replicant-frameworks_native/include/ui/InputDispatcher.h
Jeff Brown e68d9e0be4 Add support for secure system overlays.
Manual merge from Gingerbread.

This change adds a new window type for secure system overlays
created by the system itself from non-secure system overlays that
might be created by applications that have the system alert permission.
Secure views ignore the presence of secure system overlays.

Bug: 3098519
Change-Id: Id876736fd8bf332ff9a5428bde59f5268aa49c3a
2010-10-15 17:10:55 -07:00

1099 lines
42 KiB
C++

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _UI_INPUT_DISPATCHER_H
#define _UI_INPUT_DISPATCHER_H
#include <ui/Input.h>
#include <ui/InputTransport.h>
#include <utils/KeyedVector.h>
#include <utils/Vector.h>
#include <utils/threads.h>
#include <utils/Timers.h>
#include <utils/RefBase.h>
#include <utils/String8.h>
#include <utils/Looper.h>
#include <utils/Pool.h>
#include <utils/BitSet.h>
#include <stddef.h>
#include <unistd.h>
#include <limits.h>
namespace android {
/*
* Constants used to report the outcome of input event injection.
*/
enum {
/* (INTERNAL USE ONLY) Specifies that injection is pending and its outcome is unknown. */
INPUT_EVENT_INJECTION_PENDING = -1,
/* Injection succeeded. */
INPUT_EVENT_INJECTION_SUCCEEDED = 0,
/* Injection failed because the injector did not have permission to inject
* into the application with input focus. */
INPUT_EVENT_INJECTION_PERMISSION_DENIED = 1,
/* Injection failed because there were no available input targets. */
INPUT_EVENT_INJECTION_FAILED = 2,
/* Injection failed due to a timeout. */
INPUT_EVENT_INJECTION_TIMED_OUT = 3
};
/*
* Constants used to determine the input event injection synchronization mode.
*/
enum {
/* Injection is asynchronous and is assumed always to be successful. */
INPUT_EVENT_INJECTION_SYNC_NONE = 0,
/* Waits for previous events to be dispatched so that the input dispatcher can determine
* whether input event injection willbe permitted based on the current input focus.
* Does not wait for the input event to finish processing. */
INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_RESULT = 1,
/* Waits for the input event to be completely processed. */
INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_FINISHED = 2,
};
/*
* An input target specifies how an input event is to be dispatched to a particular window
* including the window's input channel, control flags, a timeout, and an X / Y offset to
* be added to input event coordinates to compensate for the absolute position of the
* window area.
*/
struct InputTarget {
enum {
/* This flag indicates that the event is being delivered to a foreground application. */
FLAG_FOREGROUND = 0x01,
/* This flag indicates that a MotionEvent with AMOTION_EVENT_ACTION_DOWN falls outside
* of the area of this target and so should instead be delivered as an
* AMOTION_EVENT_ACTION_OUTSIDE to this target. */
FLAG_OUTSIDE = 0x02,
/* This flag indicates that the target of a MotionEvent is partly or wholly
* obscured by another visible window above it. The motion event should be
* delivered with flag AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED. */
FLAG_WINDOW_IS_OBSCURED = 0x04,
/* This flag indicates that a motion event is being split across multiple windows. */
FLAG_SPLIT = 0x08,
};
// The input channel to be targeted.
sp<InputChannel> inputChannel;
// Flags for the input target.
int32_t flags;
// The x and y offset to add to a MotionEvent as it is delivered.
// (ignored for KeyEvents)
float xOffset, yOffset;
// The window type of the input target.
int32_t windowType;
// The subset of pointer ids to include in motion events dispatched to this input target
// if FLAG_SPLIT is set.
BitSet32 pointerIds;
};
/*
* An input window describes the bounds of a window that can receive input.
