}
|
|
if (numAcquiredBuffers >= mCore->mMaxAcquiredBufferCount + 1) {
|
|
BQ_LOGE("acquireBuffer: max acquired buffer count reached: %d (max %d)",
|
|
numAcquiredBuffers, mCore->mMaxAcquiredBufferCount);
|
|
return INVALID_OPERATION;
|
|
}
|
|
|
|
// Check if the queue is empty.
|
|
// In asynchronous mode the list is guaranteed to be one buffer deep,
|
|
// while in synchronous mode we use the oldest buffer.
|
|
if (mCore->mQueue.empty()) {
|
|
return NO_BUFFER_AVAILABLE;
|
|
}
|
|
|
|
BufferQueueCore::Fifo::iterator front(mCore->mQueue.begin());
|
|
|
|
// If expectedPresent is specified, we may not want to return a buffer yet.
|
|
// If it's specified and there's more than one buffer queued, we may want
|
|
// to drop a buffer.
|
|
if (expectedPresent != 0) {
|
|
const int MAX_REASONABLE_NSEC = 1000000000ULL; // 1 second
|
|
|
|
// The 'expectedPresent' argument indicates when the buffer is expected
|
|
// to be presented on-screen. If the buffer's desired present time is
|
|
// earlier (less) than expectedPresent -- meaning it will be displayed
|
|
// on time or possibly late if we show it as soon as possible -- we
|
|
// acquire and return it. If we don't want to display it until after the
|
|
// expectedPresent time, we return PRESENT_LATER without acquiring it.
|
|
//
|
|
// To be safe, we don't defer acquisition if expectedPresent is more
|
|
// than one second in the future beyond the desired present time
|
|
// (i.e., we'd be holding the buffer for a long time).
|
|
//
|
|
// NOTE: Code assumes monotonic time values from the system clock
|
|
// are positive.
|
|
|
|
// Start by checking to see if we can drop frames. We skip this check if
|
|
// the timestamps are being auto-generated by Surface. If the app isn't
|
|
// generating timestamps explicitly, it probably doesn't want frames to
|
|
// be discarded based on them.
|
|
while (mCore->mQueue.size() > 1 && !mCore->mQueue[0].mIsAutoTimestamp) {
|
|
const BufferItem& bufferItem(mCore->mQueue[1]);
|
|
|
|
// If dropping entry[0] would leave us with a buffer that the
|
|
// consumer is not yet ready for, don't drop it.
|
|
if (maxFrameNumber && bufferItem.mFrameNumber > maxFrameNumber) {
|
|
break;
|
|
}
|
|
|
|
// If entry[1] is timely, drop entry[0] (and repeat). We apply an
|
|
// additional criterion here: we only drop the earlier buffer if our
|
|
// desiredPresent falls within +/- 1 second of the expected present.
|
|
// Otherwise, bogus desiredPresent times (e.g., 0 or a small
|
|
// relative timestamp), which normally mean "ignore the timestamp
|
|
// and acquire immediately", would cause us to drop frames.
|
|
//
|
|
// We may want to add an additional criterion: don't drop the
|
|
// earlier buffer if entry[1]'s fence hasn't signaled yet.
|
|
nsecs_t desiredPresent = bufferItem.mTimestamp;
|
|
if (desiredPresent < expectedPresent - MAX_REASONABLE_NSEC ||
|
|
desiredPresent > expectedPresent) {
|
|
// This buffer is set to display in the near future, or
|
|
// desiredPresent is garbage. Either way we don't want to drop
|
|
// the previous buffer just to get this on the screen sooner.
