replicant-frameworks_native/services/surfaceflinger/Layer.cpp
Mathias Agopian b79f61d41e fold LayerBaseClient into LayerBase
Change-Id: Ic745136522df59c42f0885fd969e75ea55d09f01
2013-03-05 19:52:30 -08:00

773 lines
27 KiB
C++

/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include <stdlib.h>
#include <stdint.h>
#include <sys/types.h>
#include <cutils/compiler.h>
#include <cutils/native_handle.h>
#include <cutils/properties.h>
#include <utils/Errors.h>
#include <utils/Log.h>
#include <utils/StopWatch.h>
#include <utils/Trace.h>
#include <ui/GraphicBuffer.h>
#include <ui/PixelFormat.h>
#include <gui/Surface.h>
#include "clz.h"
#include "DisplayDevice.h"
#include "GLExtensions.h"
#include "Layer.h"
#include "SurfaceFlinger.h"
#include "SurfaceTextureLayer.h"
#include "DisplayHardware/HWComposer.h"
#define DEBUG_RESIZE 0
namespace android {
// ---------------------------------------------------------------------------
Layer::Layer(SurfaceFlinger* flinger, const sp<Client>& client)
: LayerBase(flinger, client),
mTextureName(-1U),
mQueuedFrames(0),
mCurrentTransform(0),
mCurrentScalingMode(NATIVE_WINDOW_SCALING_MODE_FREEZE),
mCurrentOpacity(true),
mRefreshPending(false),
mFrameLatencyNeeded(false),
mFormat(PIXEL_FORMAT_NONE),
mGLExtensions(GLExtensions::getInstance()),
mOpaqueLayer(true),
mSecure(false),
mProtectedByApp(false)
{
mCurrentCrop.makeInvalid();
glGenTextures(1, &mTextureName);
}
void Layer::onLayerDisplayed(const sp<const DisplayDevice>& hw,
HWComposer::HWCLayerInterface* layer) {
LayerBase::onLayerDisplayed(hw, layer);
if (layer) {
mSurfaceFlingerConsumer->setReleaseFence(layer->getAndResetReleaseFenceFd());
}
}
void Layer::onFirstRef()
{
LayerBase::onFirstRef();
// Creates a custom BufferQueue for SurfaceFlingerConsumer to use
sp<BufferQueue> bq = new SurfaceTextureLayer();
mSurfaceFlingerConsumer = new SurfaceFlingerConsumer(mTextureName, true,
GL_TEXTURE_EXTERNAL_OES, false, bq);
mSurfaceFlingerConsumer->setConsumerUsageBits(getEffectiveUsage(0));
mSurfaceFlingerConsumer->setFrameAvailableListener(this);
mSurfaceFlingerConsumer->setSynchronousMode(true);
#ifdef TARGET_DISABLE_TRIPLE_BUFFERING
#warning "disabling triple buffering"
mSurfaceFlingerConsumer->setDefaultMaxBufferCount(2);
#else
mSurfaceFlingerConsumer->setDefaultMaxBufferCount(3);
#endif
const sp<const DisplayDevice> hw(mFlinger->getDefaultDisplayDevice());
updateTransformHint(hw);
}
Layer::~Layer()
{
mFlinger->deleteTextureAsync(mTextureName);
}
void Layer::onFrameAvailable() {
android_atomic_inc(&mQueuedFrames);
mFlinger->signalLayerUpdate();
}
// called with SurfaceFlinger::mStateLock as soon as the layer is entered
// in the purgatory list
void Layer::onRemoved()
{
mSurfaceFlingerConsumer->abandon();
}
void Layer::setName(const String8& name) {
LayerBase::setName(name);
mSurfaceFlingerConsumer->setName(name);
}
sp<ISurface> Layer::createSurface()
{
/*
* This class provides an implementation of BnSurface (the "native" or
* "remote" side of the Binder IPC interface ISurface), and mixes in
* LayerCleaner to ensure that mFlinger->onLayerDestroyed() is called for
* this layer when the BSurface is destroyed.
*
* The idea is to provide a handle to the Layer through ISurface that
* is cleaned up automatically when the last reference to the ISurface
* goes away. (The references will be held on the "proxy" side, while
* the Layer exists on the "native" side.)