*/
struct InputWindow {
// Window flags from WindowManager.LayoutParams
enum {
FLAG_ALLOW_LOCK_WHILE_SCREEN_ON = 0x00000001,
FLAG_DIM_BEHIND = 0x00000002,
FLAG_BLUR_BEHIND = 0x00000004,
FLAG_NOT_FOCUSABLE = 0x00000008,
FLAG_NOT_TOUCHABLE = 0x00000010,
FLAG_NOT_TOUCH_MODAL = 0x00000020,
FLAG_TOUCHABLE_WHEN_WAKING = 0x00000040,
FLAG_KEEP_SCREEN_ON = 0x00000080,
FLAG_LAYOUT_IN_SCREEN = 0x00000100,
FLAG_LAYOUT_NO_LIMITS = 0x00000200,
FLAG_FULLSCREEN = 0x00000400,
FLAG_FORCE_NOT_FULLSCREEN = 0x00000800,
FLAG_DITHER = 0x00001000,
FLAG_SECURE = 0x00002000,
FLAG_SCALED = 0x00004000,
FLAG_IGNORE_CHEEK_PRESSES = 0x00008000,
FLAG_LAYOUT_INSET_DECOR = 0x00010000,
FLAG_ALT_FOCUSABLE_IM = 0x00020000,
FLAG_WATCH_OUTSIDE_TOUCH = 0x00040000,
FLAG_SHOW_WHEN_LOCKED = 0x00080000,
FLAG_SHOW_WALLPAPER = 0x00100000,
FLAG_TURN_SCREEN_ON = 0x00200000,
FLAG_DISMISS_KEYGUARD = 0x00400000,
FLAG_SPLIT_TOUCH = 0x00800000,
FLAG_KEEP_SURFACE_WHILE_ANIMATING = 0x10000000,
FLAG_COMPATIBLE_WINDOW = 0x20000000,
FLAG_SYSTEM_ERROR = 0x40000000,
};
// Window types from WindowManager.LayoutParams
enum {
FIRST_APPLICATION_WINDOW = 1,
TYPE_BASE_APPLICATION = 1,
TYPE_APPLICATION = 2,
TYPE_APPLICATION_STARTING = 3,
LAST_APPLICATION_WINDOW = 99,
FIRST_SUB_WINDOW = 1000,
TYPE_APPLICATION_PANEL = FIRST_SUB_WINDOW,
TYPE_APPLICATION_MEDIA = FIRST_SUB_WINDOW+1,
TYPE_APPLICATION_SUB_PANEL = FIRST_SUB_WINDOW+2,
TYPE_APPLICATION_ATTACHED_DIALOG = FIRST_SUB_WINDOW+3,
TYPE_APPLICATION_MEDIA_OVERLAY = FIRST_SUB_WINDOW+4,
LAST_SUB_WINDOW = 1999,
FIRST_SYSTEM_WINDOW = 2000,
TYPE_STATUS_BAR = FIRST_SYSTEM_WINDOW,
TYPE_SEARCH_BAR = FIRST_SYSTEM_WINDOW+1,
TYPE_PHONE = FIRST_SYSTEM_WINDOW+2,
TYPE_SYSTEM_ALERT = FIRST_SYSTEM_WINDOW+3,
TYPE_KEYGUARD = FIRST_SYSTEM_WINDOW+4,
TYPE_TOAST = FIRST_SYSTEM_WINDOW+5,
TYPE_SYSTEM_OVERLAY = FIRST_SYSTEM_WINDOW+6,
TYPE_PRIORITY_PHONE = FIRST_SYSTEM_WINDOW+7,
TYPE_SYSTEM_DIALOG = FIRST_SYSTEM_WINDOW+8,
TYPE_KEYGUARD_DIALOG = FIRST_SYSTEM_WINDOW+9,
TYPE_SYSTEM_ERROR = FIRST_SYSTEM_WINDOW+10,
TYPE_INPUT_METHOD = FIRST_SYSTEM_WINDOW+11,
TYPE_INPUT_METHOD_DIALOG= FIRST_SYSTEM_WINDOW+12,
TYPE_WALLPAPER = FIRST_SYSTEM_WINDOW+13,
TYPE_STATUS_BAR_PANEL = FIRST_SYSTEM_WINDOW+14,
TYPE_SECURE_SYSTEM_OVERLAY = FIRST_SYSTEM_WINDOW+15,
LAST_SYSTEM_WINDOW = 2999,
};
sp<InputChannel> inputChannel;
String8 name;
int32_t layoutParamsFlags;
int32_t layoutParamsType;
nsecs_t dispatchingTimeout;
int32_t frameLeft;
int32_t frameTop;
int32_t frameRight;
int32_t frameBottom;
int32_t visibleFrameLeft;
int32_t visibleFrameTop;
int32_t visibleFrameRight;
int32_t visibleFrameBottom;
int32_t touchableAreaLeft;
int32_t touchableAreaTop;
int32_t touchableAreaRight;
int32_t touchableAreaBottom;
bool visible;
bool canReceiveKeys;
bool hasFocus;
bool hasWallpaper;
bool paused;
int32_t layer;
int32_t ownerPid;
int32_t ownerUid;
bool touchableAreaContainsPoint(int32_t x, int32_t y) const;
bool frameContainsPoint(int32_t x, int32_t y) const;
/* Returns true if the window is of a trusted type that is allowed to silently
* overlay other windows for the purpose of implementing the secure views feature.
* Trusted overlays, such as IME windows, can partly obscure other windows without causing
* motion events to be delivered to them with AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED.
*/
bool isTrustedOverlay() const;
};
/*
* A private handle type used by the input manager to track the window.
*/
class InputApplicationHandle : public RefBase {
protected:
InputApplicationHandle() { }
virtual ~InputApplicationHandle() { }
};
/*
* An input application describes properties of an application that can receive input.
*/
struct InputApplication {
String8 name;
nsecs_t dispatchingTimeout;
sp<InputApplicationHandle> handle;
};
/*
* Input dispatcher policy interface.
*
* The input reader policy is used by the input reader to interact with the Window Manager
* and other system components.
*
* The actual implementation is partially supported by callbacks into the DVM
* via JNI. This interface is also mocked in the unit tests.
