replicant-frameworks_native/libs/ui/InputReader.cpp
Jeff Brown 54bc281639 More work in progress on native events.
Refactored the code to eliminate potential deadlocks due to re-entrant
calls from the policy into the dispatcher.  Also added some plumbing
that will be used to notify the framework about ANRs.

Change-Id: Iba7a10de0cb3c56cd7520d6ce716db52fdcc94ff
2010-06-15 16:43:18 -07:00

1925 lines
70 KiB
C++

//
// Copyright 2010 The Android Open Source Project
//
// The input reader.
//
#define LOG_TAG "InputReader"
//#define LOG_NDEBUG 0
// Log debug messages for each raw event received from the EventHub.
#define DEBUG_RAW_EVENTS 0
// Log debug messages about touch screen filtering hacks.
#define DEBUG_HACKS 1
// Log debug messages about virtual key processing.
#define DEBUG_VIRTUAL_KEYS 1
// Log debug messages about pointers.
#define DEBUG_POINTERS 1
#include <cutils/log.h>
#include <ui/InputReader.h>
#include <stddef.h>
#include <unistd.h>
#include <errno.h>
#include <limits.h>
/** Amount that trackball needs to move in order to generate a key event. */
#define TRACKBALL_MOVEMENT_THRESHOLD 6
/* Slop distance for jumpy pointer detection.
* The vertical range of the screen divided by this is our epsilon value. */
#define JUMPY_EPSILON_DIVISOR 212
/* Number of jumpy points to drop for touchscreens that need it. */
#define JUMPY_TRANSITION_DROPS 3
#define JUMPY_DROP_LIMIT 3
/* Maximum squared distance for averaging.
* If moving farther than this, turn of averaging to avoid lag in response. */
#define AVERAGING_DISTANCE_LIMIT (75 * 75)
namespace android {
// --- Static Functions ---
template<typename T>
inline static T abs(const T& value) {
return value < 0 ? - value : value;
}
template<typename T>
inline static T min(const T& a, const T& b) {
return a < b ? a : b;
}
int32_t updateMetaState(int32_t keyCode, bool down, int32_t oldMetaState) {
int32_t mask;
switch (keyCode) {
case KEYCODE_ALT_LEFT:
mask = META_ALT_LEFT_ON;
break;
case KEYCODE_ALT_RIGHT:
mask = META_ALT_RIGHT_ON;
break;
case KEYCODE_SHIFT_LEFT:
mask = META_SHIFT_LEFT_ON;
break;
case KEYCODE_SHIFT_RIGHT:
mask = META_SHIFT_RIGHT_ON;
break;
case KEYCODE_SYM:
mask = META_SYM_ON;
break;
default:
return oldMetaState;
}
int32_t newMetaState = down ? oldMetaState | mask : oldMetaState & ~ mask
& ~ (META_ALT_ON | META_SHIFT_ON);
if (newMetaState & (META_ALT_LEFT_ON | META_ALT_RIGHT_ON)) {
newMetaState |= META_ALT_ON;
}
if (newMetaState & (META_SHIFT_LEFT_ON | META_SHIFT_RIGHT_ON)) {
newMetaState |= META_SHIFT_ON;
}
return newMetaState;
}
static const int32_t keyCodeRotationMap[][4] = {
// key codes enumerated counter-clockwise with the original (unrotated) key first
// no rotation, 90 degree rotation, 180 degree rotation, 270 degree rotation
{ KEYCODE_DPAD_DOWN, KEYCODE_DPAD_RIGHT, KEYCODE_DPAD_UP, KEYCODE_DPAD_LEFT },
{ KEYCODE_DPAD_RIGHT, KEYCODE_DPAD_UP, KEYCODE_DPAD_LEFT, KEYCODE_DPAD_DOWN },
{ KEYCODE_DPAD_UP, KEYCODE_DPAD_LEFT, KEYCODE_DPAD_DOWN, KEYCODE_DPAD_RIGHT },
{ KEYCODE_DPAD_LEFT, KEYCODE_DPAD_DOWN, KEYCODE_DPAD_RIGHT, KEYCODE_DPAD_UP },
};
static const int keyCodeRotationMapSize =
sizeof(keyCodeRotationMap) / sizeof(keyCodeRotationMap[0]);
int32_t rotateKeyCode(int32_t keyCode, int32_t orientation) {
if (orientation != InputReaderPolicyInterface::ROTATION_0) {
for (int i = 0; i < keyCodeRotationMapSize; i++) {
if (keyCode == keyCodeRotationMap[i][0]) {
return keyCodeRotationMap[i][orientation];
}
}
}
return keyCode;
}
// --- InputDevice ---
InputDevice::InputDevice(int32_t id, uint32_t classes, String8 name) :
id(id), classes(classes), name(name), ignored(false) {
}
void InputDevice::reset() {
if (isKeyboard()) {
keyboard.reset();
}
if (isTrackball()) {
trackball.reset();
}
if (isMultiTouchScreen()) {
multiTouchScreen.reset();
} else if (isSingleTouchScreen()) {
singleTouchScreen.reset();
}
if (isTouchScreen()) {
touchScreen.reset();
}
}
// --- InputDevice::TouchData ---
void InputDevice::TouchData::copyFrom(const TouchData& other) {
pointerCount = other.pointerCount;
idBits = other.idBits;
for (uint32_t i = 0; i < pointerCount; i++) {
pointers[i] = other.pointers[i];
idToIndex[i] = other.idToIndex[i];
}
}
// --- InputDevice::KeyboardState ---
void InputDevice::KeyboardState::reset() {
current.metaState = META_NONE;
current.downTime = 0;
}
// --- InputDevice::TrackballState ---
void InputDevice::TrackballState::reset() {
accumulator.clear();
current.down = false;
current.downTime = 0;
}
// --- InputDevice::TouchScreenState ---
void InputDevice::TouchScreenState::reset() {
lastTouch.clear();
downTime = 0;
currentVirtualKey.down = false;
for (uint32_t i = 0; i < MAX_POINTERS; i++) {
averagingTouchFilter.historyStart[i] = 0;
averagingTouchFilter.historyEnd[i] = 0;
}
jumpyTouchFilter.jumpyPointsDropped = 0;
}
void InputDevice::TouchScreenState::calculatePointerIds() {
uint32_t currentPointerCount = currentTouch.pointerCount;
uint32_t lastPointerCount = lastTouch.pointerCount;
if (currentPointerCount == 0) {
// No pointers to assign.
currentTouch.idBits.clear();
} else if (lastPointerCount == 0) {
// All pointers are new.
currentTouch.idBits.clear();
for (uint32_t i = 0; i < currentPointerCount; i++) {
currentTouch.pointers[i].id = i;
currentTouch.idToIndex[i] = i;
currentTouch.idBits.markBit(i);
}
} else if (currentPointerCount == 1 && lastPointerCount == 1) {
// Only one pointer and no change in count so it must have the same id as before.
uint32_t id = lastTouch.pointers[0].id;
currentTouch.pointers[0].id = id;
currentTouch.idToIndex[id] = 0;
currentTouch.idBits.value = BitSet32::valueForBit(id);
} else {
// General case.
// We build a heap of squared euclidean distances between current and last pointers
// associated with the current and last pointer indices. Then, we find the best
// match (by distance) for each current pointer.
struct {
uint32_t currentPointerIndex : 8;
uint32_t lastPointerIndex : 8;
uint64_t distance : 48; // squared distance
} heap[MAX_POINTERS * MAX_POINTERS];
uint32_t heapSize = 0;
for (uint32_t currentPointerIndex = 0; currentPointerIndex < currentPointerCount;
currentPointerIndex++) {
for (uint32_t lastPointerIndex = 0; lastPointerIndex < lastPointerCount;
lastPointerIndex++) {
int64_t deltaX = currentTouch.pointers[currentPointerIndex].x
- lastTouch.pointers[lastPointerIndex].x;
int64_t deltaY = currentTouch.pointers[currentPointerIndex].y
- lastTouch.pointers[lastPointerIndex].y;
uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY);
// Insert new element into the heap (sift up).
heapSize += 1;
uint32_t insertionIndex = heapSize;
while (insertionIndex > 1) {
uint32_t parentIndex = (insertionIndex - 1) / 2;
if (distance < heap[parentIndex].distance) {
heap[insertionIndex] = heap[parentIndex];
insertionIndex = parentIndex;
} else {
break;
}
}
heap[insertionIndex].currentPointerIndex = currentPointerIndex;
heap[insertionIndex].lastPointerIndex = lastPointerIndex;
heap[insertionIndex].distance = distance;
}
}
// Pull matches out by increasing order of distance.
// To avoid reassigning pointers that have already been matched, the loop keeps track
// of which last and current pointers have been matched using the matchedXXXBits variables.
