ef19414bd8
After a HWC set, each SurfaceFlinger Layer retrieves the release fence HWC returned and gives it to the layer's SurfaceTexture. The SurfaceTexture accumulates the fences into a merged fence until the next updateTexImage, then passes the merged fence to the BufferQueue in releaseBuffer. In a follow-on change, BufferQueue will return the fence along with the buffer slot in dequeueBuffer. For now, dequeueBuffer waits for the fence to signal before returning. The releaseFence default value for BufferQueue::releaseBuffer() is temporary to avoid transient build breaks with a multi-project checkin. It'll disappear in the next change. Change-Id: Iaa9a0d5775235585d9cbf453d3a64623d08013d9
436 lines
20 KiB
C++
436 lines
20 KiB
C++
/*
|
|
* Copyright (C) 2010 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef ANDROID_GUI_SURFACETEXTURE_H
|
|
#define ANDROID_GUI_SURFACETEXTURE_H
|
|
|
|
#include <EGL/egl.h>
|
|
#include <EGL/eglext.h>
|
|
#include <GLES2/gl2.h>
|
|
#include <GLES2/gl2ext.h>
|
|
|
|
#include <gui/ISurfaceTexture.h>
|
|
#include <gui/BufferQueue.h>
|
|
|
|
#include <ui/GraphicBuffer.h>
|
|
|
|
#include <utils/String8.h>
|
|
#include <utils/Vector.h>
|
|
#include <utils/threads.h>
|
|
|
|
#define ANDROID_GRAPHICS_SURFACETEXTURE_JNI_ID "mSurfaceTexture"
|
|
|
|
namespace android {
|
|
// ----------------------------------------------------------------------------
|
|
|
|
|
|
class String8;
|
|
|
|
class SurfaceTexture : public virtual RefBase,
|
|
protected BufferQueue::ConsumerListener {
|
|
public:
|
|
struct FrameAvailableListener : public virtual RefBase {
|
|
// onFrameAvailable() is called each time an additional frame becomes
|
|
// available for consumption. This means that frames that are queued
|
|
// while in asynchronous mode only trigger the callback if no previous
|
|
// frames are pending. Frames queued while in synchronous mode always
|
|
// trigger the callback.
|
|
//
|
|
// This is called without any lock held and can be called concurrently
|
|
// by multiple threads.
|
|
virtual void onFrameAvailable() = 0;
|
|
};
|
|
|
|
// SurfaceTexture constructs a new SurfaceTexture object. tex indicates the
|
|
// name of the OpenGL ES texture to which images are to be streamed.
|
|
// allowSynchronousMode specifies whether or not synchronous mode can be
|
|
// enabled. texTarget specifies the OpenGL ES texture target to which the
|
|
// texture will be bound in updateTexImage. useFenceSync specifies whether
|
|
// fences should be used to synchronize access to buffers if that behavior
|
|
// is enabled at compile-time. A custom bufferQueue can be specified
|
|
// if behavior for queue/dequeue/connect etc needs to be customized.
|
|
// Otherwise a default BufferQueue will be created and used.
|
|
//
|
|
// For legacy reasons, the SurfaceTexture is created in a state where it is
|
|
// considered attached to an OpenGL ES context for the purposes of the
|
|
// attachToContext and detachFromContext methods. However, despite being
|
|
// considered "attached" to a context, the specific OpenGL ES context
|
|
// doesn't get latched until the first call to updateTexImage. After that
|
|
// point, all calls to updateTexImage must be made with the same OpenGL ES
|
|
// context current.
|
|
//
|
|
// A SurfaceTexture may be detached from one OpenGL ES context and then
|
|
// attached to a different context using the detachFromContext and
|
|
// attachToContext methods, respectively. The intention of these methods is
|
|
// purely to allow a SurfaceTexture to be transferred from one consumer
|
|
// context to another. If such a transfer is not needed there is no
|
|
// requirement that either of these methods be called.
|
|
SurfaceTexture(GLuint tex, bool allowSynchronousMode = true,
|
|
GLenum texTarget = GL_TEXTURE_EXTERNAL_OES, bool useFenceSync = true,
|
|
const sp<BufferQueue> &bufferQueue = 0);
|
|
|
|
virtual ~SurfaceTexture();
|
|
|
|
// updateTexImage sets the image contents of the target texture to that of
|
|
// the most recently queued buffer.
|
|
//
|
|
// This call may only be made while the OpenGL ES context to which the
|
|
// target texture belongs is bound to the calling thread.