*/
class InputDispatcherPolicyInterface : public virtual RefBase {
protected:
InputDispatcherPolicyInterface() { }
virtual ~InputDispatcherPolicyInterface() { }
public:
/* Notifies the system that a configuration change has occurred. */
virtual void notifyConfigurationChanged(nsecs_t when) = 0;
/* Notifies the system that an application is not responding.
* Returns a new timeout to continue waiting, or 0 to abort dispatch. */
virtual nsecs_t notifyANR(const sp<InputApplicationHandle>& inputApplicationHandle,
const sp<InputChannel>& inputChannel) = 0;
/* Notifies the system that an input channel is unrecoverably broken. */
virtual void notifyInputChannelBroken(const sp<InputChannel>& inputChannel) = 0;
/* Gets the key repeat initial timeout or -1 if automatic key repeating is disabled. */
virtual nsecs_t getKeyRepeatTimeout() = 0;
/* Gets the key repeat inter-key delay. */
virtual nsecs_t getKeyRepeatDelay() = 0;
/* Gets the maximum suggested event delivery rate per second.
* This value is used to throttle motion event movement actions on a per-device
* basis. It is not intended to be a hard limit.
*/
virtual int32_t getMaxEventsPerSecond() = 0;
/* Intercepts a key event immediately before queueing it.
* The policy can use this method as an opportunity to perform power management functions
* and early event preprocessing such as updating policy flags.
*
* This method is expected to set the POLICY_FLAG_PASS_TO_USER policy flag if the event
* should be dispatched to applications.
*/
virtual void interceptKeyBeforeQueueing(nsecs_t when, int32_t deviceId,
int32_t action, int32_t& flags, int32_t keyCode, int32_t scanCode,
uint32_t& policyFlags) = 0;
/* Intercepts a generic touch, trackball or other event before queueing it.
* The policy can use this method as an opportunity to perform power management functions
* and early event preprocessing such as updating policy flags.
*
* This method is expected to set the POLICY_FLAG_PASS_TO_USER policy flag if the event
* should be dispatched to applications.
*/
virtual void interceptGenericBeforeQueueing(nsecs_t when, uint32_t& policyFlags) = 0;
/* Allows the policy a chance to intercept a key before dispatching. */
virtual bool interceptKeyBeforeDispatching(const sp<InputChannel>& inputChannel,
const KeyEvent* keyEvent, uint32_t policyFlags) = 0;
/* Notifies the policy about switch events.
*/
virtual void notifySwitch(nsecs_t when,
int32_t switchCode, int32_t switchValue, uint32_t policyFlags) = 0;
/* Poke user activity for an event dispatched to a window. */
virtual void pokeUserActivity(nsecs_t eventTime, int32_t eventType) = 0;
/* Checks whether a given application pid/uid has permission to inject input events
* into other applications.
*
* This method is special in that its implementation promises to be non-reentrant and
* is safe to call while holding other locks. (Most other methods make no such guarantees!)
*/
virtual bool checkInjectEventsPermissionNonReentrant(
int32_t injectorPid, int32_t injectorUid) = 0;
};
/* Notifies the system about input events generated by the input reader.
* The dispatcher is expected to be mostly asynchronous. */
class InputDispatcherInterface : public virtual RefBase {
protected:
InputDispatcherInterface() { }
virtual ~InputDispatcherInterface() { }
public:
/* Dumps the state of the input dispatcher.
*
* This method may be called on any thread (usually by the input manager). */
virtual void dump(String8& dump) = 0;
/* Runs a single iteration of the dispatch loop.
* Nominally processes one queued event, a timeout, or a response from an input consumer.
*
* This method should only be called on the input dispatcher thread.
*/
virtual void dispatchOnce() = 0;
/* Notifies the dispatcher about new events.
*
* These methods should only be called on the input reader thread.
*/
virtual void notifyConfigurationChanged(nsecs_t eventTime) = 0;
virtual void notifyKey(nsecs_t eventTime, int32_t deviceId, int32_t source,
uint32_t policyFlags, int32_t action, int32_t flags, int32_t keyCode,
int32_t scanCode, int32_t metaState, nsecs_t downTime) = 0;
virtual void notifyMotion(nsecs_t eventTime, int32_t deviceId, int32_t source,
uint32_t policyFlags, int32_t action, int32_t flags,
int32_t metaState, int32_t edgeFlags,
uint32_t pointerCount, const int32_t* pointerIds, const PointerCoords* pointerCoords,
float xPrecision, float yPrecision, nsecs_t downTime) = 0;
virtual void notifySwitch(nsecs_t when,
int32_t switchCode, int32_t switchValue, uint32_t policyFlags) = 0;
/* Injects an input event and optionally waits for sync.
* The synchronization mode determines whether the method blocks while waiting for
* input injection to proceed.
* Returns one of the INPUT_EVENT_INJECTION_XXX constants.
*
* This method may be called on any thread (usually by the input manager).
*/
virtual int32_t injectInputEvent(const InputEvent* event,
int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis) = 0;
/* Sets the list of input windows.
*
* This method may be called on any thread (usually by the input manager).
*/
virtual void setInputWindows(const Vector<InputWindow>& inputWindows) = 0;
/* Sets the focused application.
*
* This method may be called on any thread (usually by the input manager).