|
|
BQ_LOGV("acquireBuffer: nodrop desire=%" PRId64 " expect=%"
|
|
PRId64 " (%" PRId64 ") now=%" PRId64,
|
|
desiredPresent, expectedPresent,
|
|
desiredPresent - expectedPresent,
|
|
systemTime(CLOCK_MONOTONIC));
|
|
break;
|
|
}
|
|
|
|
BQ_LOGV("acquireBuffer: drop desire=%" PRId64 " expect=%" PRId64
|
|
" size=%zu",
|
|
desiredPresent, expectedPresent, mCore->mQueue.size());
|
|
if (mCore->stillTracking(front)) {
|
|
// Front buffer is still in mSlots, so mark the slot as free
|
|
mSlots[front->mSlot].mBufferState = BufferSlot::FREE;
|
|
mCore->mFreeBuffers.push_back(front->mSlot);
|
|
}
|
|
mCore->mQueue.erase(front);
|
|
front = mCore->mQueue.begin();
|
|
}
|
|
|
|
// See if the front buffer is ready to be acquired
|
|
nsecs_t desiredPresent = front->mTimestamp;
|
|
bool bufferIsDue = desiredPresent <= expectedPresent ||
|
|
desiredPresent > expectedPresent + MAX_REASONABLE_NSEC;
|
|
bool consumerIsReady = maxFrameNumber > 0 ?
|
|
front->mFrameNumber <= maxFrameNumber : true;
|
|
if (!bufferIsDue || !consumerIsReady) {
|
|
BQ_LOGV("acquireBuffer: defer desire=%" PRId64 " expect=%" PRId64
|
|
" (%" PRId64 ") now=%" PRId64 " frame=%" PRIu64
|
|
" consumer=%" PRIu64,
|
|
desiredPresent, expectedPresent,
|
|
desiredPresent - expectedPresent,
|
|
systemTime(CLOCK_MONOTONIC),
|
|
front->mFrameNumber, maxFrameNumber);
|
|
return PRESENT_LATER;
|
|
}
|
|
|
|
BQ_LOGV("acquireBuffer: accept desire=%" PRId64 " expect=%" PRId64 " "
|
|
"(%" PRId64 ") now=%" PRId64, desiredPresent, expectedPresent,
|
|
desiredPresent - expectedPresent,
|
|
systemTime(CLOCK_MONOTONIC));
|
|
}
|
|
|
|
int slot = front->mSlot;
|
|
*outBuffer = *front;
|
|
ATRACE_BUFFER_INDEX(slot);
|
|
|
|
BQ_LOGV("acquireBuffer: acquiring { slot=%d/%" PRIu64 " buffer=%p }",
|
|
slot, front->mFrameNumber, front->mGraphicBuffer->handle);
|
|
// If the front buffer is still being tracked, update its slot state
|
|
if (mCore->stillTracking(front)) {
|
|
mSlots[slot].mAcquireCalled = true;
|
|
mSlots[slot].mNeedsCleanupOnRelease = false;
|
|
mSlots[slot].mBufferState = BufferSlot::ACQUIRED;
|
|
mSlots[slot].mFence = Fence::NO_FENCE;
|
|
}
|
|
|
|
// If the buffer has previously been acquired by the consumer, set
|
|
// mGraphicBuffer to NULL to avoid unnecessarily remapping this buffer
|
|
// on the consumer side
|
|
if (outBuffer->mAcquireCalled) {
|
|
outBuffer->mGraphicBuffer = NULL;
|
|
}
|
|
|
|
mCore->mQueue.erase(front);
|
|
|
|
// We might have freed a slot while dropping old buffers, or the producer
|
|
// may be blocked waiting for the number of buffers in the queue to
|
|
// decrease.