// It also tracks the used pointer id bits.
BitSet32 matchedLastBits(0);
BitSet32 matchedCurrentBits(0);
BitSet32 usedIdBits(0);
bool first = true;
for (uint32_t i = min(currentPointerCount, lastPointerCount); i > 0; i--) {
for (;;) {
if (first) {
// The first time through the loop, we just consume the root element of
// the heap (the one with smalled distance).
first = false;
} else {
// Previous iterations consumed the root element of the heap.
// Pop root element off of the heap (sift down).
heapSize -= 1;
assert(heapSize > 0);
// Sift down to find where the element at index heapSize needs to be moved.
uint32_t rootIndex = 0;
for (;;) {
uint32_t childIndex = rootIndex * 2 + 1;
if (childIndex >= heapSize) {
break;
}
if (childIndex + 1 < heapSize
&& heap[childIndex + 1].distance < heap[childIndex].distance) {
childIndex += 1;
}
if (heap[heapSize].distance < heap[childIndex].distance) {
break;
}
heap[rootIndex] = heap[childIndex];
rootIndex = childIndex;
}
heap[rootIndex] = heap[heapSize];
}
uint32_t currentPointerIndex = heap[0].currentPointerIndex;
if (matchedCurrentBits.hasBit(currentPointerIndex)) continue; // already matched
uint32_t lastPointerIndex = heap[0].lastPointerIndex;
if (matchedLastBits.hasBit(lastPointerIndex)) continue; // already matched
matchedCurrentBits.markBit(currentPointerIndex);
matchedLastBits.markBit(lastPointerIndex);
uint32_t id = lastTouch.pointers[lastPointerIndex].id;
currentTouch.pointers[currentPointerIndex].id = id;
currentTouch.idToIndex[id] = currentPointerIndex;
usedIdBits.markBit(id);
break;
}
}
// Assign fresh ids to new pointers.
if (currentPointerCount > lastPointerCount) {
for (uint32_t i = currentPointerCount - lastPointerCount; ;) {
uint32_t currentPointerIndex = matchedCurrentBits.firstUnmarkedBit();
uint32_t id = usedIdBits.firstUnmarkedBit();
currentTouch.pointers[currentPointerIndex].id = id;
currentTouch.idToIndex[id] = currentPointerIndex;
usedIdBits.markBit(id);
if (--i == 0) break; // done
matchedCurrentBits.markBit(currentPointerIndex);
}
}
// Fix id bits.
currentTouch.idBits = usedIdBits;
}
}
/* Special hack for devices that have bad screen data: if one of the
* points has moved more than a screen height from the last position,
* then drop it. */
bool InputDevice::TouchScreenState::applyBadTouchFilter() {
uint32_t pointerCount = currentTouch.pointerCount;
// Nothing to do if there are no points.
if (pointerCount == 0) {
return false;
}
// Don't do anything if a finger is going down or up. We run
// here before assigning pointer IDs, so there isn't a good
// way to do per-finger matching.
if (pointerCount != lastTouch.pointerCount) {
return false;
}
// We consider a single movement across more than a 7/16 of
// the long size of the screen to be bad. This was a magic value
// determined by looking at the maximum distance it is feasible
// to actually move in one sample.
int32_t maxDeltaY = parameters.yAxis.range * 7 / 16;
// XXX The original code in InputDevice.java included commented out
// code for testing the X axis. Note that when we drop a point
// we don't actually restore the old X either. Strange.
// The old code also tries to track when bad points were previously
// detected but it turns out that due to the placement of a "break"
// at the end of the loop, we never set mDroppedBadPoint to true
// so it is effectively dead code.
// Need to figure out if the old code is busted or just overcomplicated
// but working as intended.
// Look through all new points and see if any are farther than
// acceptable from all previous points.
for (uint32_t i = pointerCount; i-- > 0; ) {
int32_t y = currentTouch.pointers[i].y;
int32_t closestY = INT_MAX;
int32_t closestDeltaY = 0;
#if DEBUG_HACKS
LOGD("BadTouchFilter: Looking at next point #%d: y=%d", i, y);
#endif
for (uint32_t j = pointerCount; j-- > 0; ) {
int32_t lastY = lastTouch.pointers[j].y;
int32_t deltaY = abs(y - lastY);
#if DEBUG_HACKS
LOGD("BadTouchFilter: Comparing with last point #%d: y=%d deltaY=%d",
j, lastY, deltaY);
#endif
if (deltaY < maxDeltaY) {
goto SkipSufficientlyClosePoint;
}
if (deltaY < closestDeltaY) {
closestDeltaY = deltaY;
closestY = lastY;
}
}
// Must not have found a close enough match.
#if DEBUG_HACKS
LOGD("BadTouchFilter: Dropping bad point #%d: newY=%d oldY=%d deltaY=%d maxDeltaY=%d",
i, y, closestY, closestDeltaY, maxDeltaY);
#endif
currentTouch.pointers[i].y = closestY;
return true; // XXX original code only corrects one point
SkipSufficientlyClosePoint: ;
}
// No change.
return false;
}
/* Special hack for devices that have bad screen data: drop points where
* the coordinate value for one axis has jumped to the other pointer's location.
*/
bool InputDevice::TouchScreenState::applyJumpyTouchFilter() {
uint32_t pointerCount = currentTouch.pointerCount;
if (lastTouch.pointerCount != pointerCount) {
#if DEBUG_HACKS
LOGD("JumpyTouchFilter: Different pointer count %d -> %d",
lastTouch.pointerCount, pointerCount);
for (uint32_t i = 0; i < pointerCount; i++) {
LOGD(" Pointer %d (%d, %d)", i,
currentTouch.pointers[i].x, currentTouch.pointers[i].y);
}
#endif
if (jumpyTouchFilter.jumpyPointsDropped < JUMPY_TRANSITION_DROPS) {
if (lastTouch.pointerCount == 1 && pointerCount == 2) {
// Just drop the first few events going from 1 to 2 pointers.
// They're bad often enough that they're not worth considering.
currentTouch.pointerCount = 1;
jumpyTouchFilter.jumpyPointsDropped += 1;
#if DEBUG_HACKS
LOGD("JumpyTouchFilter: Pointer 2 dropped");
#endif
return true;
} else if (lastTouch.pointerCount == 2 && pointerCount == 1) {
// The event when we go from 2 -> 1 tends to be messed up too
currentTouch.pointerCount = 2;
currentTouch.pointers[0] = lastTouch.pointers[0];
currentTouch.pointers[1] = lastTouch.pointers[1];
jumpyTouchFilter.jumpyPointsDropped += 1;
#if DEBUG_HACKS
for (int32_t i = 0; i < 2; i++) {
LOGD("JumpyTouchFilter: Pointer %d replaced (%d, %d)", i,
currentTouch.pointers[i].x, currentTouch.pointers[i].y);
}
#endif
return true;
}
}
// Reset jumpy points dropped on other transitions or if limit exceeded.
jumpyTouchFilter.jumpyPointsDropped = 0;
#if DEBUG_HACKS
LOGD("JumpyTouchFilter: Transition - drop limit reset");
#endif
return false;
}
// We have the same number of pointers as last time.
// A 'jumpy' point is one where the coordinate value for one axis
// has jumped to the other pointer's location. No need to do anything
// else if we only have one pointer.
if (pointerCount < 2) {
return false;
}
if (jumpyTouchFilter.jumpyPointsDropped < JUMPY_DROP_LIMIT) {
int jumpyEpsilon = parameters.yAxis.range / JUMPY_EPSILON_DIVISOR;
// We only replace the single worst jumpy point as characterized by pointer distance
// in a single axis.
int32_t badPointerIndex = -1;
int32_t badPointerReplacementIndex = -1;
int32_t badPointerDistance = INT_MIN; // distance to be corrected
for (uint32_t i = pointerCount; i-- > 0; ) {
int32_t x = currentTouch.pointers[i].x;
int32_t y = currentTouch.pointers[i].y;
#if DEBUG_HACKS
LOGD("JumpyTouchFilter: Point %d (%d, %d)", i, x, y);
#endif
// Check if a touch point is too close to another's coordinates
bool dropX = false, dropY = false;
for (uint32_t j = 0; j < pointerCount; j++) {
if (i == j) {
continue;
}
if (abs(x - currentTouch.pointers[j].x) <= jumpyEpsilon) {
dropX = true;
break;
}
if (abs(y - currentTouch.pointers[j].y) <= jumpyEpsilon) {
dropY = true;
break;
}
}
if (! dropX && ! dropY) {
continue; // not jumpy
}
// Find a replacement candidate by comparing with older points on the
// complementary (non-jumpy) axis.