*/
virtual void setFocusedApplication(const InputApplication* inputApplication) = 0;
/* Sets the input dispatching mode.
*
* This method may be called on any thread (usually by the input manager).
*/
virtual void setInputDispatchMode(bool enabled, bool frozen) = 0;
/* Transfers touch focus from the window associated with one channel to the
* window associated with the other channel.
*
* Returns true on success. False if the window did not actually have touch focus.
*/
virtual bool transferTouchFocus(const sp<InputChannel>& fromChannel,
const sp<InputChannel>& toChannel) = 0;
/* Registers or unregister input channels that may be used as targets for input events.
* If monitor is true, the channel will receive a copy of all input events.
*
* These methods may be called on any thread (usually by the input manager).
*/
virtual status_t registerInputChannel(const sp<InputChannel>& inputChannel, bool monitor) = 0;
virtual status_t unregisterInputChannel(const sp<InputChannel>& inputChannel) = 0;
};
/* Dispatches events to input targets. Some functions of the input dispatcher, such as
* identifying input targets, are controlled by a separate policy object.
*
* IMPORTANT INVARIANT:
* Because the policy can potentially block or cause re-entrance into the input dispatcher,
* the input dispatcher never calls into the policy while holding its internal locks.
* The implementation is also carefully designed to recover from scenarios such as an
* input channel becoming unregistered while identifying input targets or processing timeouts.
*
* Methods marked 'Locked' must be called with the lock acquired.
*
* Methods marked 'LockedInterruptible' must be called with the lock acquired but
* may during the course of their execution release the lock, call into the policy, and
* then reacquire the lock. The caller is responsible for recovering gracefully.
*
* A 'LockedInterruptible' method may called a 'Locked' method, but NOT vice-versa.
*/
class InputDispatcher : public InputDispatcherInterface {
protected:
virtual ~InputDispatcher();
public:
explicit InputDispatcher(const sp<InputDispatcherPolicyInterface>& policy);
virtual void dump(String8& dump);
virtual void dispatchOnce();
virtual void notifyConfigurationChanged(nsecs_t eventTime);
virtual void notifyKey(nsecs_t eventTime, int32_t deviceId, int32_t source,
uint32_t policyFlags, int32_t action, int32_t flags, int32_t keyCode,
int32_t scanCode, int32_t metaState, nsecs_t downTime);
virtual void notifyMotion(nsecs_t eventTime, int32_t deviceId, int32_t source,
uint32_t policyFlags, int32_t action, int32_t flags,
int32_t metaState, int32_t edgeFlags,
uint32_t pointerCount, const int32_t* pointerIds, const PointerCoords* pointerCoords,
float xPrecision, float yPrecision, nsecs_t downTime);
virtual void notifySwitch(nsecs_t when,
int32_t switchCode, int32_t switchValue, uint32_t policyFlags) ;
virtual int32_t injectInputEvent(const InputEvent* event,
int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis);
virtual void setInputWindows(const Vector<InputWindow>& inputWindows);
virtual void setFocusedApplication(const InputApplication* inputApplication);
virtual void setInputDispatchMode(bool enabled, bool frozen);
virtual bool transferTouchFocus(const sp<InputChannel>& fromChannel,
const sp<InputChannel>& toChannel);
virtual status_t registerInputChannel(const sp<InputChannel>& inputChannel, bool monitor);
virtual status_t unregisterInputChannel(const sp<InputChannel>& inputChannel);
private:
template <typename T>
struct Link {
T* next;
T* prev;
};
struct InjectionState {
mutable int32_t refCount;
int32_t injectorPid;
int32_t injectorUid;
int32_t injectionResult; // initially INPUT_EVENT_INJECTION_PENDING
bool injectionIsAsync; // set to true if injection is not waiting for the result
int32_t pendingForegroundDispatches; // the number of foreground dispatches in progress
};
struct EventEntry : Link<EventEntry> {
enum {
TYPE_SENTINEL,
TYPE_CONFIGURATION_CHANGED,
TYPE_KEY,
TYPE_MOTION
};
mutable int32_t refCount;
int32_t type;
nsecs_t eventTime;
uint32_t policyFlags;
InjectionState* injectionState;
bool dispatchInProgress; // initially false, set to true while dispatching
inline bool isInjected() { return injectionState != NULL; }
};
struct ConfigurationChangedEntry : EventEntry {
};
struct KeyEntry : EventEntry {
int32_t deviceId;
int32_t source;
int32_t action;
int32_t flags;
int32_t keyCode;
int32_t scanCode;
int32_t metaState;
int32_t repeatCount;
nsecs_t downTime;
bool syntheticRepeat; // set to true for synthetic key repeats
enum InterceptKeyResult {
INTERCEPT_KEY_RESULT_UNKNOWN,
INTERCEPT_KEY_RESULT_SKIP,
INTERCEPT_KEY_RESULT_CONTINUE,
};
InterceptKeyResult interceptKeyResult; // set based on the interception result
};
struct MotionSample {
MotionSample* next;
nsecs_t eventTime;
PointerCoords pointerCoords[MAX_POINTERS];
};
struct MotionEntry : EventEntry {
int32_t deviceId;
int32_t source;
int32_t action;
int32_t flags;
int32_t metaState;
int32_t edgeFlags;
float xPrecision;
float yPrecision;
nsecs_t downTime;
uint32_t pointerCount;
int32_t pointerIds[MAX_POINTERS];
// Linked list of motion samples associated with this motion event.
