replicant-frameworks_native/libs/gui/BufferQueueProducer.cpp
Dan Stoza 800b41ab84 libgui: Fix buffer age on 64-bit targets
Changes a %llu to a PRIu64 to fix compilation on 64-bit targets.

Change-Id: I8ba982662dbe8ee2e1e47c4f6ce4bbdbe2020960
2015-04-28 14:20:04 -07:00

1084 lines
39 KiB
C++

/*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <inttypes.h>
#define LOG_TAG "BufferQueueProducer"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
//#define LOG_NDEBUG 0
#define EGL_EGLEXT_PROTOTYPES
#include <gui/BufferItem.h>
#include <gui/BufferQueueCore.h>
#include <gui/BufferQueueProducer.h>
#include <gui/IConsumerListener.h>
#include <gui/IGraphicBufferAlloc.h>
#include <gui/IProducerListener.h>
#include <utils/Log.h>
#include <utils/Trace.h>
namespace android {
BufferQueueProducer::BufferQueueProducer(const sp<BufferQueueCore>& core) :
mCore(core),
mSlots(core->mSlots),
mConsumerName(),
mStickyTransform(0),
mLastQueueBufferFence(Fence::NO_FENCE),
mCallbackMutex(),
mNextCallbackTicket(0),
mCurrentCallbackTicket(0),
mCallbackCondition() {}
BufferQueueProducer::~BufferQueueProducer() {}
status_t BufferQueueProducer::requestBuffer(int slot, sp<GraphicBuffer>* buf) {
ATRACE_CALL();
BQ_LOGV("requestBuffer: slot %d", slot);
Mutex::Autolock lock(mCore->mMutex);
if (mCore->mIsAbandoned) {
BQ_LOGE("requestBuffer: BufferQueue has been abandoned");
return NO_INIT;
}
if (slot < 0 || slot >= BufferQueueDefs::NUM_BUFFER_SLOTS) {
BQ_LOGE("requestBuffer: slot index %d out of range [0, %d)",
slot, BufferQueueDefs::NUM_BUFFER_SLOTS);
return BAD_VALUE;
} else if (mSlots[slot].mBufferState != BufferSlot::DEQUEUED) {
BQ_LOGE("requestBuffer: slot %d is not owned by the producer "
"(state = %d)", slot, mSlots[slot].mBufferState);
return BAD_VALUE;
}
mSlots[slot].mRequestBufferCalled = true;
*buf = mSlots[slot].mGraphicBuffer;
return NO_ERROR;
}
status_t BufferQueueProducer::setBufferCount(int bufferCount) {
ATRACE_CALL();
BQ_LOGV("setBufferCount: count = %d", bufferCount);
sp<IConsumerListener> listener;
{ // Autolock scope
Mutex::Autolock lock(mCore->mMutex);
mCore->waitWhileAllocatingLocked();
if (mCore->mIsAbandoned) {
BQ_LOGE("setBufferCount: BufferQueue has been abandoned");
return NO_INIT;
}
if (bufferCount > BufferQueueDefs::NUM_BUFFER_SLOTS) {
BQ_LOGE("setBufferCount: bufferCount %d too large (max %d)",
bufferCount, BufferQueueDefs::NUM_BUFFER_SLOTS);
return BAD_VALUE;
}
// There must be no dequeued buffers when changing the buffer count.
for (int s = 0; s < BufferQueueDefs::NUM_BUFFER_SLOTS; ++s) {
if (mSlots[s].mBufferState == BufferSlot::DEQUEUED) {
BQ_LOGE("setBufferCount: buffer owned by producer");
return BAD_VALUE;
}
}
if (bufferCount == 0) {
mCore->mOverrideMaxBufferCount = 0;
mCore->mDequeueCondition.broadcast();
return NO_ERROR;
}
const int minBufferSlots = mCore->getMinMaxBufferCountLocked(false);
if (bufferCount < minBufferSlots) {
BQ_LOGE("setBufferCount: requested buffer count %d is less than "
"minimum %d", bufferCount, minBufferSlots);
return BAD_VALUE;
}
// Here we are guaranteed that the producer doesn't have any dequeued
// buffers and will release all of its buffer references. We don't
// clear the queue, however, so that currently queued buffers still
// get displayed.