|
|
mCore->mDequeueCondition.broadcast();
|
|
|
|
ATRACE_INT(mCore->mConsumerName.string(), mCore->mQueue.size());
|
|
|
|
mCore->validateConsistencyLocked();
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t BufferQueueConsumer::detachBuffer(int slot) {
|
|
ATRACE_CALL();
|
|
ATRACE_BUFFER_INDEX(slot);
|
|
BQ_LOGV("detachBuffer(C): slot %d", slot);
|
|
Mutex::Autolock lock(mCore->mMutex);
|
|
|
|
if (mCore->mIsAbandoned) {
|
|
BQ_LOGE("detachBuffer(C): BufferQueue has been abandoned");
|
|
return NO_INIT;
|
|
}
|
|
|
|
if (slot < 0 || slot >= BufferQueueDefs::NUM_BUFFER_SLOTS) {
|
|
BQ_LOGE("detachBuffer(C): slot index %d out of range [0, %d)",
|
|
slot, BufferQueueDefs::NUM_BUFFER_SLOTS);
|
|
return BAD_VALUE;
|
|
} else if (mSlots[slot].mBufferState != BufferSlot::ACQUIRED) {
|
|
BQ_LOGE("detachBuffer(C): slot %d is not owned by the consumer "
|
|
"(state = %d)", slot, mSlots[slot].mBufferState);
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
mCore->freeBufferLocked(slot);
|
|
mCore->mDequeueCondition.broadcast();
|
|
mCore->validateConsistencyLocked();
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t BufferQueueConsumer::attachBuffer(int* outSlot,
|
|
const sp<android::GraphicBuffer>& buffer) {
|
|
ATRACE_CALL();
|
|
|
|
if (outSlot == NULL) {
|
|
BQ_LOGE("attachBuffer(P): outSlot must not be NULL");
|
|
return BAD_VALUE;
|
|
} else if (buffer == NULL) {
|
|
BQ_LOGE("attachBuffer(P): cannot attach NULL buffer");
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
Mutex::Autolock lock(mCore->mMutex);
|
|
|
|
// Make sure we don't have too many acquired buffers
|
|
int numAcquiredBuffers = 0;
|
|
for (int s = 0; s < BufferQueueDefs::NUM_BUFFER_SLOTS; ++s) {
|
|
if (mSlots[s].mBufferState == BufferSlot::ACQUIRED) {
|
|
++numAcquiredBuffers;
|
|
}
|
|
}
|
|
|
|
if (numAcquiredBuffers >= mCore->mMaxAcquiredBufferCount + 1) {
|
|
BQ_LOGE("attachBuffer(P): max acquired buffer count reached: %d "
|
|
"(max %d)", numAcquiredBuffers,
|
|
mCore->mMaxAcquiredBufferCount);
|
|
return INVALID_OPERATION;
|
|
}
|
|
|
|
// Find a free slot to put the buffer into
|
|
int found = BufferQueueCore::INVALID_BUFFER_SLOT;
|
|
if (!mCore->mFreeSlots.empty()) {
|
|
auto slot = mCore->mFreeSlots.begin();
|
|
found = *slot;
|
|
mCore->mFreeSlots.erase(slot);
|
|
} else if (!mCore->mFreeBuffers.empty()) {
|
|
found = mCore->mFreeBuffers.front();
|
|
mCore->mFreeBuffers.remove(found);
|
|
}
|
|
if (found == BufferQueueCore::INVALID_BUFFER_SLOT) {
|
|
BQ_LOGE("attachBuffer(P): could not find free buffer slot");
|
|
return NO_MEMORY;
|
|
}
|
|
|
|
*outSlot = found;
|
|
ATRACE_BUFFER_INDEX(*outSlot);
|
|
BQ_LOGV("attachBuffer(C): returning slot %d", *outSlot);
|
|
|
|
mSlots[*outSlot].mGraphicBuffer = buffer;
|
|
mSlots[*outSlot].mBufferState = BufferSlot::ACQUIRED;
|
|
mSlots[*outSlot].mAttachedByConsumer = true;
|
|
mSlots[*outSlot].mNeedsCleanupOnRelease = false;
|
|
mSlots[*outSlot].mFence = Fence::NO_FENCE;
|
|
mSlots[*outSlot].mFrameNumber = 0;
|
|
|
|
// mAcquireCalled tells BufferQueue that it doesn't need to send a valid
|
|
// GraphicBuffer pointer on the next acquireBuffer call, which decreases
|
|
// Binder traffic by not un/flattening the GraphicBuffer. However, it
|
|
// requires that the consumer maintain a cached copy of the slot <--> buffer
|
|
// mappings, which is why the consumer doesn't need the valid pointer on
|
|
// acquire.