|
|
status_t updateTexImage();
|
|
|
|
// setReleaseFence stores a fence file descriptor that will signal when the
|
|
// current buffer is no longer being read. This fence will be returned to
|
|
// the producer when the current buffer is released by updateTexImage().
|
|
// Multiple fences can be set for a given buffer; they will be merged into
|
|
// a single union fence. The SurfaceTexture will close the file descriptor
|
|
// when finished with it.
|
|
void setReleaseFence(int fenceFd);
|
|
|
|
// setBufferCountServer set the buffer count. If the client has requested
|
|
// a buffer count using setBufferCount, the server-buffer count will
|
|
// take effect once the client sets the count back to zero.
|
|
status_t setBufferCountServer(int bufferCount);
|
|
|
|
// getTransformMatrix retrieves the 4x4 texture coordinate transform matrix
|
|
// associated with the texture image set by the most recent call to
|
|
// updateTexImage.
|
|
//
|
|
// This transform matrix maps 2D homogeneous texture coordinates of the form
|
|
// (s, t, 0, 1) with s and t in the inclusive range [0, 1] to the texture
|
|
// coordinate that should be used to sample that location from the texture.
|
|
// Sampling the texture outside of the range of this transform is undefined.
|
|
//
|
|
// This transform is necessary to compensate for transforms that the stream
|
|
// content producer may implicitly apply to the content. By forcing users of
|
|
// a SurfaceTexture to apply this transform we avoid performing an extra
|
|
// copy of the data that would be needed to hide the transform from the
|
|
// user.
|
|
//
|
|
// The matrix is stored in column-major order so that it may be passed
|
|
// directly to OpenGL ES via the glLoadMatrixf or glUniformMatrix4fv
|
|
// functions.
|
|
void getTransformMatrix(float mtx[16]);
|
|
|
|
// getTimestamp retrieves the timestamp associated with the texture image
|
|
// set by the most recent call to updateTexImage.
|
|
//
|
|
// The timestamp is in nanoseconds, and is monotonically increasing. Its
|
|
// other semantics (zero point, etc) are source-dependent and should be
|
|
// documented by the source.
|
|
int64_t getTimestamp();
|
|
|
|
// setFrameAvailableListener sets the listener object that will be notified
|
|
// when a new frame becomes available.
|
|
void setFrameAvailableListener(const sp<FrameAvailableListener>& listener);
|
|
|
|
// getAllocator retrieves the binder object that must be referenced as long
|
|
// as the GraphicBuffers dequeued from this SurfaceTexture are referenced.
|
|
// Holding this binder reference prevents SurfaceFlinger from freeing the
|
|
// buffers before the client is done with them.
|
|
sp<IBinder> getAllocator();
|
|
|
|
// setDefaultBufferSize is used to set the size of buffers returned by
|
|
// requestBuffers when a with and height of zero is requested.
|
|
// A call to setDefaultBufferSize() may trigger requestBuffers() to
|
|
// be called from the client.
|
|
// The width and height parameters must be no greater than the minimum of
|
|
// GL_MAX_VIEWPORT_DIMS and GL_MAX_TEXTURE_SIZE (see: glGetIntegerv).
|
|
// An error due to invalid dimensions might not be reported until
|
|
// updateTexImage() is called.
|
|
status_t setDefaultBufferSize(uint32_t width, uint32_t height);
|
|
|
|
// setFilteringEnabled sets whether the transform matrix should be computed
|
|
// for use with bilinear filtering.
|
|
void setFilteringEnabled(bool enabled);
|
|
|
|
// getCurrentBuffer returns the buffer associated with the current image.
|
|
sp<GraphicBuffer> getCurrentBuffer() const;
|
|
|
|
// getCurrentTextureTarget returns the texture target of the current
|
|
// texture as returned by updateTexImage().
|
|
GLenum getCurrentTextureTarget() const;
|
|
|
|
// getCurrentCrop returns the cropping rectangle of the current buffer.
|
|
Rect getCurrentCrop() const;
|
|
|
|
// getCurrentTransform returns the transform of the current buffer.
|
|
uint32_t getCurrentTransform() const;
|
|
|
|
// getCurrentScalingMode returns the scaling mode of the current buffer.
|
|
uint32_t getCurrentScalingMode() const;
|
|
|
|
// isSynchronousMode returns whether the SurfaceTexture is currently in
|
|
// synchronous mode.