mCore->freeAllBuffersLocked();
mCore->mOverrideMaxBufferCount = bufferCount;
mCore->mDequeueCondition.broadcast();
listener = mCore->mConsumerListener;
} // Autolock scope
// Call back without lock held
if (listener != NULL) {
listener->onBuffersReleased();
}
return NO_ERROR;
}
status_t BufferQueueProducer::waitForFreeSlotThenRelock(const char* caller,
bool async, int* found, status_t* returnFlags) const {
bool tryAgain = true;
while (tryAgain) {
if (mCore->mIsAbandoned) {
BQ_LOGE("%s: BufferQueue has been abandoned", caller);
return NO_INIT;
}
const int maxBufferCount = mCore->getMaxBufferCountLocked(async);
if (async && mCore->mOverrideMaxBufferCount) {
// FIXME: Some drivers are manually setting the buffer count
// (which they shouldn't), so we do this extra test here to
// handle that case. This is TEMPORARY until we get this fixed.
if (mCore->mOverrideMaxBufferCount < maxBufferCount) {
BQ_LOGE("%s: async mode is invalid with buffer count override",
caller);
return BAD_VALUE;
}
}
// Free up any buffers that are in slots beyond the max buffer count
for (int s = maxBufferCount; s < BufferQueueDefs::NUM_BUFFER_SLOTS; ++s) {
assert(mSlots[s].mBufferState == BufferSlot::FREE);
if (mSlots[s].mGraphicBuffer != NULL) {
mCore->freeBufferLocked(s);
*returnFlags |= RELEASE_ALL_BUFFERS;
}
}
int dequeuedCount = 0;
int acquiredCount = 0;
for (int s = 0; s < maxBufferCount; ++s) {
switch (mSlots[s].mBufferState) {
case BufferSlot::DEQUEUED:
++dequeuedCount;
break;
case BufferSlot::ACQUIRED:
++acquiredCount;
break;
default:
break;
}
}
// Producers are not allowed to dequeue more than one buffer if they
// did not set a buffer count
if (!mCore->mOverrideMaxBufferCount && dequeuedCount) {
BQ_LOGE("%s: can't dequeue multiple buffers without setting the "
"buffer count", caller);
return INVALID_OPERATION;
}
// See whether a buffer has been queued since the last
// setBufferCount so we know whether to perform the min undequeued
// buffers check below
if (mCore->mBufferHasBeenQueued) {
// Make sure the producer is not trying to dequeue more buffers
// than allowed
const int newUndequeuedCount =
maxBufferCount - (dequeuedCount + 1);
const int minUndequeuedCount =
mCore->getMinUndequeuedBufferCountLocked(async);
if (newUndequeuedCount < minUndequeuedCount) {
BQ_LOGE("%s: min undequeued buffer count (%d) exceeded "
"(dequeued=%d undequeued=%d)",
caller, minUndequeuedCount,
dequeuedCount, newUndequeuedCount);
return INVALID_OPERATION;
}
}
*found = BufferQueueCore::INVALID_BUFFER_SLOT;
// If we disconnect and reconnect quickly, we can be in a state where
// our slots are empty but we have many buffers in the queue. This can
// cause us to run out of memory if we outrun the consumer. Wait here if
// it looks like we have too many buffers queued up.