|
|
//
|
|
// The StreamSplitter is one of the primary users of the attach/detach
|
|
// logic, and while it is running, all buffers it acquires are immediately
|
|
// detached, and all buffers it eventually releases are ones that were
|
|
// attached (as opposed to having been obtained from acquireBuffer), so it
|
|
// doesn't make sense to maintain the slot/buffer mappings, which would
|
|
// become invalid for every buffer during detach/attach. By setting this to
|
|
// false, the valid GraphicBuffer pointer will always be sent with acquire
|
|
// for attached buffers.
|
|
mSlots[*outSlot].mAcquireCalled = false;
|
|
|
|
mCore->validateConsistencyLocked();
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t BufferQueueConsumer::releaseBuffer(int slot, uint64_t frameNumber,
|
|
const sp<Fence>& releaseFence, EGLDisplay eglDisplay,
|
|
EGLSyncKHR eglFence) {
|
|
ATRACE_CALL();
|
|
ATRACE_BUFFER_INDEX(slot);
|
|
|
|
if (slot < 0 || slot >= BufferQueueDefs::NUM_BUFFER_SLOTS ||
|
|
releaseFence == NULL) {
|
|
BQ_LOGE("releaseBuffer: slot %d out of range or fence %p NULL", slot,
|
|
releaseFence.get());
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
sp<IProducerListener> listener;
|
|
{ // Autolock scope
|
|
Mutex::Autolock lock(mCore->mMutex);
|
|
|
|
// If the frame number has changed because the buffer has been reallocated,
|
|
// we can ignore this releaseBuffer for the old buffer
|
|
if (frameNumber != mSlots[slot].mFrameNumber) {
|
|
return STALE_BUFFER_SLOT;
|
|
}
|
|
|
|
// Make sure this buffer hasn't been queued while acquired by the consumer
|
|
BufferQueueCore::Fifo::iterator current(mCore->mQueue.begin());
|
|
while (current != mCore->mQueue.end()) {
|
|
if (current->mSlot == slot) {
|
|
BQ_LOGE("releaseBuffer: buffer slot %d pending release is "
|
|
"currently queued", slot);
|
|
return BAD_VALUE;
|
|
}
|
|
++current;
|
|
}
|
|
|
|
if (mSlots[slot].mBufferState == BufferSlot::ACQUIRED) {
|
|
mSlots[slot].mEglDisplay = eglDisplay;
|
|
mSlots[slot].mEglFence = eglFence;
|
|
mSlots[slot].mFence = releaseFence;
|
|
mSlots[slot].mBufferState = BufferSlot::FREE;
|
|
mCore->mFreeBuffers.push_back(slot);
|
|
listener = mCore->mConnectedProducerListener;
|
|
BQ_LOGV("releaseBuffer: releasing slot %d", slot);
|
|
} else if (mSlots[slot].mNeedsCleanupOnRelease) {
|
|
BQ_LOGV("releaseBuffer: releasing a stale buffer slot %d "
|
|
"(state = %d)", slot, mSlots[slot].mBufferState);
|
|
mSlots[slot].mNeedsCleanupOnRelease = false;
|
|
return STALE_BUFFER_SLOT;
|
|
} else {
|
|
BQ_LOGE("releaseBuffer: attempted to release buffer slot %d "
|
|
"but its state was %d", slot, mSlots[slot].mBufferState);
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
mCore->mDequeueCondition.broadcast();
|
|
mCore->validateConsistencyLocked();
|
|
} // Autolock scope
|
|
|
|
// Call back without lock held
|
|
if (listener != NULL) {
|
|
listener->onBufferReleased();
|
|
}