int32_t distance = INT_MIN; // distance to be corrected
int32_t replacementIndex = -1;
if (dropX) {
// X looks too close. Find an older replacement point with a close Y.
int32_t smallestDeltaY = INT_MAX;
for (uint32_t j = 0; j < pointerCount; j++) {
int32_t deltaY = abs(y - lastTouch.pointers[j].y);
if (deltaY < smallestDeltaY) {
smallestDeltaY = deltaY;
replacementIndex = j;
}
}
distance = abs(x - lastTouch.pointers[replacementIndex].x);
} else {
// Y looks too close. Find an older replacement point with a close X.
int32_t smallestDeltaX = INT_MAX;
for (uint32_t j = 0; j < pointerCount; j++) {
int32_t deltaX = abs(x - lastTouch.pointers[j].x);
if (deltaX < smallestDeltaX) {
smallestDeltaX = deltaX;
replacementIndex = j;
}
}
distance = abs(y - lastTouch.pointers[replacementIndex].y);
}
// If replacing this pointer would correct a worse error than the previous ones
// considered, then use this replacement instead.
if (distance > badPointerDistance) {
badPointerIndex = i;
badPointerReplacementIndex = replacementIndex;
badPointerDistance = distance;
}
}
// Correct the jumpy pointer if one was found.
if (badPointerIndex >= 0) {
#if DEBUG_HACKS
LOGD("JumpyTouchFilter: Replacing bad pointer %d with (%d, %d)",
badPointerIndex,
lastTouch.pointers[badPointerReplacementIndex].x,
lastTouch.pointers[badPointerReplacementIndex].y);
#endif
currentTouch.pointers[badPointerIndex].x =
lastTouch.pointers[badPointerReplacementIndex].x;
currentTouch.pointers[badPointerIndex].y =
lastTouch.pointers[badPointerReplacementIndex].y;
jumpyTouchFilter.jumpyPointsDropped += 1;
return true;
}
}
jumpyTouchFilter.jumpyPointsDropped = 0;
return false;
}
/* Special hack for devices that have bad screen data: aggregate and
* compute averages of the coordinate data, to reduce the amount of
* jitter seen by applications. */
void InputDevice::TouchScreenState::applyAveragingTouchFilter() {
for (uint32_t currentIndex = 0; currentIndex < currentTouch.pointerCount; currentIndex++) {
uint32_t id = currentTouch.pointers[currentIndex].id;
int32_t x = currentTouch.pointers[currentIndex].x;
int32_t y = currentTouch.pointers[currentIndex].y;
int32_t pressure = currentTouch.pointers[currentIndex].pressure;
if (lastTouch.idBits.hasBit(id)) {
// Pointer still down compute average.
uint32_t start = averagingTouchFilter.historyStart[id];
uint32_t end = averagingTouchFilter.historyEnd[id];
int64_t deltaX = x - averagingTouchFilter.historyData[end].pointers[id].x;
int64_t deltaY = y - averagingTouchFilter.historyData[end].pointers[id].y;
uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY);
#if DEBUG_HACKS
LOGD("AveragingTouchFilter: Pointer id %d - Distance from last sample: %lld",
id, distance);
#endif
if (distance < AVERAGING_DISTANCE_LIMIT) {
end += 1;
if (end > AVERAGING_HISTORY_SIZE) {
end = 0;
}
if (end == start) {
start += 1;
if (start > AVERAGING_HISTORY_SIZE) {
start = 0;
}
}
averagingTouchFilter.historyStart[id] = start;
averagingTouchFilter.historyEnd[id] = end;
averagingTouchFilter.historyData[end].pointers[id].x = x;
averagingTouchFilter.historyData[end].pointers[id].y = y;
averagingTouchFilter.historyData[end].pointers[id].pressure = pressure;
int32_t averagedX = 0;
int32_t averagedY = 0;
int32_t totalPressure = 0;
for (;;) {
int32_t historicalX = averagingTouchFilter.historyData[start].pointers[id].x;
int32_t historicalY = averagingTouchFilter.historyData[start].pointers[id].x;
int32_t historicalPressure = averagingTouchFilter.historyData[start]
.pointers[id].pressure;
averagedX += historicalX;
averagedY += historicalY;
totalPressure += historicalPressure;
if (start == end) {
break;
}
start += 1;
if (start > AVERAGING_HISTORY_SIZE) {
start = 0;
}
}
averagedX /= totalPressure;
averagedY /= totalPressure;
#if DEBUG_HACKS
LOGD("AveragingTouchFilter: Pointer id %d - "
"totalPressure=%d, averagedX=%d, averagedY=%d", id, totalPressure,
averagedX, averagedY);
#endif
currentTouch.pointers[currentIndex].x = averagedX;
currentTouch.pointers[currentIndex].y = averagedY;
} else {
#if DEBUG_HACKS
LOGD("AveragingTouchFilter: Pointer id %d - Exceeded max distance", id);
#endif
}
} else {
#if DEBUG_HACKS
LOGD("AveragingTouchFilter: Pointer id %d - Pointer went up", id);
#endif
}
// Reset pointer history.
averagingTouchFilter.historyStart[id] = 0;
averagingTouchFilter.historyEnd[id] = 0;
averagingTouchFilter.historyData[0].pointers[id].x = x;
averagingTouchFilter.historyData[0].pointers[id].y = y;
averagingTouchFilter.historyData[0].pointers[id].pressure = pressure;
}
}
bool InputDevice::TouchScreenState::isPointInsideDisplay(int32_t x, int32_t y) const {
return x >= parameters.xAxis.minValue
&& x <= parameters.xAxis.maxValue
&& y >= parameters.yAxis.minValue
&& y <= parameters.yAxis.maxValue;
}
// --- InputDevice::SingleTouchScreenState ---
void InputDevice::SingleTouchScreenState::reset() {
accumulator.clear();
current.down = false;
current.x = 0;
current.y = 0;
current.pressure = 0;
current.size = 0;
}
// --- InputDevice::MultiTouchScreenState ---
void InputDevice::MultiTouchScreenState::reset() {
accumulator.clear();
}
// --- InputReader ---
InputReader::InputReader(const sp<EventHubInterface>& eventHub,
const sp<InputReaderPolicyInterface>& policy,
const sp<InputDispatcherInterface>& dispatcher) :
mEventHub(eventHub), mPolicy(policy), mDispatcher(dispatcher) {
configureExcludedDevices();
resetGlobalMetaState();
resetDisplayProperties();
updateExportedVirtualKeyState();
}
InputReader::~InputReader() {
for (size_t i = 0; i < mDevices.size(); i++) {
delete mDevices.valueAt(i);
}
}
void InputReader::loopOnce() {
RawEvent rawEvent;
mEventHub->getEvent(& rawEvent.deviceId, & rawEvent.type, & rawEvent.scanCode,
& rawEvent.keyCode, & rawEvent.flags, & rawEvent.value, & rawEvent.when);
// Replace the event timestamp so it is in same timebase as java.lang.System.nanoTime()
// and android.os.SystemClock.uptimeMillis() as expected by the rest of the system.
rawEvent.when = systemTime(SYSTEM_TIME_MONOTONIC);
#if DEBUG_RAW_EVENTS
LOGD("Input event: device=0x%x type=0x%x scancode=%d keycode=%d value=%d",
rawEvent.deviceId, rawEvent.type, rawEvent.scanCode, rawEvent.keyCode,
rawEvent.value);
#endif
process(& rawEvent);
}
void InputReader::process(const RawEvent* rawEvent) {
switch (rawEvent->type) {
case EventHubInterface::DEVICE_ADDED:
handleDeviceAdded(rawEvent);
break;
case EventHubInterface::DEVICE_REMOVED:
handleDeviceRemoved(rawEvent);
break;
case EV_SYN:
handleSync(rawEvent);
break;
case EV_KEY:
handleKey(rawEvent);
break;
case EV_REL:
handleRelativeMotion(rawEvent);
break;
case EV_ABS:
handleAbsoluteMotion(rawEvent);
break;
case EV_SW:
handleSwitch(rawEvent);
break;
}
}
void InputReader::handleDeviceAdded(const RawEvent* rawEvent) {
InputDevice* device = getDevice(rawEvent->deviceId);
if (device) {
LOGW("Ignoring spurious device added event for deviceId %d.", rawEvent->deviceId);
return;
}
addDevice(rawEvent->when, rawEvent->deviceId);
}
void InputReader::handleDeviceRemoved(const RawEvent* rawEvent) {
InputDevice* device = getDevice(rawEvent->deviceId);
if (! device) {
LOGW("Ignoring spurious device removed event for deviceId %d.", rawEvent->deviceId);
return;
}
removeDevice(rawEvent->when, device);
}
void InputReader::handleSync(const RawEvent* rawEvent) {
InputDevice* device = getNonIgnoredDevice(rawEvent->deviceId);
if (! device) return;
if (rawEvent->scanCode == SYN_MT_REPORT) {
// MultiTouch Sync: The driver has returned all data for *one* of the pointers.