MotionSample firstSample;
MotionSample* lastSample;
uint32_t countSamples() const;
};
// Tracks the progress of dispatching a particular event to a particular connection.
struct DispatchEntry : Link<DispatchEntry> {
EventEntry* eventEntry; // the event to dispatch
int32_t targetFlags;
float xOffset;
float yOffset;
// True if dispatch has started.
bool inProgress;
// For motion events:
// Pointer to the first motion sample to dispatch in this cycle.
// Usually NULL to indicate that the list of motion samples begins at
// MotionEntry::firstSample. Otherwise, some samples were dispatched in a previous
// cycle and this pointer indicates the location of the first remainining sample
// to dispatch during the current cycle.
MotionSample* headMotionSample;
// Pointer to a motion sample to dispatch in the next cycle if the dispatcher was
// unable to send all motion samples during this cycle. On the next cycle,
// headMotionSample will be initialized to tailMotionSample and tailMotionSample
// will be set to NULL.
MotionSample* tailMotionSample;
inline bool hasForegroundTarget() const {
return targetFlags & InputTarget::FLAG_FOREGROUND;
}
inline bool isSplit() const {
return targetFlags & InputTarget::FLAG_SPLIT;
}
};
// A command entry captures state and behavior for an action to be performed in the
// dispatch loop after the initial processing has taken place. It is essentially
// a kind of continuation used to postpone sensitive policy interactions to a point
// in the dispatch loop where it is safe to release the lock (generally after finishing
// the critical parts of the dispatch cycle).
//
// The special thing about commands is that they can voluntarily release and reacquire
// the dispatcher lock at will. Initially when the command starts running, the
// dispatcher lock is held. However, if the command needs to call into the policy to
// do some work, it can release the lock, do the work, then reacquire the lock again
// before returning.
//
// This mechanism is a bit clunky but it helps to preserve the invariant that the dispatch
// never calls into the policy while holding its lock.
//
// Commands are implicitly 'LockedInterruptible'.
struct CommandEntry;
typedef void (InputDispatcher::*Command)(CommandEntry* commandEntry);
class Connection;
struct CommandEntry : Link<CommandEntry> {
CommandEntry();
~CommandEntry();
Command command;
// parameters for the command (usage varies by command)
sp<Connection> connection;
nsecs_t eventTime;
KeyEntry* keyEntry;
sp<InputChannel> inputChannel;
sp<InputApplicationHandle> inputApplicationHandle;
int32_t userActivityEventType;
};
// Generic queue implementation.
template <typename T>
struct Queue {
T headSentinel;
T tailSentinel;
inline Queue() {
headSentinel.prev = NULL;
headSentinel.next = & tailSentinel;
tailSentinel.prev = & headSentinel;
tailSentinel.next = NULL;
}
inline bool isEmpty() const {
return headSentinel.next == & tailSentinel;
}
inline void enqueueAtTail(T* entry) {
T* last = tailSentinel.prev;
last->next = entry;
entry->prev = last;
entry->next = & tailSentinel;
tailSentinel.prev = entry;
}
inline void enqueueAtHead(T* entry) {
T* first = headSentinel.next;
headSentinel.next = entry;
entry->prev = & headSentinel;
entry->next = first;
first->prev = entry;
}
inline void dequeue(T* entry) {
entry->prev->next = entry->next;
entry->next->prev = entry->prev;
}
inline T* dequeueAtHead() {
T* first = headSentinel.next;
dequeue(first);
return first;
}
uint32_t count() const;
};
/* Allocates queue entries and performs reference counting as needed. */
class Allocator {
public:
Allocator();
InjectionState* obtainInjectionState(int32_t injectorPid, int32_t injectorUid);
ConfigurationChangedEntry* obtainConfigurationChangedEntry(nsecs_t eventTime);
KeyEntry* obtainKeyEntry(nsecs_t eventTime,
int32_t deviceId, int32_t source, uint32_t policyFlags, int32_t action,
int32_t flags, int32_t keyCode, int32_t scanCode, int32_t metaState,
int32_t repeatCount, nsecs_t downTime);
MotionEntry* obtainMotionEntry(nsecs_t eventTime,
int32_t deviceId, int32_t source, uint32_t policyFlags, int32_t action,
int32_t flags, int32_t metaState, int32_t edgeFlags,
float xPrecision, float yPrecision,
nsecs_t downTime, uint32_t pointerCount,
const int32_t* pointerIds, const PointerCoords* pointerCoords);
DispatchEntry* obtainDispatchEntry(EventEntry* eventEntry,
int32_t targetFlags, float xOffset, float yOffset);
CommandEntry* obtainCommandEntry(Command command);
void releaseInjectionState(InjectionState* injectionState);
void releaseEventEntry(EventEntry* entry);
void releaseConfigurationChangedEntry(ConfigurationChangedEntry* entry);
void releaseKeyEntry(KeyEntry* entry);
void releaseMotionEntry(MotionEntry* entry);
void releaseDispatchEntry(DispatchEntry* entry);
void releaseCommandEntry(CommandEntry* entry);
void recycleKeyEntry(KeyEntry* entry);
void appendMotionSample(MotionEntry* motionEntry,
nsecs_t eventTime, const PointerCoords* pointerCoords);
private:
Pool<InjectionState> mInjectionStatePool;
Pool<ConfigurationChangedEntry> mConfigurationChangeEntryPool;
Pool<KeyEntry> mKeyEntryPool;
Pool<MotionEntry> mMotionEntryPool;
Pool<MotionSample> mMotionSamplePool;
Pool<DispatchEntry> mDispatchEntryPool;
Pool<CommandEntry> mCommandEntryPool;
void initializeEventEntry(EventEntry* entry, int32_t type, nsecs_t eventTime,
uint32_t policyFlags);
void releaseEventEntryInjectionState(EventEntry* entry);
};
/* Tracks dispatched key and motion event state so that cancelation events can be
* synthesized when events are dropped. */
class InputState {
public:
// Specifies whether a given event will violate input state consistency.