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t BufferQueueConsumer::connect(
|
|
const sp<IConsumerListener>& consumerListener, bool controlledByApp) {
|
|
ATRACE_CALL();
|
|
|
|
if (consumerListener == NULL) {
|
|
BQ_LOGE("connect(C): consumerListener may not be NULL");
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
BQ_LOGV("connect(C): controlledByApp=%s",
|
|
controlledByApp ? "true" : "false");
|
|
|
|
Mutex::Autolock lock(mCore->mMutex);
|
|
|
|
if (mCore->mIsAbandoned) {
|
|
BQ_LOGE("connect(C): BufferQueue has been abandoned");
|
|
return NO_INIT;
|
|
}
|
|
|
|
mCore->mConsumerListener = consumerListener;
|
|
mCore->mConsumerControlledByApp = controlledByApp;
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t BufferQueueConsumer::disconnect() {
|
|
ATRACE_CALL();
|
|
|
|
BQ_LOGV("disconnect(C)");
|
|
|
|
Mutex::Autolock lock(mCore->mMutex);
|
|
|
|
if (mCore->mConsumerListener == NULL) {
|
|
BQ_LOGE("disconnect(C): no consumer is connected");
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
mCore->mIsAbandoned = true;
|
|
mCore->mConsumerListener = NULL;
|
|
mCore->mQueue.clear();
|
|
mCore->freeAllBuffersLocked();
|
|
mCore->mDequeueCondition.broadcast();
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t BufferQueueConsumer::getReleasedBuffers(uint64_t *outSlotMask) {
|
|
ATRACE_CALL();
|
|
|
|
if (outSlotMask == NULL) {
|
|
BQ_LOGE("getReleasedBuffers: outSlotMask may not be NULL");
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
Mutex::Autolock lock(mCore->mMutex);
|
|
|
|
if (mCore->mIsAbandoned) {
|
|
BQ_LOGE("getReleasedBuffers: BufferQueue has been abandoned");
|
|
return NO_INIT;
|
|
}
|
|
|
|
uint64_t mask = 0;
|
|
for (int s = 0; s < BufferQueueDefs::NUM_BUFFER_SLOTS; ++s) {
|
|
if (!mSlots[s].mAcquireCalled) {
|
|
mask |= (1ULL << s);
|
|
}
|
|
}
|
|
|
|
// Remove from the mask queued buffers for which acquire has been called,
|
|
// since the consumer will not receive their buffer addresses and so must
|
|
// retain their cached information
|
|
BufferQueueCore::Fifo::iterator current(mCore->mQueue.begin());
|
|
while (current != mCore->mQueue.end()) {
|
|
if (current->mAcquireCalled) {
|
|
mask &= ~(1ULL << current->mSlot);
|
|
}
|
|
++current;
|
|
}
|
|
|
|
BQ_LOGV("getReleasedBuffers: returning mask %#" PRIx64, mask);
|
|
*outSlotMask = mask;
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t BufferQueueConsumer::setDefaultBufferSize(uint32_t width,
|
|
uint32_t height) {
|
|
ATRACE_CALL();
|
|
|
|
if (width == 0 || height == 0) {
|
|
BQ_LOGV("setDefaultBufferSize: dimensions cannot be 0 (width=%u "
|
|
"height=%u)", width, height);
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
BQ_LOGV("setDefaultBufferSize: width=%u height=%u", width, height);
|
|
|
|
Mutex::Autolock lock(mCore->mMutex);
|
|
mCore->mDefaultWidth = width;
|
|
mCore->mDefaultHeight = height;
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t BufferQueueConsumer::setDefaultMaxBufferCount(int bufferCount) {