bool tooManyBuffers = mCore->mQueue.size()
> static_cast<size_t>(maxBufferCount);
if (tooManyBuffers) {
BQ_LOGV("%s: queue size is %zu, waiting", caller,
mCore->mQueue.size());
} else {
if (!mCore->mFreeBuffers.empty()) {
auto slot = mCore->mFreeBuffers.begin();
*found = *slot;
mCore->mFreeBuffers.erase(slot);
} else if (mCore->mAllowAllocation && !mCore->mFreeSlots.empty()) {
auto slot = mCore->mFreeSlots.begin();
// Only return free slots up to the max buffer count
if (*slot < maxBufferCount) {
*found = *slot;
mCore->mFreeSlots.erase(slot);
}
}
}
// If no buffer is found, or if the queue has too many buffers
// outstanding, wait for a buffer to be acquired or released, or for the
// max buffer count to change.
tryAgain = (*found == BufferQueueCore::INVALID_BUFFER_SLOT) ||
tooManyBuffers;
if (tryAgain) {
// Return an error if we're in non-blocking mode (producer and
// consumer are controlled by the application).
// However, the consumer is allowed to briefly acquire an extra
// buffer (which could cause us to have to wait here), which is
// okay, since it is only used to implement an atomic acquire +
// release (e.g., in GLConsumer::updateTexImage())
if (mCore->mDequeueBufferCannotBlock &&
(acquiredCount <= mCore->mMaxAcquiredBufferCount)) {
return WOULD_BLOCK;
}
mCore->mDequeueCondition.wait(mCore->mMutex);
}
} // while (tryAgain)
return NO_ERROR;
}
status_t BufferQueueProducer::dequeueBuffer(int *outSlot,
sp<android::Fence> *outFence, bool async,
uint32_t width, uint32_t height, PixelFormat format, uint32_t usage) {
ATRACE_CALL();
{ // Autolock scope
Mutex::Autolock lock(mCore->mMutex);
mConsumerName = mCore->mConsumerName;
} // Autolock scope
BQ_LOGV("dequeueBuffer: async=%s w=%u h=%u format=%#x, usage=%#x",
async ? "true" : "false", width, height, format, usage);
if ((width && !height) || (!width && height)) {
BQ_LOGE("dequeueBuffer: invalid size: w=%u h=%u", width, height);
return BAD_VALUE;
}
status_t returnFlags = NO_ERROR;
EGLDisplay eglDisplay = EGL_NO_DISPLAY;
EGLSyncKHR eglFence = EGL_NO_SYNC_KHR;
bool attachedByConsumer = false;
{ // Autolock scope
Mutex::Autolock lock(mCore->mMutex);
mCore->waitWhileAllocatingLocked();
if (format == 0) {
format = mCore->mDefaultBufferFormat;
}
// Enable the usage bits the consumer requested
usage |= mCore->mConsumerUsageBits;
const bool useDefaultSize = !width && !height;
if (useDefaultSize) {
width = mCore->mDefaultWidth;
height = mCore->mDefaultHeight;
}
int found = BufferItem::INVALID_BUFFER_SLOT;
while (found == BufferItem::INVALID_BUFFER_SLOT) {
status_t status = waitForFreeSlotThenRelock("dequeueBuffer", async,
&found, &returnFlags);
if (status != NO_ERROR) {
return status;
}
// This should not happen
if (found == BufferQueueCore::INVALID_BUFFER_SLOT) {
BQ_LOGE("dequeueBuffer: no available buffer slots");
return -EBUSY;
}
const sp<GraphicBuffer>& buffer(mSlots[found].mGraphicBuffer);
// If we are not allowed to allocate new buffers,
// waitForFreeSlotThenRelock must have returned a slot containing a
// buffer. If this buffer would require reallocation to meet the
// requested attributes, we free it and attempt to get another one.