*
* The Layer has a reference to an instance of SurfaceFlinger's variant
* of GLConsumer, which holds a reference to the BufferQueue. The
* getSurfaceTexture() call returns a Binder interface reference for
* the producer interface of the buffer queue associated with the Layer.
*/
class BSurface : public BnSurface, public LayerCleaner {
wp<const Layer> mOwner;
virtual sp<IGraphicBufferProducer> getSurfaceTexture() const {
sp<IGraphicBufferProducer> res;
sp<const Layer> that( mOwner.promote() );
if (that != NULL) {
res = that->mSurfaceFlingerConsumer->getBufferQueue();
}
return res;
}
public:
BSurface(const sp<SurfaceFlinger>& flinger,
const sp<Layer>& layer)
: LayerCleaner(flinger, layer), mOwner(layer) { }
};
sp<ISurface> sur(new BSurface(mFlinger, this));
return sur;
}
wp<IBinder> Layer::getSurfaceTextureBinder() const
{
return mSurfaceFlingerConsumer->getBufferQueue()->asBinder();
}
status_t Layer::setBuffers( uint32_t w, uint32_t h,
PixelFormat format, uint32_t flags)
{
// this surfaces pixel format
PixelFormatInfo info;
status_t err = getPixelFormatInfo(format, &info);
if (err) {
ALOGE("unsupported pixelformat %d", format);
return err;
}
uint32_t const maxSurfaceDims = min(
mFlinger->getMaxTextureSize(), mFlinger->getMaxViewportDims());
// never allow a surface larger than what our underlying GL implementation
// can handle.
if ((uint32_t(w)>maxSurfaceDims) || (uint32_t(h)>maxSurfaceDims)) {
ALOGE("dimensions too large %u x %u", uint32_t(w), uint32_t(h));
return BAD_VALUE;
}
mFormat = format;
mSecure = (flags & ISurfaceComposerClient::eSecure) ? true : false;
mProtectedByApp = (flags & ISurfaceComposerClient::eProtectedByApp) ? true : false;
mOpaqueLayer = (flags & ISurfaceComposerClient::eOpaque);
mCurrentOpacity = getOpacityForFormat(format);
mSurfaceFlingerConsumer->setDefaultBufferSize(w, h);
mSurfaceFlingerConsumer->setDefaultBufferFormat(format);
mSurfaceFlingerConsumer->setConsumerUsageBits(getEffectiveUsage(0));
return NO_ERROR;
}
Rect Layer::getContentCrop() const {
// this is the crop rectangle that applies to the buffer
// itself (as opposed to the window)
Rect crop;
if (!mCurrentCrop.isEmpty()) {
// if the buffer crop is defined, we use that
crop = mCurrentCrop;
} else if (mActiveBuffer != NULL) {
// otherwise we use the whole buffer
crop = mActiveBuffer->getBounds();
} else {
// if we don't have a buffer yet, we use an empty/invalid crop
crop.makeInvalid();
}
return crop;
}
uint32_t Layer::getContentTransform() const {
return mCurrentTransform;
}
void Layer::setGeometry(
const sp<const DisplayDevice>& hw,
HWComposer::HWCLayerInterface& layer)
{
LayerBase::setGeometry(hw, layer);
// enable this layer
layer.setSkip(false);
if (isSecure() && !hw->isSecure()) {
layer.setSkip(true);
}
const State& s(drawingState());
layer.setPlaneAlpha(s.alpha);
/*
* Transformations are applied in this order:
* 1) buffer orientation/flip/mirror
* 2) state transformation (window manager)
* 3) layer orientation (screen orientation)
* (NOTE: the matrices are multiplied in reverse order)
*/
const Transform bufferOrientation(mCurrentTransform);
const Transform tr(hw->getTransform() * s.transform * bufferOrientation);
// this gives us only the "orientation" component of the transform
const uint32_t finalTransform = tr.getOrientation();
// we can only handle simple transformation
if (finalTransform & Transform::ROT_INVALID) {
layer.setSkip(true);
} else {
layer.setTransform(finalTransform);
}
}
void Layer::setPerFrameData(const sp<const DisplayDevice>& hw,
HWComposer::HWCLayerInterface& layer) {
LayerBase::setPerFrameData(hw, layer);
// NOTE: buffer can be NULL if the client never drew into this
// layer yet, or if we ran out of memory
layer.setBuffer(mActiveBuffer);
}
void Layer::setAcquireFence(const sp<const DisplayDevice>& hw,
HWComposer::HWCLayerInterface& layer) {
int fenceFd = -1;
// TODO: there is a possible optimization here: we only need to set the
// acquire fence the first time a new buffer is acquired on EACH display.