|
|
ATRACE_CALL();
|
|
Mutex::Autolock lock(mCore->mMutex);
|
|
return mCore->setDefaultMaxBufferCountLocked(bufferCount);
|
|
}
|
|
|
|
status_t BufferQueueConsumer::disableAsyncBuffer() {
|
|
ATRACE_CALL();
|
|
|
|
Mutex::Autolock lock(mCore->mMutex);
|
|
|
|
if (mCore->mConsumerListener != NULL) {
|
|
BQ_LOGE("disableAsyncBuffer: consumer already connected");
|
|
return INVALID_OPERATION;
|
|
}
|
|
|
|
BQ_LOGV("disableAsyncBuffer");
|
|
mCore->mUseAsyncBuffer = false;
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t BufferQueueConsumer::setMaxAcquiredBufferCount(
|
|
int maxAcquiredBuffers) {
|
|
ATRACE_CALL();
|
|
|
|
if (maxAcquiredBuffers < 1 ||
|
|
maxAcquiredBuffers > BufferQueueCore::MAX_MAX_ACQUIRED_BUFFERS) {
|
|
BQ_LOGE("setMaxAcquiredBufferCount: invalid count %d",
|
|
maxAcquiredBuffers);
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
Mutex::Autolock lock(mCore->mMutex);
|
|
|
|
if (mCore->mConnectedApi != BufferQueueCore::NO_CONNECTED_API) {
|
|
BQ_LOGE("setMaxAcquiredBufferCount: producer is already connected");
|
|
return INVALID_OPERATION;
|
|
}
|
|
|
|
BQ_LOGV("setMaxAcquiredBufferCount: %d", maxAcquiredBuffers);
|
|
mCore->mMaxAcquiredBufferCount = maxAcquiredBuffers;
|
|
return NO_ERROR;
|
|
}
|
|
|
|
void BufferQueueConsumer::setConsumerName(const String8& name) {
|
|
ATRACE_CALL();
|
|
BQ_LOGV("setConsumerName: '%s'", name.string());
|
|
Mutex::Autolock lock(mCore->mMutex);
|
|
mCore->mConsumerName = name;
|
|
mConsumerName = name;
|
|
}
|
|
|
|
status_t BufferQueueConsumer::setDefaultBufferFormat(PixelFormat defaultFormat) {
|
|
ATRACE_CALL();
|
|
BQ_LOGV("setDefaultBufferFormat: %u", defaultFormat);
|
|
Mutex::Autolock lock(mCore->mMutex);
|
|
mCore->mDefaultBufferFormat = defaultFormat;
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t BufferQueueConsumer::setDefaultBufferDataSpace(
|
|
android_dataspace defaultDataSpace) {
|
|
ATRACE_CALL();
|
|
BQ_LOGV("setDefaultBufferDataSpace: %u", defaultDataSpace);
|
|
Mutex::Autolock lock(mCore->mMutex);
|
|
mCore->mDefaultBufferDataSpace = defaultDataSpace;
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t BufferQueueConsumer::setConsumerUsageBits(uint32_t usage) {
|
|
ATRACE_CALL();
|
|
BQ_LOGV("setConsumerUsageBits: %#x", usage);
|
|
Mutex::Autolock lock(mCore->mMutex);
|
|
mCore->mConsumerUsageBits = usage;
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t BufferQueueConsumer::setTransformHint(uint32_t hint) {
|
|
ATRACE_CALL();
|
|
BQ_LOGV("setTransformHint: %#x", hint);
|
|
Mutex::Autolock lock(mCore->mMutex);
|
|
mCore->mTransformHint = hint;
|
|
return NO_ERROR;
|
|
}
|
|
|
|
sp<NativeHandle> BufferQueueConsumer::getSidebandStream() const {
|
|
return mCore->mSidebandStream;
|
|
}
|
|
|
|
void BufferQueueConsumer::dump(String8& result, const char* prefix) const {
|
|
mCore->dump(result, prefix);
|
|
}
|
|
|
|
} // namespace android
|