// We drop pointers with pressure <= 0 since that indicates they are not down.
if (device->isMultiTouchScreen()) {
uint32_t pointerIndex = device->multiTouchScreen.accumulator.pointerCount;
if (device->multiTouchScreen.accumulator.pointers[pointerIndex].fields) {
if (pointerIndex == MAX_POINTERS) {
LOGW("MultiTouch device driver returned more than maximum of %d pointers.",
MAX_POINTERS);
} else {
pointerIndex += 1;
device->multiTouchScreen.accumulator.pointerCount = pointerIndex;
}
}
device->multiTouchScreen.accumulator.pointers[pointerIndex].clear();
}
} else if (rawEvent->scanCode == SYN_REPORT) {
// General Sync: The driver has returned all data for the current event update.
if (device->isMultiTouchScreen()) {
if (device->multiTouchScreen.accumulator.isDirty()) {
onMultiTouchScreenStateChanged(rawEvent->when, device);
device->multiTouchScreen.accumulator.clear();
}
} else if (device->isSingleTouchScreen()) {
if (device->singleTouchScreen.accumulator.isDirty()) {
onSingleTouchScreenStateChanged(rawEvent->when, device);
device->singleTouchScreen.accumulator.clear();
}
}
if (device->trackball.accumulator.isDirty()) {
onTrackballStateChanged(rawEvent->when, device);
device->trackball.accumulator.clear();
}
}
}
void InputReader::handleKey(const RawEvent* rawEvent) {
InputDevice* device = getNonIgnoredDevice(rawEvent->deviceId);
if (! device) return;
bool down = rawEvent->value != 0;
int32_t scanCode = rawEvent->scanCode;
if (device->isKeyboard() && (scanCode < BTN_FIRST || scanCode > BTN_LAST)) {
int32_t keyCode = rawEvent->keyCode;
onKey(rawEvent->when, device, down, keyCode, scanCode, rawEvent->flags);
} else if (device->isSingleTouchScreen()) {
switch (rawEvent->scanCode) {
case BTN_TOUCH:
device->singleTouchScreen.accumulator.fields |=
InputDevice::SingleTouchScreenState::Accumulator::FIELD_BTN_TOUCH;
device->singleTouchScreen.accumulator.btnTouch = down;
break;
}
} else if (device->isTrackball()) {
switch (rawEvent->scanCode) {
case BTN_MOUSE:
device->trackball.accumulator.fields |=
InputDevice::TrackballState::Accumulator::FIELD_BTN_MOUSE;
device->trackball.accumulator.btnMouse = down;
// send the down immediately
// XXX this emulates the old behavior of KeyInputQueue, unclear whether it is
// necessary or if we can wait until the next sync
onTrackballStateChanged(rawEvent->when, device);
device->trackball.accumulator.clear();
break;
}
}
}
void InputReader::handleRelativeMotion(const RawEvent* rawEvent) {
InputDevice* device = getNonIgnoredDevice(rawEvent->deviceId);
if (! device) return;
if (device->isTrackball()) {
switch (rawEvent->scanCode) {
case REL_X:
device->trackball.accumulator.fields |=
InputDevice::TrackballState::Accumulator::FIELD_REL_X;
device->trackball.accumulator.relX = rawEvent->value;
break;
case REL_Y:
device->trackball.accumulator.fields |=
InputDevice::TrackballState::Accumulator::FIELD_REL_Y;
device->trackball.accumulator.relY = rawEvent->value;
break;
}
}
}
void InputReader::handleAbsoluteMotion(const RawEvent* rawEvent) {
InputDevice* device = getNonIgnoredDevice(rawEvent->deviceId);
if (! device) return;
if (device->isMultiTouchScreen()) {
uint32_t pointerIndex = device->multiTouchScreen.accumulator.pointerCount;
InputDevice::MultiTouchScreenState::Accumulator::Pointer* pointer =
& device->multiTouchScreen.accumulator.pointers[pointerIndex];
switch (rawEvent->scanCode) {
case ABS_MT_POSITION_X:
pointer->fields |=
InputDevice::MultiTouchScreenState::Accumulator::FIELD_ABS_MT_POSITION_X;
pointer->absMTPositionX = rawEvent->value;
break;
case ABS_MT_POSITION_Y:
pointer->fields |=
InputDevice::MultiTouchScreenState::Accumulator::FIELD_ABS_MT_POSITION_Y;
pointer->absMTPositionY = rawEvent->value;
break;
case ABS_MT_TOUCH_MAJOR:
pointer->fields |=
InputDevice::MultiTouchScreenState::Accumulator::FIELD_ABS_MT_TOUCH_MAJOR;
pointer->absMTTouchMajor = rawEvent->value;
break;
case ABS_MT_WIDTH_MAJOR:
pointer->fields |=
InputDevice::MultiTouchScreenState::Accumulator::FIELD_ABS_MT_WIDTH_MAJOR;
pointer->absMTWidthMajor = rawEvent->value;
break;
case ABS_MT_TRACKING_ID:
pointer->fields |=
InputDevice::MultiTouchScreenState::Accumulator::FIELD_ABS_MT_TRACKING_ID;
pointer->absMTTrackingId = rawEvent->value;
break;
}
} else if (device->isSingleTouchScreen()) {
switch (rawEvent->scanCode) {
case ABS_X:
device->singleTouchScreen.accumulator.fields |=
InputDevice::SingleTouchScreenState::Accumulator::FIELD_ABS_X;
device->singleTouchScreen.accumulator.absX = rawEvent->value;
break;
case ABS_Y:
device->singleTouchScreen.accumulator.fields |=
InputDevice::SingleTouchScreenState::Accumulator::FIELD_ABS_Y;
device->singleTouchScreen.accumulator.absY = rawEvent->value;
break;
case ABS_PRESSURE:
device->singleTouchScreen.accumulator.fields |=
InputDevice::SingleTouchScreenState::Accumulator::FIELD_ABS_PRESSURE;
device->singleTouchScreen.accumulator.absPressure = rawEvent->value;
break;
case ABS_TOOL_WIDTH:
device->singleTouchScreen.accumulator.fields |=
InputDevice::SingleTouchScreenState::Accumulator::FIELD_ABS_TOOL_WIDTH;
device->singleTouchScreen.accumulator.absToolWidth = rawEvent->value;
break;
}
}
}
void InputReader::handleSwitch(const RawEvent* rawEvent) {
InputDevice* device = getNonIgnoredDevice(rawEvent->deviceId);
if (! device) return;
onSwitch(rawEvent->when, device, rawEvent->scanCode, rawEvent->value);
}
void InputReader::onKey(nsecs_t when, InputDevice* device,
bool down, int32_t keyCode, int32_t scanCode, uint32_t policyFlags) {
/* Refresh display properties so we can rotate key codes according to display orientation */
if (! refreshDisplayProperties()) {
return;
}
/* Update device state */
int32_t oldMetaState = device->keyboard.current.metaState;
int32_t newMetaState = updateMetaState(keyCode, down, oldMetaState);
if (oldMetaState != newMetaState) {
device->keyboard.current.metaState = newMetaState;
resetGlobalMetaState();
}
// FIXME if we send a down event about a rotated key press we should ensure that we send
// a corresponding up event about the rotated key press even if the orientation
// has changed in the meantime
keyCode = rotateKeyCode(keyCode, mDisplayOrientation);
if (down) {
device->keyboard.current.downTime = when;
}
/* Apply policy */
int32_t policyActions = mPolicy->interceptKey(when, device->id,
down, keyCode, scanCode, policyFlags);
if (! applyStandardInputDispatchPolicyActions(when, policyActions, & policyFlags)) {
return; // event dropped
}
/* Enqueue key event for dispatch */
int32_t keyEventAction;
if (down) {
device->keyboard.current.downTime = when;
keyEventAction = KEY_EVENT_ACTION_DOWN;
} else {
keyEventAction = KEY_EVENT_ACTION_UP;
}
int32_t keyEventFlags = KEY_EVENT_FLAG_FROM_SYSTEM;
if (policyActions & InputReaderPolicyInterface::ACTION_WOKE_HERE) {
keyEventFlags = keyEventFlags | KEY_EVENT_FLAG_WOKE_HERE;
}
mDispatcher->notifyKey(when, device->id, INPUT_EVENT_NATURE_KEY, policyFlags,
keyEventAction, keyEventFlags, keyCode, scanCode,
device->keyboard.current.metaState,
device->keyboard.current.downTime);
}
void InputReader::onSwitch(nsecs_t when, InputDevice* device, int32_t switchCode,
int32_t switchValue) {
int32_t policyActions = mPolicy->interceptSwitch(when, switchCode, switchValue);
uint32_t policyFlags = 0;
applyStandardInputDispatchPolicyActions(when, policyActions, & policyFlags);
}
void InputReader::onMultiTouchScreenStateChanged(nsecs_t when,
InputDevice* device) {
static const uint32_t REQUIRED_FIELDS =
InputDevice::MultiTouchScreenState::Accumulator::FIELD_ABS_MT_POSITION_X
| InputDevice::MultiTouchScreenState::Accumulator::FIELD_ABS_MT_POSITION_Y
| InputDevice::MultiTouchScreenState::Accumulator::FIELD_ABS_MT_TOUCH_MAJOR
| InputDevice::MultiTouchScreenState::Accumulator::FIELD_ABS_MT_WIDTH_MAJOR;
/* Refresh display properties so we can map touch screen coords into display coords */
if (! refreshDisplayProperties()) {
return;
}
/* Update device state */
InputDevice::MultiTouchScreenState* in = & device->multiTouchScreen;
InputDevice::TouchData* out = & device->touchScreen.currentTouch;
uint32_t inCount = in->accumulator.pointerCount;
uint32_t outCount = 0;
bool havePointerIds = true;
out->clear();
for (uint32_t inIndex = 0; inIndex < inCount; inIndex++) {
uint32_t fields = in->accumulator.pointers[inIndex].fields;
if ((fields & REQUIRED_FIELDS) != REQUIRED_FIELDS) {
#if DEBUG_POINTERS
LOGD("Pointers: Missing required multitouch pointer fields: index=%d, fields=%d",
inIndex, fields);
continue;
#endif
}
if (in->accumulator.pointers[inIndex].absMTTouchMajor <= 0) {
// Pointer is not down. Drop it.