|
|
bool isSynchronousMode() const;
|
|
|
|
// abandon frees all the buffers and puts the SurfaceTexture into the
|
|
// 'abandoned' state. Once put in this state the SurfaceTexture can never
|
|
// leave it. When in the 'abandoned' state, all methods of the
|
|
// ISurfaceTexture interface will fail with the NO_INIT error.
|
|
//
|
|
// Note that while calling this method causes all the buffers to be freed
|
|
// from the perspective of the the SurfaceTexture, if there are additional
|
|
// references on the buffers (e.g. if a buffer is referenced by a client or
|
|
// by OpenGL ES as a texture) then those buffer will remain allocated.
|
|
void abandon();
|
|
|
|
// set the name of the SurfaceTexture that will be used to identify it in
|
|
// log messages.
|
|
void setName(const String8& name);
|
|
|
|
// These functions call the corresponding BufferQueue implementation
|
|
// so the refactoring can proceed smoothly
|
|
status_t setDefaultBufferFormat(uint32_t defaultFormat);
|
|
status_t setConsumerUsageBits(uint32_t usage);
|
|
status_t setTransformHint(uint32_t hint);
|
|
virtual status_t setSynchronousMode(bool enabled);
|
|
|
|
// getBufferQueue returns the BufferQueue object to which this
|
|
// SurfaceTexture is connected.
|
|
sp<BufferQueue> getBufferQueue() const;
|
|
|
|
// detachFromContext detaches the SurfaceTexture from the calling thread's
|
|
// current OpenGL ES context. This context must be the same as the context
|
|
// that was current for previous calls to updateTexImage.
|
|
//
|
|
// Detaching a SurfaceTexture from an OpenGL ES context will result in the
|
|
// deletion of the OpenGL ES texture object into which the images were being
|
|
// streamed. After a SurfaceTexture has been detached from the OpenGL ES
|
|
// context calls to updateTexImage will fail returning INVALID_OPERATION
|
|
// until the SurfaceTexture is attached to a new OpenGL ES context using the
|
|
// attachToContext method.
|
|
status_t detachFromContext();
|
|
|
|
// attachToContext attaches a SurfaceTexture that is currently in the
|
|
// 'detached' state to the current OpenGL ES context. A SurfaceTexture is
|
|
// in the 'detached' state iff detachFromContext has successfully been
|
|
// called and no calls to attachToContext have succeeded since the last
|
|
// detachFromContext call. Calls to attachToContext made on a
|
|
// SurfaceTexture that is not in the 'detached' state will result in an
|
|
// INVALID_OPERATION error.
|
|
//
|
|
// The tex argument specifies the OpenGL ES texture object name in the
|
|
// new context into which the image contents will be streamed. A successful
|
|
// call to attachToContext will result in this texture object being bound to
|
|
// the texture target and populated with the image contents that were
|
|
// current at the time of the last call to detachFromContext.
|
|
status_t attachToContext(GLuint tex);
|
|
|
|
// dump our state in a String
|
|
virtual void dump(String8& result) const;
|
|
virtual void dump(String8& result, const char* prefix, char* buffer, size_t SIZE) const;
|
|
|
|
protected:
|
|
|
|
// Implementation of the BufferQueue::ConsumerListener interface. These
|
|
// calls are used to notify the SurfaceTexture of asynchronous events in the
|
|
// BufferQueue.
|
|
virtual void onFrameAvailable();
|
|
virtual void onBuffersReleased();
|
|
|
|
static bool isExternalFormat(uint32_t format);
|
|
|
|
private:
|
|
// this version of updateTexImage() takes a functor used to reject or not
|
|
// the newly acquired buffer.
|
|
// this API is TEMPORARY and intended to be used by SurfaceFlinger only,
|
|
// which is why class Layer is made a friend of SurfaceTexture below.
|
|
class BufferRejecter {
|
|
friend class SurfaceTexture;
|
|
virtual bool reject(const sp<GraphicBuffer>& buf,
|
|
const BufferQueue::BufferItem& item) = 0;
|
|
protected:
|
|
virtual ~BufferRejecter() { }
|
|
};
|
|
friend class Layer;
|
|
status_t updateTexImage(BufferRejecter* rejecter);
|
|
|
|
// createImage creates a new EGLImage from a GraphicBuffer.
|
|
EGLImageKHR createImage(EGLDisplay dpy,
|
|
const sp<GraphicBuffer>& graphicBuffer);
|
|
|
|
// freeBufferLocked frees up the given buffer slot. If the slot has been
|
|
// initialized this will release the reference to the GraphicBuffer in that
|
|
// slot and destroy the EGLImage in that slot. Otherwise it has no effect.