enum Consistency {
// The event is consistent with the current input state.
CONSISTENT,
// The event is inconsistent with the current input state but applications
// will tolerate it. eg. Down followed by another down.
TOLERABLE,
// The event is inconsistent with the current input state and will probably
// cause applications to crash. eg. Up without prior down, move with
// unexpected number of pointers.
BROKEN
};
// Specifies the sources to cancel.
enum CancelationOptions {
CANCEL_ALL_EVENTS = 0,
CANCEL_POINTER_EVENTS = 1,
CANCEL_NON_POINTER_EVENTS = 2,
};
InputState();
~InputState();
// Returns true if there is no state to be canceled.
bool isNeutral() const;
// Records tracking information for an event that has just been published.
// Returns whether the event is consistent with the current input state.
Consistency trackEvent(const EventEntry* entry);
// Records tracking information for a key event that has just been published.
// Returns whether the event is consistent with the current input state.
Consistency trackKey(const KeyEntry* entry);
// Records tracking information for a motion event that has just been published.
// Returns whether the event is consistent with the current input state.
Consistency trackMotion(const MotionEntry* entry);
// Synthesizes cancelation events for the current state and resets the tracked state.
void synthesizeCancelationEvents(nsecs_t currentTime, Allocator* allocator,
Vector<EventEntry*>& outEvents, CancelationOptions options);
// Clears the current state.
void clear();
// Copies pointer-related parts of the input state to another instance.
void copyPointerStateTo(InputState& other) const;
private:
struct KeyMemento {
int32_t deviceId;
int32_t source;
int32_t keyCode;
int32_t scanCode;
nsecs_t downTime;
};
struct MotionMemento {
int32_t deviceId;
int32_t source;
float xPrecision;
float yPrecision;
nsecs_t downTime;
uint32_t pointerCount;
int32_t pointerIds[MAX_POINTERS];
PointerCoords pointerCoords[MAX_POINTERS];
void setPointers(const MotionEntry* entry);
};
Vector<KeyMemento> mKeyMementos;
Vector<MotionMemento> mMotionMementos;
static bool shouldCancelEvent(int32_t eventSource, CancelationOptions options);
};
/* Manages the dispatch state associated with a single input channel. */
class Connection : public RefBase {
protected:
virtual ~Connection();
public:
enum Status {
// Everything is peachy.
STATUS_NORMAL,
// An unrecoverable communication error has occurred.
STATUS_BROKEN,
// The input channel has been unregistered.
STATUS_ZOMBIE
};
Status status;
sp<InputChannel> inputChannel;
InputPublisher inputPublisher;
InputState inputState;
Queue<DispatchEntry> outboundQueue;
nsecs_t lastEventTime; // the time when the event was originally captured
nsecs_t lastDispatchTime; // the time when the last event was dispatched
explicit Connection(const sp<InputChannel>& inputChannel);
inline const char* getInputChannelName() const { return inputChannel->getName().string(); }
const char* getStatusLabel() const;
// Finds a DispatchEntry in the outbound queue associated with the specified event.
// Returns NULL if not found.