continue;
}
// FIXME assignment of pressure may be incorrect, probably better to let
// pressure = touch / width. Later on we pass width to MotionEvent as a size, which
// isn't quite right either. Should be using touch for that.
out->pointers[outCount].x = in->accumulator.pointers[inIndex].absMTPositionX;
out->pointers[outCount].y = in->accumulator.pointers[inIndex].absMTPositionY;
out->pointers[outCount].pressure = in->accumulator.pointers[inIndex].absMTTouchMajor;
out->pointers[outCount].size = in->accumulator.pointers[inIndex].absMTWidthMajor;
if (havePointerIds) {
if (fields & InputDevice::MultiTouchScreenState::Accumulator::
FIELD_ABS_MT_TRACKING_ID) {
uint32_t id = uint32_t(in->accumulator.pointers[inIndex].absMTTrackingId);
if (id > MAX_POINTER_ID) {
#if DEBUG_POINTERS
LOGD("Pointers: Ignoring driver provided pointer id %d because "
"it is larger than max supported id %d for optimizations",
id, MAX_POINTER_ID);
#endif
havePointerIds = false;
}
else {
out->pointers[outCount].id = id;
out->idToIndex[id] = outCount;
out->idBits.markBit(id);
}
} else {
havePointerIds = false;
}
}
outCount += 1;
}
out->pointerCount = outCount;
onTouchScreenChanged(when, device, havePointerIds);
}
void InputReader::onSingleTouchScreenStateChanged(nsecs_t when,
InputDevice* device) {
static const uint32_t POSITION_FIELDS =
InputDevice::SingleTouchScreenState::Accumulator::FIELD_ABS_X
| InputDevice::SingleTouchScreenState::Accumulator::FIELD_ABS_Y
| InputDevice::SingleTouchScreenState::Accumulator::FIELD_ABS_PRESSURE
| InputDevice::SingleTouchScreenState::Accumulator::FIELD_ABS_TOOL_WIDTH;
/* Refresh display properties so we can map touch screen coords into display coords */
if (! refreshDisplayProperties()) {
return;
}
/* Update device state */
InputDevice::SingleTouchScreenState* in = & device->singleTouchScreen;
InputDevice::TouchData* out = & device->touchScreen.currentTouch;
uint32_t fields = in->accumulator.fields;
if (fields & InputDevice::SingleTouchScreenState::Accumulator::FIELD_BTN_TOUCH) {
in->current.down = in->accumulator.btnTouch;
}
if ((fields & POSITION_FIELDS) == POSITION_FIELDS) {
in->current.x = in->accumulator.absX;
in->current.y = in->accumulator.absY;
in->current.pressure = in->accumulator.absPressure;
in->current.size = in->accumulator.absToolWidth;
}
out->clear();
if (in->current.down) {
out->pointerCount = 1;
out->pointers[0].id = 0;
out->pointers[0].x = in->current.x;
out->pointers[0].y = in->current.y;
out->pointers[0].pressure = in->current.pressure;
out->pointers[0].size = in->current.size;
out->idToIndex[0] = 0;
out->idBits.markBit(0);
}
onTouchScreenChanged(when, device, true);
}
void InputReader::onTouchScreenChanged(nsecs_t when,
InputDevice* device, bool havePointerIds) {
/* Apply policy */
int32_t policyActions = mPolicy->interceptTouch(when);
uint32_t policyFlags = 0;
if (! applyStandardInputDispatchPolicyActions(when, policyActions, & policyFlags)) {
device->touchScreen.lastTouch.clear();
return; // event dropped
}
/* Preprocess pointer data */
if (device->touchScreen.parameters.useBadTouchFilter) {
if (device->touchScreen.applyBadTouchFilter()) {
havePointerIds = false;
}
}
if (device->touchScreen.parameters.useJumpyTouchFilter) {
if (device->touchScreen.applyJumpyTouchFilter()) {
havePointerIds = false;
}
}
if (! havePointerIds) {
device->touchScreen.calculatePointerIds();
}
InputDevice::TouchData temp;
InputDevice::TouchData* savedTouch;
if (device->touchScreen.parameters.useAveragingTouchFilter) {
temp.copyFrom(device->touchScreen.currentTouch);
savedTouch = & temp;
device->touchScreen.applyAveragingTouchFilter();
} else {
savedTouch = & device->touchScreen.currentTouch;
}
/* Process virtual keys or touches */
if (! consumeVirtualKeyTouches(when, device, policyFlags)) {
dispatchTouches(when, device, policyFlags);
}
// Copy current touch to last touch in preparation for the next cycle.
device->touchScreen.lastTouch.copyFrom(*savedTouch);
}
bool InputReader::consumeVirtualKeyTouches(nsecs_t when,
InputDevice* device, uint32_t policyFlags) {
if (device->touchScreen.currentVirtualKey.down) {
if (device->touchScreen.currentTouch.pointerCount == 0) {
// Pointer went up while virtual key was down. Send key up event.
device->touchScreen.currentVirtualKey.down = false;
#if DEBUG_VIRTUAL_KEYS
LOGD("VirtualKeys: Generating key up: keyCode=%d, scanCode=%d",
device->touchScreen.currentVirtualKey.keyCode,
device->touchScreen.currentVirtualKey.scanCode);
#endif
dispatchVirtualKey(when, device, policyFlags, KEY_EVENT_ACTION_UP,
KEY_EVENT_FLAG_FROM_SYSTEM | KEY_EVENT_FLAG_VIRTUAL_HARD_KEY);
return true; // consumed
}
int32_t x = device->touchScreen.currentTouch.pointers[0].x;
int32_t y = device->touchScreen.currentTouch.pointers[0].y;
if (device->touchScreen.isPointInsideDisplay(x, y)) {
// Pointer moved inside the display area. Send key cancellation.
device->touchScreen.currentVirtualKey.down = false;
#if DEBUG_VIRTUAL_KEYS
LOGD("VirtualKeys: Canceling key: keyCode=%d, scanCode=%d",
device->touchScreen.currentVirtualKey.keyCode,
device->touchScreen.currentVirtualKey.scanCode);
#endif
dispatchVirtualKey(when, device, policyFlags, KEY_EVENT_ACTION_UP,
KEY_EVENT_FLAG_FROM_SYSTEM | KEY_EVENT_FLAG_VIRTUAL_HARD_KEY
| KEY_EVENT_FLAG_CANCELED);
// Clear the last touch data so we will consider the pointer as having just been
// pressed down when generating subsequent motion events.