|
|
//
|
|
// This method must be called with mMutex locked.
|
|
void freeBufferLocked(int slotIndex);
|
|
|
|
// computeCurrentTransformMatrix computes the transform matrix for the
|
|
// current texture. It uses mCurrentTransform and the current GraphicBuffer
|
|
// to compute this matrix and stores it in mCurrentTransformMatrix.
|
|
void computeCurrentTransformMatrix();
|
|
|
|
// syncForReleaseLocked performs the synchronization needed to release the
|
|
// current slot from an OpenGL ES context. If needed it will set the
|
|
// current slot's fence to guard against a producer accessing the buffer
|
|
// before the outstanding accesses have completed.
|
|
status_t syncForReleaseLocked(EGLDisplay dpy);
|
|
|
|
// The default consumer usage flags that SurfaceTexture always sets on its
|
|
// BufferQueue instance; these will be OR:d with any additional flags passed
|
|
// from the SurfaceTexture user. In particular, SurfaceTexture will always
|
|
// consume buffers as hardware textures.
|
|
static const uint32_t DEFAULT_USAGE_FLAGS = GraphicBuffer::USAGE_HW_TEXTURE;
|
|
|
|
// mCurrentTextureBuf is the graphic buffer of the current texture. It's
|
|
// possible that this buffer is not associated with any buffer slot, so we
|
|
// must track it separately in order to support the getCurrentBuffer method.
|
|
sp<GraphicBuffer> mCurrentTextureBuf;
|
|
|
|
// mCurrentCrop is the crop rectangle that applies to the current texture.
|
|
// It gets set each time updateTexImage is called.
|
|
Rect mCurrentCrop;
|
|
|
|
// mCurrentTransform is the transform identifier for the current texture. It
|
|
// gets set each time updateTexImage is called.
|
|
uint32_t mCurrentTransform;
|
|
|
|
// mCurrentScalingMode is the scaling mode for the current texture. It gets
|
|
// set to each time updateTexImage is called.
|
|
uint32_t mCurrentScalingMode;
|
|
|
|
// mCurrentTransformMatrix is the transform matrix for the current texture.
|
|
// It gets computed by computeTransformMatrix each time updateTexImage is
|
|
// called.
|
|
float mCurrentTransformMatrix[16];
|
|
|
|
// mCurrentTimestamp is the timestamp for the current texture. It
|
|
// gets set each time updateTexImage is called.
|
|
int64_t mCurrentTimestamp;
|
|
|
|
uint32_t mDefaultWidth, mDefaultHeight;
|
|
|
|
// mFilteringEnabled indicates whether the transform matrix is computed for
|
|
// use with bilinear filtering. It defaults to true and is changed by
|
|
// setFilteringEnabled().
|
|
bool mFilteringEnabled;
|
|
|
|
// mTexName is the name of the OpenGL texture to which streamed images will
|
|
// be bound when updateTexImage is called. It is set at construction time
|
|
// and can be changed with a call to attachToContext.
|
|
GLuint mTexName;
|
|
|
|
// mUseFenceSync indicates whether creation of the EGL_KHR_fence_sync
|
|
// extension should be used to prevent buffers from being dequeued before
|
|
// it's safe for them to be written. It gets set at construction time and
|
|
// never changes.
|
|
const bool mUseFenceSync;
|
|
|
|
// mTexTarget is the GL texture target with which the GL texture object is
|
|
// associated. It is set in the constructor and never changed. It is
|
|
// almost always GL_TEXTURE_EXTERNAL_OES except for one use case in Android
|
|
// Browser. In that case it is set to GL_TEXTURE_2D to allow
|
|
// glCopyTexSubImage to read from the texture. This is a hack to work
|
|
// around a GL driver limitation on the number of FBO attachments, which the
|
|
// browser's tile cache exceeds.
|
|
const GLenum mTexTarget;
|
|
|
|
// EGLSlot contains the information and object references that
|
|
// SurfaceTexture maintains about a BufferQueue buffer slot.
|
|
struct EGLSlot {
|
|
EGLSlot()
|
|
: mEglImage(EGL_NO_IMAGE_KHR),
|
|
mFence(EGL_NO_SYNC_KHR) {
|
|
}
|
|
|
|
sp<GraphicBuffer> mGraphicBuffer;
|
|
|
|
// mEglImage is the EGLImage created from mGraphicBuffer.