if (layer.getCompositionType() == HWC_OVERLAY) {
sp<Fence> fence = mSurfaceFlingerConsumer->getCurrentFence();
if (fence->isValid()) {
fenceFd = fence->dup();
if (fenceFd == -1) {
ALOGW("failed to dup layer fence, skipping sync: %d", errno);
}
}
}
layer.setAcquireFenceFd(fenceFd);
}
void Layer::onDraw(const sp<const DisplayDevice>& hw, const Region& clip) const
{
ATRACE_CALL();
if (CC_UNLIKELY(mActiveBuffer == 0)) {
// the texture has not been created yet, this Layer has
// in fact never been drawn into. This happens frequently with
// SurfaceView because the WindowManager can't know when the client
// has drawn the first time.
// If there is nothing under us, we paint the screen in black, otherwise
// we just skip this update.
// figure out if there is something below us
Region under;
const SurfaceFlinger::LayerVector& drawingLayers(
mFlinger->mDrawingState.layersSortedByZ);
const size_t count = drawingLayers.size();
for (size_t i=0 ; i<count ; ++i) {
const sp<LayerBase>& layer(drawingLayers[i]);
if (layer.get() == static_cast<LayerBase const*>(this))
break;
under.orSelf( hw->getTransform().transform(layer->visibleRegion) );
}
// if not everything below us is covered, we plug the holes!
Region holes(clip.subtract(under));
if (!holes.isEmpty()) {
clearWithOpenGL(hw, holes, 0, 0, 0, 1);
}
return;
}
// Bind the current buffer to the GL texture, and wait for it to be
// ready for us to draw into.
status_t err = mSurfaceFlingerConsumer->bindTextureImage();
if (err != NO_ERROR) {
ALOGW("onDraw: bindTextureImage failed (err=%d)", err);
// Go ahead and draw the buffer anyway; no matter what we do the screen
// is probably going to have something visibly wrong.
}
bool blackOutLayer = isProtected() || (isSecure() && !hw->isSecure());
if (!blackOutLayer) {
// TODO: we could be more subtle with isFixedSize()
const bool useFiltering = getFiltering() || needsFiltering(hw) || isFixedSize();
// Query the texture matrix given our current filtering mode.
float textureMatrix[16];
mSurfaceFlingerConsumer->setFilteringEnabled(useFiltering);
mSurfaceFlingerConsumer->getTransformMatrix(textureMatrix);
// Set things up for texturing.
glBindTexture(GL_TEXTURE_EXTERNAL_OES, mTextureName);
GLenum filter = GL_NEAREST;
if (useFiltering) {
filter = GL_LINEAR;
}
glTexParameterx(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_MAG_FILTER, filter);
glTexParameterx(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_MIN_FILTER, filter);
glMatrixMode(GL_TEXTURE);
glLoadMatrixf(textureMatrix);
glMatrixMode(GL_MODELVIEW);
glDisable(GL_TEXTURE_2D);
glEnable(GL_TEXTURE_EXTERNAL_OES);
} else {
glBindTexture(GL_TEXTURE_2D, mFlinger->getProtectedTexName());
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glDisable(GL_TEXTURE_EXTERNAL_OES);
glEnable(GL_TEXTURE_2D);
}
drawWithOpenGL(hw, clip);
glDisable(GL_TEXTURE_EXTERNAL_OES);
glDisable(GL_TEXTURE_2D);
}
// As documented in libhardware header, formats in the range
// 0x100 - 0x1FF are specific to the HAL implementation, and
// are known to have no alpha channel
// TODO: move definition for device-specific range into
// hardware.h, instead of using hard-coded values here.