device->touchScreen.lastTouch.clear();
return false; // not consumed
}
} else if (device->touchScreen.currentTouch.pointerCount > 0
&& device->touchScreen.lastTouch.pointerCount == 0) {
int32_t x = device->touchScreen.currentTouch.pointers[0].x;
int32_t y = device->touchScreen.currentTouch.pointers[0].y;
for (size_t i = 0; i < device->touchScreen.virtualKeys.size(); i++) {
const InputDevice::VirtualKey& virtualKey = device->touchScreen.virtualKeys[i];
#if DEBUG_VIRTUAL_KEYS
LOGD("VirtualKeys: Hit test (%d, %d): keyCode=%d, scanCode=%d, "
"left=%d, top=%d, right=%d, bottom=%d",
x, y,
virtualKey.keyCode, virtualKey.scanCode,
virtualKey.hitLeft, virtualKey.hitTop,
virtualKey.hitRight, virtualKey.hitBottom);
#endif
if (virtualKey.isHit(x, y)) {
device->touchScreen.currentVirtualKey.down = true;
device->touchScreen.currentVirtualKey.downTime = when;
device->touchScreen.currentVirtualKey.keyCode = virtualKey.keyCode;
device->touchScreen.currentVirtualKey.scanCode = virtualKey.scanCode;
#if DEBUG_VIRTUAL_KEYS
LOGD("VirtualKeys: Generating key down: keyCode=%d, scanCode=%d",
device->touchScreen.currentVirtualKey.keyCode,
device->touchScreen.currentVirtualKey.scanCode);
#endif
dispatchVirtualKey(when, device, policyFlags, KEY_EVENT_ACTION_DOWN,
KEY_EVENT_FLAG_FROM_SYSTEM | KEY_EVENT_FLAG_VIRTUAL_HARD_KEY);
return true; // consumed
}
}
}
return false; // not consumed
}
void InputReader::dispatchVirtualKey(nsecs_t when,
InputDevice* device, uint32_t policyFlags,
int32_t keyEventAction, int32_t keyEventFlags) {
int32_t keyCode = device->touchScreen.currentVirtualKey.keyCode;
int32_t scanCode = device->touchScreen.currentVirtualKey.scanCode;
nsecs_t downTime = device->touchScreen.currentVirtualKey.downTime;
int32_t metaState = globalMetaState();
updateExportedVirtualKeyState();
mPolicy->virtualKeyFeedback(when, device->id, keyEventAction, keyEventFlags,
keyCode, scanCode, metaState, downTime);
mDispatcher->notifyKey(when, device->id, INPUT_EVENT_NATURE_KEY, policyFlags,
keyEventAction, keyEventFlags, keyCode, scanCode, metaState, downTime);
}
void InputReader::dispatchTouches(nsecs_t when,
InputDevice* device, uint32_t policyFlags) {
uint32_t currentPointerCount = device->touchScreen.currentTouch.pointerCount;
uint32_t lastPointerCount = device->touchScreen.lastTouch.pointerCount;
if (currentPointerCount == 0 && lastPointerCount == 0) {
return; // nothing to do!
}
BitSet32 currentIdBits = device->touchScreen.currentTouch.idBits;
BitSet32 lastIdBits = device->touchScreen.lastTouch.idBits;
if (currentIdBits == lastIdBits) {
// No pointer id changes so this is a move event.
// The dispatcher takes care of batching moves so we don't have to deal with that here.
int32_t motionEventAction = MOTION_EVENT_ACTION_MOVE;
dispatchTouch(when, device, policyFlags, & device->touchScreen.currentTouch,
currentIdBits, motionEventAction);
} else {
// There may be pointers going up and pointers going down at the same time when pointer
// ids are reported by the device driver.
BitSet32 upIdBits(lastIdBits.value & ~ currentIdBits.value);
BitSet32 downIdBits(currentIdBits.value & ~ lastIdBits.value);
BitSet32 activeIdBits(lastIdBits.value);
while (! upIdBits.isEmpty()) {
uint32_t upId = upIdBits.firstMarkedBit();
upIdBits.clearBit(upId);
BitSet32 oldActiveIdBits = activeIdBits;
activeIdBits.clearBit(upId);
int32_t motionEventAction;
if (activeIdBits.isEmpty()) {
motionEventAction = MOTION_EVENT_ACTION_UP;
} else {
motionEventAction = MOTION_EVENT_ACTION_POINTER_UP
| (upId << MOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
}
dispatchTouch(when, device, policyFlags, & device->touchScreen.lastTouch,
oldActiveIdBits, motionEventAction);
}
while (! downIdBits.isEmpty()) {
uint32_t downId = downIdBits.firstMarkedBit();
downIdBits.clearBit(downId);
BitSet32 oldActiveIdBits = activeIdBits;
activeIdBits.markBit(downId);
int32_t motionEventAction;
if (oldActiveIdBits.isEmpty()) {
motionEventAction = MOTION_EVENT_ACTION_DOWN;
device->touchScreen.downTime = when;
} else {
motionEventAction = MOTION_EVENT_ACTION_POINTER_DOWN
| (downId << MOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
}
dispatchTouch(when, device, policyFlags, & device->touchScreen.currentTouch,
activeIdBits, motionEventAction);
}
}
}
void InputReader::dispatchTouch(nsecs_t when, InputDevice* device, uint32_t policyFlags,
InputDevice::TouchData* touch, BitSet32 idBits,
int32_t motionEventAction) {
int32_t orientedWidth, orientedHeight;
switch (mDisplayOrientation) {
case InputReaderPolicyInterface::ROTATION_90:
case InputReaderPolicyInterface::ROTATION_270:
orientedWidth = mDisplayHeight;
orientedHeight = mDisplayWidth;
break;
default:
orientedWidth = mDisplayWidth;
orientedHeight = mDisplayHeight;
break;
}
uint32_t pointerCount = 0;
int32_t pointerIds[MAX_POINTERS];
PointerCoords pointerCoords[MAX_POINTERS];
// Walk through the the active pointers and map touch screen coordinates (TouchData) into
// display coordinates (PointerCoords) and adjust for display orientation.
while (! idBits.isEmpty()) {
uint32_t id = idBits.firstMarkedBit();
idBits.clearBit(id);
uint32_t index = touch->idToIndex[id];
float x = (float(touch->pointers[index].x)
- device->touchScreen.parameters.xAxis.minValue)
* device->touchScreen.precalculated.xScale;
float y = (float(touch->pointers[index].y)
- device->touchScreen.parameters.yAxis.minValue)
* device->touchScreen.precalculated.yScale;
float pressure = (float(touch->pointers[index].pressure)
- device->touchScreen.parameters.pressureAxis.minValue)
* device->touchScreen.precalculated.pressureScale;
float size = (float(touch->pointers[index].size)
- device->touchScreen.parameters.sizeAxis.minValue)
* device->touchScreen.precalculated.sizeScale;
switch (mDisplayOrientation) {
case InputReaderPolicyInterface::ROTATION_90: {
float xTemp = x;
x = y;
y = mDisplayHeight - xTemp;
break;
}
case InputReaderPolicyInterface::ROTATION_180: {
x = mDisplayWidth - x;
y = mDisplayHeight - y;
break;
}
case InputReaderPolicyInterface::ROTATION_270: {
float xTemp = x;
x = mDisplayWidth - y;
y = xTemp;
break;
}
}
pointerIds[pointerCount] = int32_t(id);
pointerCoords[pointerCount].x = x;
pointerCoords[pointerCount].y = y;
pointerCoords[pointerCount].pressure = pressure;
pointerCoords[pointerCount].size = size;
pointerCount += 1;
}
// Check edge flags by looking only at the first pointer since the flags are
// global to the event.
// XXX Maybe we should revise the edge flags API to work on a per-pointer basis.