|
|
EGLImageKHR mEglImage;
|
|
|
|
// mFence is the EGL sync object that must signal before the buffer
|
|
// associated with this buffer slot may be dequeued. It is initialized
|
|
// to EGL_NO_SYNC_KHR when the buffer is created and (optionally, based
|
|
// on a compile-time option) set to a new sync object in updateTexImage.
|
|
EGLSyncKHR mFence;
|
|
|
|
// mReleaseFence is a fence which will signal when the buffer
|
|
// associated with this buffer slot is no longer being used by the
|
|
// consumer and can be overwritten. The buffer can be dequeued before
|
|
// the fence signals; the producer is responsible for delaying writes
|
|
// until it signals.
|
|
sp<Fence> mReleaseFence;
|
|
};
|
|
|
|
// mEglDisplay is the EGLDisplay with which this SurfaceTexture is currently
|
|
// associated. It is intialized to EGL_NO_DISPLAY and gets set to the
|
|
// current display when updateTexImage is called for the first time and when
|
|
// attachToContext is called.
|
|
EGLDisplay mEglDisplay;
|
|
|
|
// mEglContext is the OpenGL ES context with which this SurfaceTexture is
|
|
// currently associated. It is initialized to EGL_NO_CONTEXT and gets set
|
|
// to the current GL context when updateTexImage is called for the first
|
|
// time and when attachToContext is called.
|
|
EGLContext mEglContext;
|
|
|
|
// mEGLSlots stores the buffers that have been allocated by the BufferQueue
|
|
// for each buffer slot. It is initialized to null pointers, and gets
|
|
// filled in with the result of BufferQueue::acquire when the
|
|
// client dequeues a buffer from a
|
|
// slot that has not yet been used. The buffer allocated to a slot will also
|
|
// be replaced if the requested buffer usage or geometry differs from that
|
|
// of the buffer allocated to a slot.
|
|
EGLSlot mEGLSlots[BufferQueue::NUM_BUFFER_SLOTS];
|
|
|
|
// mAbandoned indicates that the BufferQueue will no longer be used to
|
|
// consume images buffers pushed to it using the ISurfaceTexture interface.
|
|
// It is initialized to false, and set to true in the abandon method. A
|
|
// BufferQueue that has been abandoned will return the NO_INIT error from
|
|
// all ISurfaceTexture methods capable of returning an error.
|
|
bool mAbandoned;
|
|
|
|
// mName is a string used to identify the SurfaceTexture in log messages.
|
|
// It can be set by the setName method.
|
|
String8 mName;
|
|
|
|
// mFrameAvailableListener is the listener object that will be called when a
|
|
// new frame becomes available. If it is not NULL it will be called from
|
|
// queueBuffer.
|
|
sp<FrameAvailableListener> mFrameAvailableListener;
|
|
|
|
// mCurrentTexture is the buffer slot index of the buffer that is currently
|
|
// bound to the OpenGL texture. It is initialized to INVALID_BUFFER_SLOT,
|
|
// indicating that no buffer slot is currently bound to the texture. Note,
|
|
// however, that a value of INVALID_BUFFER_SLOT does not necessarily mean
|
|
// that no buffer is bound to the texture. A call to setBufferCount will
|
|
// reset mCurrentTexture to INVALID_BUFFER_SLOT.
|
|
int mCurrentTexture;
|
|
|
|
// The SurfaceTexture has-a BufferQueue and is responsible for creating this object
|
|
// if none is supplied
|
|
sp<BufferQueue> mBufferQueue;
|
|
|
|
// mAttached indicates whether the SurfaceTexture is currently attached to
|
|
// an OpenGL ES context. For legacy reasons, this is initialized to true,
|
|
// indicating that the SurfaceTexture is considered to be attached to
|
|
// whatever context is current at the time of the first updateTexImage call.
|
|
// It is set to false by detachFromContext, and then set to true again by
|
|
// attachToContext.
|
|
bool mAttached;
|
|
|
|
// mMutex is the mutex used to prevent concurrent access to the member
|
|
// variables of SurfaceTexture objects. It must be locked whenever the
|
|
// member variables are accessed.
|
|
mutable Mutex mMutex;
|
|
};
|
|
|
|
// ----------------------------------------------------------------------------
|
|
}; // namespace android
|
|
|
|
#endif // ANDROID_GUI_SURFACETEXTURE_H
|