#define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF)
bool Layer::getOpacityForFormat(uint32_t format)
{
if (HARDWARE_IS_DEVICE_FORMAT(format)) {
return true;
}
PixelFormatInfo info;
status_t err = getPixelFormatInfo(PixelFormat(format), &info);
// in case of error (unknown format), we assume no blending
return (err || info.h_alpha <= info.l_alpha);
}
bool Layer::isOpaque() const
{
// if we don't have a buffer yet, we're translucent regardless of the
// layer's opaque flag.
if (mActiveBuffer == 0) {
return false;
}
// if the layer has the opaque flag, then we're always opaque,
// otherwise we use the current buffer's format.
return mOpaqueLayer || mCurrentOpacity;
}
bool Layer::isProtected() const
{
const sp<GraphicBuffer>& activeBuffer(mActiveBuffer);
return (activeBuffer != 0) &&
(activeBuffer->getUsage() & GRALLOC_USAGE_PROTECTED);
}
uint32_t Layer::doTransaction(uint32_t flags)
{
ATRACE_CALL();
const Layer::State& front(drawingState());
const Layer::State& temp(currentState());
const bool sizeChanged = (temp.requested.w != front.requested.w) ||
(temp.requested.h != front.requested.h);
if (sizeChanged) {
// the size changed, we need to ask our client to request a new buffer
ALOGD_IF(DEBUG_RESIZE,
"doTransaction: geometry (layer=%p '%s'), tr=%02x, scalingMode=%d\n"
" current={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
" requested={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }}\n"
" drawing={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
" requested={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }}\n",
this, (const char*) getName(), mCurrentTransform, mCurrentScalingMode,
temp.active.w, temp.active.h,
temp.active.crop.left,
temp.active.crop.top,
temp.active.crop.right,
temp.active.crop.bottom,
temp.active.crop.getWidth(),
temp.active.crop.getHeight(),
temp.requested.w, temp.requested.h,
temp.requested.crop.left,
temp.requested.crop.top,
temp.requested.crop.right,
temp.requested.crop.bottom,
temp.requested.crop.getWidth(),
temp.requested.crop.getHeight(),
front.active.w, front.active.h,
front.active.crop.left,
front.active.crop.top,
front.active.crop.right,
front.active.crop.bottom,
front.active.crop.getWidth(),
front.active.crop.getHeight(),
front.requested.w, front.requested.h,
front.requested.crop.left,
front.requested.crop.top,
front.requested.crop.right,
front.requested.crop.bottom,
front.requested.crop.getWidth(),
front.requested.crop.getHeight());
// record the new size, form this point on, when the client request
// a buffer, it'll get the new size.
mSurfaceFlingerConsumer->setDefaultBufferSize(
temp.requested.w, temp.requested.h);
}
if (!isFixedSize()) {
const bool resizePending = (temp.requested.w != temp.active.w) ||
(temp.requested.h != temp.active.h);
if (resizePending) {
// don't let LayerBase::doTransaction update the drawing state
// if we have a pending resize, unless we are in fixed-size mode.
// the drawing state will be updated only once we receive a buffer
// with the correct size.
//
// in particular, we want to make sure the clip (which is part
// of the geometry state) is latched together with the size but is
// latched immediately when no resizing is involved.
flags |= eDontUpdateGeometryState;
}
}
return LayerBase::doTransaction(flags);
}
bool Layer::isFixedSize() const {
return mCurrentScalingMode != NATIVE_WINDOW_SCALING_MODE_FREEZE;
}
bool Layer::isCropped() const {
return !mCurrentCrop.isEmpty();
}
// ----------------------------------------------------------------------------
// pageflip handling...