int32_t motionEventEdgeFlags = 0;
if (motionEventAction == MOTION_EVENT_ACTION_DOWN) {
if (pointerCoords[0].x <= 0) {
motionEventEdgeFlags |= MOTION_EVENT_EDGE_FLAG_LEFT;
} else if (pointerCoords[0].x >= orientedWidth) {
motionEventEdgeFlags |= MOTION_EVENT_EDGE_FLAG_RIGHT;
}
if (pointerCoords[0].y <= 0) {
motionEventEdgeFlags |= MOTION_EVENT_EDGE_FLAG_TOP;
} else if (pointerCoords[0].y >= orientedHeight) {
motionEventEdgeFlags |= MOTION_EVENT_EDGE_FLAG_BOTTOM;
}
}
nsecs_t downTime = device->touchScreen.downTime;
mDispatcher->notifyMotion(when, device->id, INPUT_EVENT_NATURE_TOUCH, policyFlags,
motionEventAction, globalMetaState(), motionEventEdgeFlags,
pointerCount, pointerIds, pointerCoords,
0, 0, downTime);
}
void InputReader::onTrackballStateChanged(nsecs_t when,
InputDevice* device) {
static const uint32_t DELTA_FIELDS =
InputDevice::TrackballState::Accumulator::FIELD_REL_X
| InputDevice::TrackballState::Accumulator::FIELD_REL_Y;
/* Refresh display properties so we can trackball moves according to display orientation */
if (! refreshDisplayProperties()) {
return;
}
/* Update device state */
uint32_t fields = device->trackball.accumulator.fields;
bool downChanged = fields & InputDevice::TrackballState::Accumulator::FIELD_BTN_MOUSE;
bool deltaChanged = (fields & DELTA_FIELDS) == DELTA_FIELDS;
bool down;
if (downChanged) {
if (device->trackball.accumulator.btnMouse) {
device->trackball.current.down = true;
device->trackball.current.downTime = when;
down = true;
} else {
device->trackball.current.down = false;
down = false;
}
} else {
down = device->trackball.current.down;
}
/* Apply policy */
int32_t policyActions = mPolicy->interceptTrackball(when, downChanged, down, deltaChanged);
uint32_t policyFlags = 0;
if (! applyStandardInputDispatchPolicyActions(when, policyActions, & policyFlags)) {
return; // event dropped
}
/* Enqueue motion event for dispatch */
int32_t motionEventAction;
if (downChanged) {
motionEventAction = down ? MOTION_EVENT_ACTION_DOWN : MOTION_EVENT_ACTION_UP;
} else {
motionEventAction = MOTION_EVENT_ACTION_MOVE;
}
int32_t pointerId = 0;
PointerCoords pointerCoords;
pointerCoords.x = device->trackball.accumulator.relX
* device->trackball.precalculated.xScale;
pointerCoords.y = device->trackball.accumulator.relY
* device->trackball.precalculated.yScale;
pointerCoords.pressure = 1.0f; // XXX Consider making this 1.0f if down, 0 otherwise.
pointerCoords.size = 0;
float temp;
switch (mDisplayOrientation) {
case InputReaderPolicyInterface::ROTATION_90:
temp = pointerCoords.x;
pointerCoords.x = pointerCoords.y;
pointerCoords.y = - temp;
break;
case InputReaderPolicyInterface::ROTATION_180:
pointerCoords.x = - pointerCoords.x;
pointerCoords.y = - pointerCoords.y;
break;
case InputReaderPolicyInterface::ROTATION_270:
temp = pointerCoords.x;
pointerCoords.x = - pointerCoords.y;
pointerCoords.y = temp;
break;
}
mDispatcher->notifyMotion(when, device->id, INPUT_EVENT_NATURE_TRACKBALL, policyFlags,
motionEventAction, globalMetaState(), MOTION_EVENT_EDGE_FLAG_NONE,
1, & pointerId, & pointerCoords,
device->trackball.precalculated.xPrecision,
device->trackball.precalculated.yPrecision,
device->trackball.current.downTime);
}
void InputReader::onConfigurationChanged(nsecs_t when) {
// Reset global meta state because it depends on the list of all configured devices.
resetGlobalMetaState();
// Reset virtual keys, just in case.
updateExportedVirtualKeyState();
// Update input configuration.
updateExportedInputConfiguration();
// Enqueue configuration changed.
mDispatcher->notifyConfigurationChanged(when);
}
bool InputReader::applyStandardInputDispatchPolicyActions(nsecs_t when,
int32_t policyActions, uint32_t* policyFlags) {
if (policyActions & InputReaderPolicyInterface::ACTION_APP_SWITCH_COMING) {
mDispatcher->notifyAppSwitchComing(when);
}
if (policyActions & InputReaderPolicyInterface::ACTION_WOKE_HERE) {
*policyFlags |= POLICY_FLAG_WOKE_HERE;
}
if (policyActions & InputReaderPolicyInterface::ACTION_BRIGHT_HERE) {
*policyFlags |= POLICY_FLAG_BRIGHT_HERE;
}
return policyActions & InputReaderPolicyInterface::ACTION_DISPATCH;
}
void InputReader::resetDisplayProperties() {
mDisplayWidth = mDisplayHeight = -1;
mDisplayOrientation = -1;
}
bool InputReader::refreshDisplayProperties() {
int32_t newWidth, newHeight, newOrientation;
if (mPolicy->getDisplayInfo(0, & newWidth, & newHeight, & newOrientation)) {
if (newWidth != mDisplayWidth || newHeight != mDisplayHeight) {
LOGD("Display size changed from %dx%d to %dx%d, updating device configuration",
mDisplayWidth, mDisplayHeight, newWidth, newHeight);
mDisplayWidth = newWidth;
mDisplayHeight = newHeight;
for (size_t i = 0; i < mDevices.size(); i++) {
configureDeviceForCurrentDisplaySize(mDevices.valueAt(i));
}
}
mDisplayOrientation = newOrientation;
return true;
} else {
resetDisplayProperties();
return false;
}
}
InputDevice* InputReader::getDevice(int32_t deviceId) {
ssize_t index = mDevices.indexOfKey(deviceId);
return index >= 0 ? mDevices.valueAt((size_t) index) : NULL;
}
InputDevice* InputReader::getNonIgnoredDevice(int32_t deviceId) {
InputDevice* device = getDevice(deviceId);
return device && ! device->ignored ? device : NULL;
}
void InputReader::addDevice(nsecs_t when, int32_t deviceId) {
uint32_t classes = mEventHub->getDeviceClasses(deviceId);
String8 name = mEventHub->getDeviceName(deviceId);
InputDevice* device = new InputDevice(deviceId, classes, name);
if (classes != 0) {
LOGI("Device added: id=0x%x, name=%s, classes=%02x", device->id,
device->name.string(), device->classes);
configureDevice(device);
} else {
LOGI("Device added: id=0x%x, name=%s (ignored non-input device)", device->id,
device->name.string());
device->ignored = true;
}
device->reset();
mDevices.add(deviceId, device);
if (! device->ignored) {
onConfigurationChanged(when);
}
}
void InputReader::removeDevice(nsecs_t when, InputDevice* device) {
mDevices.removeItem(device->id);
if (! device->ignored) {
LOGI("Device removed: id=0x%x, name=%s, classes=%02x", device->id,
device->name.string(), device->classes);
onConfigurationChanged(when);
} else {
LOGI("Device removed: id=0x%x, name=%s (ignored non-input device)", device->id,
device->name.string());
}
delete device;
}
void InputReader::configureDevice(InputDevice* device) {
if (device->isMultiTouchScreen()) {
configureAbsoluteAxisInfo(device, ABS_MT_POSITION_X, "X",
& device->touchScreen.parameters.xAxis);
configureAbsoluteAxisInfo(device, ABS_MT_POSITION_Y, "Y",
& device->touchScreen.parameters.yAxis);
configureAbsoluteAxisInfo(device, ABS_MT_TOUCH_MAJOR, "Pressure",
& device->touchScreen.parameters.pressureAxis);
configureAbsoluteAxisInfo(device, ABS_MT_WIDTH_MAJOR, "Size",
& device->touchScreen.parameters.sizeAxis);
} else if (device->isSingleTouchScreen()) {
configureAbsoluteAxisInfo(device, ABS_X, "X",
& device->touchScreen.parameters.xAxis);
configureAbsoluteAxisInfo(device, ABS_Y, "Y",
& device->touchScreen.parameters.yAxis);
configureAbsoluteAxisInfo(device, ABS_PRESSURE, "Pressure",
& device->touchScreen.parameters.pressureAxis);
configureAbsoluteAxisInfo(device, ABS_TOOL_WIDTH, "Size",
& device->touchScreen.parameters.sizeAxis);
}
if (device->isTouchScreen()) {
device->touchScreen.parameters.useBadTouchFilter =
mPolicy->filterTouchEvents();
device->touchScreen.parameters.useAveragingTouchFilter =
mPolicy->filterTouchEvents();
device->touchScreen.parameters.useJumpyTouchFilter =
mPolicy->filterJumpyTouchEvents();
device->touchScreen.precalculated.pressureScale =
1.0f / device->touchScreen.parameters.pressureAxis.range;
device->touchScreen.precalculated.sizeScale =
1.0f / device->touchScreen.parameters.sizeAxis.range;
}
if (device->isTrackball()) {
device->trackball.precalculated.xPrecision = TRACKBALL_MOVEMENT_THRESHOLD;
device->trackball.precalculated.yPrecision = TRACKBALL_MOVEMENT_THRESHOLD;