DispatchEntry* findQueuedDispatchEntryForEvent(const EventEntry* eventEntry) const;
// Gets the time since the current event was originally obtained from the input driver.
inline double getEventLatencyMillis(nsecs_t currentTime) const {
return (currentTime - lastEventTime) / 1000000.0;
}
// Gets the time since the current event entered the outbound dispatch queue.
inline double getDispatchLatencyMillis(nsecs_t currentTime) const {
return (currentTime - lastDispatchTime) / 1000000.0;
}
status_t initialize();
};
enum DropReason {
DROP_REASON_NOT_DROPPED = 0,
DROP_REASON_POLICY = 1,
DROP_REASON_APP_SWITCH = 2,
DROP_REASON_DISABLED = 3,
};
sp<InputDispatcherPolicyInterface> mPolicy;
Mutex mLock;
Allocator mAllocator;
sp<Looper> mLooper;
EventEntry* mPendingEvent;
Queue<EventEntry> mInboundQueue;
Queue<CommandEntry> mCommandQueue;
Vector<EventEntry*> mTempCancelationEvents;
void dispatchOnceInnerLocked(nsecs_t keyRepeatTimeout, nsecs_t keyRepeatDelay,
nsecs_t* nextWakeupTime);
// Enqueues an inbound event. Returns true if mLooper->wake() should be called.
bool enqueueInboundEventLocked(EventEntry* entry);
// Cleans up input state when dropping an inbound event.
void dropInboundEventLocked(EventEntry* entry, DropReason dropReason);
// App switch latency optimization.
bool mAppSwitchSawKeyDown;
nsecs_t mAppSwitchDueTime;
static bool isAppSwitchKeyCode(int32_t keyCode);
bool isAppSwitchKeyEventLocked(KeyEntry* keyEntry);
bool isAppSwitchPendingLocked();
void resetPendingAppSwitchLocked(bool handled);
// All registered connections mapped by receive pipe file descriptor.
KeyedVector<int, sp<Connection> > mConnectionsByReceiveFd;
ssize_t getConnectionIndexLocked(const sp<InputChannel>& inputChannel);
// Active connections are connections that have a non-empty outbound queue.
// We don't use a ref-counted pointer here because we explicitly abort connections
// during unregistration which causes the connection's outbound queue to be cleared
// and the connection itself to be deactivated.
Vector<Connection*> mActiveConnections;
// Input channels that will receive a copy of all input events.
Vector<sp<InputChannel> > mMonitoringChannels;
// Preallocated key event object used for policy inquiries.
KeyEvent mReusableKeyEvent;
// Event injection and synchronization.
Condition mInjectionResultAvailableCondition;
bool hasInjectionPermission(int32_t injectorPid, int32_t injectorUid);
void setInjectionResultLocked(EventEntry* entry, int32_t injectionResult);
Condition mInjectionSyncFinishedCondition;
void incrementPendingForegroundDispatchesLocked(EventEntry* entry);
void decrementPendingForegroundDispatchesLocked(EventEntry* entry);
// Throttling state.
struct ThrottleState {
nsecs_t minTimeBetweenEvents;
nsecs_t lastEventTime;
int32_t lastDeviceId;
uint32_t lastSource;
uint32_t originalSampleCount; // only collected during debugging
} mThrottleState;
// Key repeat tracking.
struct KeyRepeatState {
KeyEntry* lastKeyEntry; // or null if no repeat
nsecs_t nextRepeatTime;
} mKeyRepeatState;
void resetKeyRepeatLocked();
KeyEntry* synthesizeKeyRepeatLocked(nsecs_t currentTime, nsecs_t keyRepeatTimeout);
// Deferred command processing.
bool runCommandsLockedInterruptible();
CommandEntry* postCommandLocked(Command command);
// Inbound event processing.
void drainInboundQueueLocked();
void releasePendingEventLocked();
void releaseInboundEventLocked(EventEntry* entry);
// Dispatch state.
bool mDispatchEnabled;
bool mDispatchFrozen;
Vector<InputWindow> mWindows;
const InputWindow* getWindowLocked(const sp<InputChannel>& inputChannel);
// Focus tracking for keys, trackball, etc.
const InputWindow* mFocusedWindow;
// Focus tracking for touch.
struct TouchedWindow {
const InputWindow* window;
int32_t targetFlags;
BitSet32 pointerIds;
sp<InputChannel> channel;
};
struct TouchState {
bool down;
bool split;
Vector<TouchedWindow> windows;
TouchState();
~TouchState();
void reset();
void copyFrom(const TouchState& other);
void addOrUpdateWindow(const InputWindow* window, int32_t targetFlags, BitSet32 pointerIds);
void removeOutsideTouchWindows();
const InputWindow* getFirstForegroundWindow();
};
TouchState mTouchState;
TouchState mTempTouchState;
// Focused application.
InputApplication* mFocusedApplication;
InputApplication mFocusedApplicationStorage; // preallocated storage for mFocusedApplication
void releaseFocusedApplicationLocked();
// Dispatch inbound events.
bool dispatchConfigurationChangedLocked(
nsecs_t currentTime, ConfigurationChangedEntry* entry);
bool dispatchKeyLocked(
nsecs_t currentTime, KeyEntry* entry, nsecs_t keyRepeatTimeout,
DropReason* dropReason, nsecs_t* nextWakeupTime);
bool dispatchMotionLocked(
nsecs_t currentTime, MotionEntry* entry,
DropReason* dropReason, nsecs_t* nextWakeupTime);
void dispatchEventToCurrentInputTargetsLocked(
nsecs_t currentTime, EventEntry* entry, bool resumeWithAppendedMotionSample);
void logOutboundKeyDetailsLocked(const char* prefix, const KeyEntry* entry);
void logOutboundMotionDetailsLocked(const char* prefix, const MotionEntry* entry);
// The input targets that were most recently identified for dispatch.