if (!mCore->mAllowAllocation) {
if (buffer->needsReallocation(width, height, format, usage)) {
mCore->freeBufferLocked(found);
found = BufferItem::INVALID_BUFFER_SLOT;
continue;
}
}
}
*outSlot = found;
ATRACE_BUFFER_INDEX(found);
attachedByConsumer = mSlots[found].mAttachedByConsumer;
mSlots[found].mBufferState = BufferSlot::DEQUEUED;
const sp<GraphicBuffer>& buffer(mSlots[found].mGraphicBuffer);
if ((buffer == NULL) ||
buffer->needsReallocation(width, height, format, usage))
{
mSlots[found].mAcquireCalled = false;
mSlots[found].mGraphicBuffer = NULL;
mSlots[found].mRequestBufferCalled = false;
mSlots[found].mEglDisplay = EGL_NO_DISPLAY;
mSlots[found].mEglFence = EGL_NO_SYNC_KHR;
mSlots[found].mFence = Fence::NO_FENCE;
mCore->mBufferAge = 0;
returnFlags |= BUFFER_NEEDS_REALLOCATION;
} else {
// We add 1 because that will be the frame number when this buffer
// is queued
mCore->mBufferAge =
mCore->mFrameCounter + 1 - mSlots[found].mFrameNumber;
}
BQ_LOGV("dequeueBuffer: setting buffer age to %" PRIu64,
mCore->mBufferAge);
if (CC_UNLIKELY(mSlots[found].mFence == NULL)) {
BQ_LOGE("dequeueBuffer: about to return a NULL fence - "
"slot=%d w=%d h=%d format=%u",
found, buffer->width, buffer->height, buffer->format);
}
eglDisplay = mSlots[found].mEglDisplay;
eglFence = mSlots[found].mEglFence;
*outFence = mSlots[found].mFence;
mSlots[found].mEglFence = EGL_NO_SYNC_KHR;
mSlots[found].mFence = Fence::NO_FENCE;
mCore->validateConsistencyLocked();
} // Autolock scope
if (returnFlags & BUFFER_NEEDS_REALLOCATION) {
status_t error;
BQ_LOGV("dequeueBuffer: allocating a new buffer for slot %d", *outSlot);
sp<GraphicBuffer> graphicBuffer(mCore->mAllocator->createGraphicBuffer(
width, height, format, usage, &error));
if (graphicBuffer == NULL) {
BQ_LOGE("dequeueBuffer: createGraphicBuffer failed");
return error;
}
{ // Autolock scope
Mutex::Autolock lock(mCore->mMutex);
if (mCore->mIsAbandoned) {
BQ_LOGE("dequeueBuffer: BufferQueue has been abandoned");
return NO_INIT;
}
mSlots[*outSlot].mGraphicBuffer = graphicBuffer;
} // Autolock scope
}
if (attachedByConsumer) {
returnFlags |= BUFFER_NEEDS_REALLOCATION;
}
if (eglFence != EGL_NO_SYNC_KHR) {
EGLint result = eglClientWaitSyncKHR(eglDisplay, eglFence, 0,
1000000000);
// If something goes wrong, log the error, but return the buffer without
// synchronizing access to it. It's too late at this point to abort the
// dequeue operation.