device->trackball.precalculated.xScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD;
device->trackball.precalculated.yScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD;
}
configureDeviceForCurrentDisplaySize(device);
}
void InputReader::configureDeviceForCurrentDisplaySize(InputDevice* device) {
if (device->isTouchScreen()) {
if (mDisplayWidth < 0) {
LOGD("Skipping part of touch screen configuration since display size is unknown.");
} else {
LOGI("Device configured: id=0x%x, name=%s (display size was changed)", device->id,
device->name.string());
configureVirtualKeys(device);
device->touchScreen.precalculated.xScale =
float(mDisplayWidth) / device->touchScreen.parameters.xAxis.range;
device->touchScreen.precalculated.yScale =
float(mDisplayHeight) / device->touchScreen.parameters.yAxis.range;
}
}
}
void InputReader::configureVirtualKeys(InputDevice* device) {
device->touchScreen.virtualKeys.clear();
Vector<InputReaderPolicyInterface::VirtualKeyDefinition> virtualKeyDefinitions;
mPolicy->getVirtualKeyDefinitions(device->name, virtualKeyDefinitions);
if (virtualKeyDefinitions.size() == 0) {
return;
}
device->touchScreen.virtualKeys.setCapacity(virtualKeyDefinitions.size());
int32_t touchScreenLeft = device->touchScreen.parameters.xAxis.minValue;
int32_t touchScreenTop = device->touchScreen.parameters.yAxis.minValue;
int32_t touchScreenWidth = device->touchScreen.parameters.xAxis.range;
int32_t touchScreenHeight = device->touchScreen.parameters.yAxis.range;
for (size_t i = 0; i < virtualKeyDefinitions.size(); i++) {
const InputReaderPolicyInterface::VirtualKeyDefinition& virtualKeyDefinition =
virtualKeyDefinitions[i];
device->touchScreen.virtualKeys.add();
InputDevice::VirtualKey& virtualKey =
device->touchScreen.virtualKeys.editTop();
virtualKey.scanCode = virtualKeyDefinition.scanCode;
int32_t keyCode;
uint32_t flags;
if (mEventHub->scancodeToKeycode(device->id, virtualKey.scanCode,
& keyCode, & flags)) {
LOGI(" VirtualKey %d: could not obtain key code, ignoring", virtualKey.scanCode);
device->touchScreen.virtualKeys.pop(); // drop the key
continue;
}
virtualKey.keyCode = keyCode;
virtualKey.flags = flags;
// convert the key definition's display coordinates into touch coordinates for a hit box
int32_t halfWidth = virtualKeyDefinition.width / 2;
int32_t halfHeight = virtualKeyDefinition.height / 2;
virtualKey.hitLeft = (virtualKeyDefinition.centerX - halfWidth)
* touchScreenWidth / mDisplayWidth + touchScreenLeft;
virtualKey.hitRight= (virtualKeyDefinition.centerX + halfWidth)
* touchScreenWidth / mDisplayWidth + touchScreenLeft;
virtualKey.hitTop = (virtualKeyDefinition.centerY - halfHeight)
* touchScreenHeight / mDisplayHeight + touchScreenTop;
virtualKey.hitBottom = (virtualKeyDefinition.centerY + halfHeight)
* touchScreenHeight / mDisplayHeight + touchScreenTop;
LOGI(" VirtualKey %d: keyCode=%d hitLeft=%d hitRight=%d hitTop=%d hitBottom=%d",
virtualKey.scanCode, virtualKey.keyCode,
virtualKey.hitLeft, virtualKey.hitRight, virtualKey.hitTop, virtualKey.hitBottom);
}
}
void InputReader::configureAbsoluteAxisInfo(InputDevice* device,
int axis, const char* name, InputDevice::AbsoluteAxisInfo* out) {
if (! mEventHub->getAbsoluteInfo(device->id, axis,
& out->minValue, & out->maxValue, & out->flat, &out->fuzz)) {
out->range = out->maxValue - out->minValue;
if (out->range != 0) {
LOGI(" %s: min=%d max=%d flat=%d fuzz=%d",
name, out->minValue, out->maxValue, out->flat, out->fuzz);
return;
}
}
out->minValue = 0;
out->maxValue = 0;
out->flat = 0;
out->fuzz = 0;
out->range = 0;
LOGI(" %s: unknown axis values, setting to zero", name);
}
void InputReader::configureExcludedDevices() {
Vector<String8> excludedDeviceNames;
mPolicy->getExcludedDeviceNames(excludedDeviceNames);
for (size_t i = 0; i < excludedDeviceNames.size(); i++) {
mEventHub->addExcludedDevice(excludedDeviceNames[i]);
}
}
void InputReader::resetGlobalMetaState() {
mGlobalMetaState = -1;
}
int32_t InputReader::globalMetaState() {
if (mGlobalMetaState == -1) {
mGlobalMetaState = 0;
for (size_t i = 0; i < mDevices.size(); i++) {
InputDevice* device = mDevices.valueAt(i);
if (device->isKeyboard()) {
mGlobalMetaState |= device->keyboard.current.metaState;
}
}
}
return mGlobalMetaState;
}
void InputReader::updateExportedVirtualKeyState() {
int32_t keyCode = -1, scanCode = -1;
for (size_t i = 0; i < mDevices.size(); i++) {
InputDevice* device = mDevices.valueAt(i);
if (device->isTouchScreen()) {
if (device->touchScreen.currentVirtualKey.down) {
keyCode = device->touchScreen.currentVirtualKey.keyCode;
scanCode = device->touchScreen.currentVirtualKey.scanCode;
}
}
}
{ // acquire exported state lock
AutoMutex _l(mExportedStateLock);
mExportedVirtualKeyCode = keyCode;
mExportedVirtualScanCode = scanCode;
} // release exported state lock
}
bool InputReader::getCurrentVirtualKey(int32_t* outKeyCode, int32_t* outScanCode) const {
{ // acquire exported state lock
AutoMutex _l(mExportedStateLock);
*outKeyCode = mExportedVirtualKeyCode;
*outScanCode = mExportedVirtualScanCode;
return mExportedVirtualKeyCode != -1;
} // release exported state lock
}
void InputReader::updateExportedInputConfiguration() {
int32_t touchScreenConfig = InputConfiguration::TOUCHSCREEN_NOTOUCH;
int32_t keyboardConfig = InputConfiguration::KEYBOARD_NOKEYS;
int32_t navigationConfig = InputConfiguration::NAVIGATION_NONAV;
for (size_t i = 0; i < mDevices.size(); i++) {
InputDevice* device = mDevices.valueAt(i);
int32_t deviceClasses = device->classes;
if (deviceClasses & INPUT_DEVICE_CLASS_TOUCHSCREEN) {
touchScreenConfig = InputConfiguration::TOUCHSCREEN_FINGER;
}
if (deviceClasses & INPUT_DEVICE_CLASS_ALPHAKEY) {
keyboardConfig = InputConfiguration::KEYBOARD_QWERTY;
}
if (deviceClasses & INPUT_DEVICE_CLASS_TRACKBALL) {
navigationConfig = InputConfiguration::NAVIGATION_TRACKBALL;
} else if (deviceClasses & INPUT_DEVICE_CLASS_DPAD) {
navigationConfig = InputConfiguration::NAVIGATION_DPAD;
}
}
{ // acquire exported state lock
AutoMutex _l(mExportedStateLock);
mExportedInputConfiguration.touchScreen = touchScreenConfig;
mExportedInputConfiguration.keyboard = keyboardConfig;
mExportedInputConfiguration.navigation = navigationConfig;
} // release exported state lock
}
void InputReader::getCurrentInputConfiguration(InputConfiguration* outConfiguration) const {
{ // acquire exported state lock
AutoMutex _l(mExportedStateLock);
*outConfiguration = mExportedInputConfiguration;
} // release exported state lock
}
int32_t InputReader::getCurrentScanCodeState(int32_t deviceId, int32_t deviceClasses,
int32_t scanCode) const {
{ // acquire exported state lock
AutoMutex _l(mExportedStateLock);
if (mExportedVirtualScanCode == scanCode) {
return KEY_STATE_VIRTUAL;
}
} // release exported state lock
return mEventHub->getScanCodeState(deviceId, deviceClasses, scanCode);
}
int32_t InputReader::getCurrentKeyCodeState(int32_t deviceId, int32_t deviceClasses,
int32_t keyCode) const {
{ // acquire exported state lock
AutoMutex _l(mExportedStateLock);
if (mExportedVirtualKeyCode == keyCode) {
return KEY_STATE_VIRTUAL;
}
} // release exported state lock
return mEventHub->getKeyCodeState(deviceId, deviceClasses, keyCode);
}
int32_t InputReader::getCurrentSwitchState(int32_t deviceId, int32_t deviceClasses,
int32_t sw) const {
return mEventHub->getSwitchState(deviceId, deviceClasses, sw);
}
bool InputReader::hasKeys(size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) const {
return mEventHub->hasKeys(numCodes, keyCodes, outFlags);
}
// --- InputReaderThread ---
InputReaderThread::InputReaderThread(const sp<InputReaderInterface>& reader) :
Thread(/*canCallJava*/ true), mReader(reader) {
}
InputReaderThread::~InputReaderThread() {
}
bool InputReaderThread::threadLoop() {
mReader->loopOnce();
return true;
}
} // namespace android