// ----------------------------------------------------------------------------
bool Layer::onPreComposition() {
mRefreshPending = false;
return mQueuedFrames > 0;
}
void Layer::onPostComposition() {
if (mFrameLatencyNeeded) {
nsecs_t desiredPresentTime = mSurfaceFlingerConsumer->getTimestamp();
mFrameTracker.setDesiredPresentTime(desiredPresentTime);
sp<Fence> frameReadyFence = mSurfaceFlingerConsumer->getCurrentFence();
if (frameReadyFence->isValid()) {
mFrameTracker.setFrameReadyFence(frameReadyFence);
} else {
// There was no fence for this frame, so assume that it was ready
// to be presented at the desired present time.
mFrameTracker.setFrameReadyTime(desiredPresentTime);
}
const HWComposer& hwc = mFlinger->getHwComposer();
sp<Fence> presentFence = hwc.getDisplayFence(HWC_DISPLAY_PRIMARY);
if (presentFence->isValid()) {
mFrameTracker.setActualPresentFence(presentFence);
} else {
// The HWC doesn't support present fences, so use the refresh
// timestamp instead.
nsecs_t presentTime = hwc.getRefreshTimestamp(HWC_DISPLAY_PRIMARY);
mFrameTracker.setActualPresentTime(presentTime);
}
mFrameTracker.advanceFrame();
mFrameLatencyNeeded = false;
}
}
bool Layer::isVisible() const {
return LayerBase::isVisible() && (mActiveBuffer != NULL);
}
Region Layer::latchBuffer(bool& recomputeVisibleRegions)
{
ATRACE_CALL();
Region outDirtyRegion;
if (mQueuedFrames > 0) {
// if we've already called updateTexImage() without going through
// a composition step, we have to skip this layer at this point
// because we cannot call updateTeximage() without a corresponding
// compositionComplete() call.
// we'll trigger an update in onPreComposition().
if (mRefreshPending) {
return outDirtyRegion;
}
// Capture the old state of the layer for comparisons later
const bool oldOpacity = isOpaque();
sp<GraphicBuffer> oldActiveBuffer = mActiveBuffer;
// signal another event if we have more frames pending
if (android_atomic_dec(&mQueuedFrames) > 1) {
mFlinger->signalLayerUpdate();
}
struct Reject : public SurfaceFlingerConsumer::BufferRejecter {
Layer::State& front;
Layer::State& current;
bool& recomputeVisibleRegions;
Reject(Layer::State& front, Layer::State& current,
bool& recomputeVisibleRegions)
: front(front), current(current),
recomputeVisibleRegions(recomputeVisibleRegions) {
}
virtual bool reject(const sp<GraphicBuffer>& buf,
const BufferQueue::BufferItem& item) {
if (buf == NULL) {
return false;
}
uint32_t bufWidth = buf->getWidth();
uint32_t bufHeight = buf->getHeight();
// check that we received a buffer of the right size
// (Take the buffer's orientation into account)
if (item.mTransform & Transform::ROT_90) {
swap(bufWidth, bufHeight);
}
bool isFixedSize = item.mScalingMode != NATIVE_WINDOW_SCALING_MODE_FREEZE;
if (front.active != front.requested) {
if (isFixedSize ||
(bufWidth == front.requested.w &&
bufHeight == front.requested.h))
{
// Here we pretend the transaction happened by updating the
// current and drawing states. Drawing state is only accessed
// in this thread, no need to have it locked
front.active = front.requested;
// We also need to update the current state so that
// we don't end-up overwriting the drawing state with
// this stale current state during the next transaction
//
// NOTE: We don't need to hold the transaction lock here
// because State::active is only accessed from this thread.
current.active = front.active;
// recompute visible region
recomputeVisibleRegions = true;
}
ALOGD_IF(DEBUG_RESIZE,
"latchBuffer/reject: buffer (%ux%u, tr=%02x), scalingMode=%d\n"
" drawing={ active ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n"
" requested={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }}\n",
bufWidth, bufHeight, item.mTransform, item.mScalingMode,
front.active.w, front.active.h,
front.active.crop.left,
front.active.crop.top,
front.active.crop.right,
front.active.crop.bottom,
front.active.crop.getWidth(),
front.active.crop.getHeight(),
front.requested.w, front.requested.h,
front.requested.crop.left,
front.requested.crop.top,
front.requested.crop.right,
front.requested.crop.bottom,
front.requested.crop.getWidth(),
front.requested.crop.getHeight());
}
if (!isFixedSize) {
if (front.active.w != bufWidth ||
front.active.h != bufHeight) {
// reject this buffer
return true;
}
}
return false;
}
};
Reject r(mDrawingState, currentState(), recomputeVisibleRegions);
if (mSurfaceFlingerConsumer->updateTexImage(&r) != NO_ERROR) {
// something happened!