bool mCurrentInputTargetsValid; // false while targets are being recomputed
Vector<InputTarget> mCurrentInputTargets;
enum InputTargetWaitCause {
INPUT_TARGET_WAIT_CAUSE_NONE,
INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY,
INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY,
};
InputTargetWaitCause mInputTargetWaitCause;
nsecs_t mInputTargetWaitStartTime;
nsecs_t mInputTargetWaitTimeoutTime;
bool mInputTargetWaitTimeoutExpired;
// Finding targets for input events.
void resetTargetsLocked();
void commitTargetsLocked();
int32_t handleTargetsNotReadyLocked(nsecs_t currentTime, const EventEntry* entry,
const InputApplication* application, const InputWindow* window,
nsecs_t* nextWakeupTime);
void resumeAfterTargetsNotReadyTimeoutLocked(nsecs_t newTimeout,
const sp<InputChannel>& inputChannel);
nsecs_t getTimeSpentWaitingForApplicationLocked(nsecs_t currentTime);
void resetANRTimeoutsLocked();
int32_t findFocusedWindowTargetsLocked(nsecs_t currentTime, const EventEntry* entry,
nsecs_t* nextWakeupTime);
int32_t findTouchedWindowTargetsLocked(nsecs_t currentTime, const MotionEntry* entry,
nsecs_t* nextWakeupTime);
void addWindowTargetLocked(const InputWindow* window, int32_t targetFlags,
BitSet32 pointerIds);
void addMonitoringTargetsLocked();
bool shouldPokeUserActivityForCurrentInputTargetsLocked();
void pokeUserActivityLocked(nsecs_t eventTime, int32_t eventType);
bool checkInjectionPermission(const InputWindow* window, const InjectionState* injectionState);
bool isWindowObscuredAtPointLocked(const InputWindow* window, int32_t x, int32_t y) const;
bool isWindowFinishedWithPreviousInputLocked(const InputWindow* window);
String8 getApplicationWindowLabelLocked(const InputApplication* application,
const InputWindow* window);
// Manage the dispatch cycle for a single connection.
// These methods are deliberately not Interruptible because doing all of the work
// with the mutex held makes it easier to ensure that connection invariants are maintained.
// If needed, the methods post commands to run later once the critical bits are done.
void prepareDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection,
EventEntry* eventEntry, const InputTarget* inputTarget,
bool resumeWithAppendedMotionSample);
void startDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection);
void finishDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection);
void startNextDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection);
void abortBrokenDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection);
void drainOutboundQueueLocked(Connection* connection);
static int handleReceiveCallback(int receiveFd, int events, void* data);
void synthesizeCancelationEventsForAllConnectionsLocked(
InputState::CancelationOptions options, const char* reason);
void synthesizeCancelationEventsForInputChannelLocked(const sp<InputChannel>& channel,
InputState::CancelationOptions options, const char* reason);
void synthesizeCancelationEventsForConnectionLocked(const sp<Connection>& connection,
InputState::CancelationOptions options, const char* reason);
// Splitting motion events across windows.
MotionEntry* splitMotionEvent(const MotionEntry* originalMotionEntry, BitSet32 pointerIds);
// Dump state.
void dumpDispatchStateLocked(String8& dump);
void logDispatchStateLocked();
// Add or remove a connection to the mActiveConnections vector.
void activateConnectionLocked(Connection* connection);
void deactivateConnectionLocked(Connection* connection);
// Interesting events that we might like to log or tell the framework about.
void onDispatchCycleStartedLocked(
nsecs_t currentTime, const sp<Connection>& connection);
void onDispatchCycleFinishedLocked(
nsecs_t currentTime, const sp<Connection>& connection);
void onDispatchCycleBrokenLocked(
nsecs_t currentTime, const sp<Connection>& connection);
void onANRLocked(
nsecs_t currentTime, const InputApplication* application, const InputWindow* window,
nsecs_t eventTime, nsecs_t waitStartTime);
// Outbound policy interactions.
void doNotifyConfigurationChangedInterruptible(CommandEntry* commandEntry);
void doNotifyInputChannelBrokenLockedInterruptible(CommandEntry* commandEntry);
void doNotifyANRLockedInterruptible(CommandEntry* commandEntry);
void doInterceptKeyBeforeDispatchingLockedInterruptible(CommandEntry* commandEntry);
void doPokeUserActivityLockedInterruptible(CommandEntry* commandEntry);
// Statistics gathering.
void updateDispatchStatisticsLocked(nsecs_t currentTime, const EventEntry* entry,
int32_t injectionResult, nsecs_t timeSpentWaitingForApplication);
};
/* Enqueues and dispatches input events, endlessly. */
class InputDispatcherThread : public Thread {
public:
explicit InputDispatcherThread(const sp<InputDispatcherInterface>& dispatcher);
~InputDispatcherThread();
private:
virtual bool threadLoop();
sp<InputDispatcherInterface> mDispatcher;
};
} // namespace android
#endif // _UI_INPUT_DISPATCHER_H