recomputeVisibleRegions = true;
return outDirtyRegion;
}
// update the active buffer
mActiveBuffer = mSurfaceFlingerConsumer->getCurrentBuffer();
if (mActiveBuffer == NULL) {
// this can only happen if the very first buffer was rejected.
return outDirtyRegion;
}
mRefreshPending = true;
mFrameLatencyNeeded = true;
if (oldActiveBuffer == NULL) {
// the first time we receive a buffer, we need to trigger a
// geometry invalidation.
recomputeVisibleRegions = true;
}
Rect crop(mSurfaceFlingerConsumer->getCurrentCrop());
const uint32_t transform(mSurfaceFlingerConsumer->getCurrentTransform());
const uint32_t scalingMode(mSurfaceFlingerConsumer->getCurrentScalingMode());
if ((crop != mCurrentCrop) ||
(transform != mCurrentTransform) ||
(scalingMode != mCurrentScalingMode))
{
mCurrentCrop = crop;
mCurrentTransform = transform;
mCurrentScalingMode = scalingMode;
recomputeVisibleRegions = true;
}
if (oldActiveBuffer != NULL) {
uint32_t bufWidth = mActiveBuffer->getWidth();
uint32_t bufHeight = mActiveBuffer->getHeight();
if (bufWidth != uint32_t(oldActiveBuffer->width) ||
bufHeight != uint32_t(oldActiveBuffer->height)) {
recomputeVisibleRegions = true;
}
}
mCurrentOpacity = getOpacityForFormat(mActiveBuffer->format);
if (oldOpacity != isOpaque()) {
recomputeVisibleRegions = true;
}
glTexParameterx(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterx(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
// FIXME: postedRegion should be dirty & bounds
const Layer::State& front(drawingState());
Region dirtyRegion(Rect(front.active.w, front.active.h));
// transform the dirty region to window-manager space
outDirtyRegion = (front.transform.transform(dirtyRegion));
}
return outDirtyRegion;
}
void Layer::dump(String8& result, char* buffer, size_t SIZE) const
{
LayerBase::dump(result, buffer, SIZE);
sp<const GraphicBuffer> buf0(mActiveBuffer);
uint32_t w0=0, h0=0, s0=0, f0=0;
if (buf0 != 0) {
w0 = buf0->getWidth();
h0 = buf0->getHeight();
s0 = buf0->getStride();
f0 = buf0->format;
}
snprintf(buffer, SIZE,
" "
"format=%2d, activeBuffer=[%4ux%4u:%4u,%3X],"
" queued-frames=%d, mRefreshPending=%d\n",
mFormat, w0, h0, s0,f0,
mQueuedFrames, mRefreshPending);
result.append(buffer);
if (mSurfaceFlingerConsumer != 0) {
mSurfaceFlingerConsumer->dump(result, " ", buffer, SIZE);
}
}
void Layer::dumpStats(String8& result, char* buffer, size_t SIZE) const
{
LayerBase::dumpStats(result, buffer, SIZE);
mFrameTracker.dump(result);
}
void Layer::clearStats()
{
LayerBase::clearStats();
mFrameTracker.clear();
}
uint32_t Layer::getEffectiveUsage(uint32_t usage) const
{
// TODO: should we do something special if mSecure is set?
if (mProtectedByApp) {
// need a hardware-protected path to external video sink
usage |= GraphicBuffer::USAGE_PROTECTED;
}
usage |= GraphicBuffer::USAGE_HW_COMPOSER;
return usage;
}
void Layer::updateTransformHint(const sp<const DisplayDevice>& hw) const {
uint32_t orientation = 0;
if (!mFlinger->mDebugDisableTransformHint) {
// The transform hint is used to improve performance, but we can
// only have a single transform hint, it cannot
// apply to all displays.
const Transform& planeTransform(hw->getTransform());
orientation = planeTransform.getOrientation();
if (orientation & Transform::ROT_INVALID) {
orientation = 0;
}
}
mSurfaceFlingerConsumer->setTransformHint(orientation);
}
// ---------------------------------------------------------------------------
}; // namespace android