if (result == EGL_FALSE) {
BQ_LOGE("dequeueBuffer: error %#x waiting for fence",
eglGetError());
} else if (result == EGL_TIMEOUT_EXPIRED_KHR) {
BQ_LOGE("dequeueBuffer: timeout waiting for fence");
}
eglDestroySyncKHR(eglDisplay, eglFence);
}
BQ_LOGV("dequeueBuffer: returning slot=%d/%" PRIu64 " buf=%p flags=%#x",
*outSlot,
mSlots[*outSlot].mFrameNumber,
mSlots[*outSlot].mGraphicBuffer->handle, returnFlags);
return returnFlags;
}
status_t BufferQueueProducer::detachBuffer(int slot) {
ATRACE_CALL();
ATRACE_BUFFER_INDEX(slot);
BQ_LOGV("detachBuffer(P): slot %d", slot);
Mutex::Autolock lock(mCore->mMutex);
if (mCore->mIsAbandoned) {
BQ_LOGE("detachBuffer(P): BufferQueue has been abandoned");
return NO_INIT;
}
if (slot < 0 || slot >= BufferQueueDefs::NUM_BUFFER_SLOTS) {
BQ_LOGE("detachBuffer(P): slot index %d out of range [0, %d)",
slot, BufferQueueDefs::NUM_BUFFER_SLOTS);
return BAD_VALUE;
} else if (mSlots[slot].mBufferState != BufferSlot::DEQUEUED) {
BQ_LOGE("detachBuffer(P): slot %d is not owned by the producer "
"(state = %d)", slot, mSlots[slot].mBufferState);
return BAD_VALUE;
} else if (!mSlots[slot].mRequestBufferCalled) {
BQ_LOGE("detachBuffer(P): buffer in slot %d has not been requested",
slot);
return BAD_VALUE;
}
mCore->freeBufferLocked(slot);
mCore->mDequeueCondition.broadcast();
mCore->validateConsistencyLocked();
return NO_ERROR;
}
status_t BufferQueueProducer::detachNextBuffer(sp<GraphicBuffer>* outBuffer,
sp<Fence>* outFence) {
ATRACE_CALL();
if (outBuffer == NULL) {
BQ_LOGE("detachNextBuffer: outBuffer must not be NULL");
return BAD_VALUE;
} else if (outFence == NULL) {
BQ_LOGE("detachNextBuffer: outFence must not be NULL");
return BAD_VALUE;
}
Mutex::Autolock lock(mCore->mMutex);
mCore->waitWhileAllocatingLocked();
if (mCore->mIsAbandoned) {
BQ_LOGE("detachNextBuffer: BufferQueue has been abandoned");
return NO_INIT;
}
if (mCore->mFreeBuffers.empty()) {
return NO_MEMORY;
}
int found = mCore->mFreeBuffers.front();
mCore->mFreeBuffers.remove(found);
BQ_LOGV("detachNextBuffer detached slot %d", found);
*outBuffer = mSlots[found].mGraphicBuffer;
*outFence = mSlots[found].mFence;
mCore->freeBufferLocked(found);
mCore->validateConsistencyLocked();
return NO_ERROR;
}
status_t BufferQueueProducer::attachBuffer(int* outSlot,
const sp<android::GraphicBuffer>& buffer) {
ATRACE_CALL();
if (outSlot == NULL) {
BQ_LOGE("attachBuffer(P): outSlot must not be NULL");
return BAD_VALUE;
} else if (buffer == NULL) {
BQ_LOGE("attachBuffer(P): cannot attach NULL buffer");
return BAD_VALUE;
}
Mutex::Autolock lock(mCore->mMutex);
mCore->waitWhileAllocatingLocked();
status_t returnFlags = NO_ERROR;
int found;
// TODO: Should we provide an async flag to attachBuffer? It seems
// unlikely that buffers which we are attaching to a BufferQueue will
// be asynchronous (droppable), but it may not be impossible.
status_t status = waitForFreeSlotThenRelock("attachBuffer(P)", false,
&found, &returnFlags);
if (status != NO_ERROR) {
return status;
}
// This should not happen
if (found == BufferQueueCore::INVALID_BUFFER_SLOT) {
BQ_LOGE("attachBuffer(P): no available buffer slots");
return -EBUSY;
}
*outSlot = found;
ATRACE_BUFFER_INDEX(*outSlot);
BQ_LOGV("attachBuffer(P): returning slot %d flags=%#x",
*outSlot, returnFlags);
mSlots[*outSlot].mGraphicBuffer = buffer;
mSlots[*outSlot].mBufferState = BufferSlot::DEQUEUED;
mSlots[*outSlot].mEglFence = EGL_NO_SYNC_KHR;
mSlots[*outSlot].mFence = Fence::NO_FENCE;
mSlots[*outSlot].mRequestBufferCalled = true;
mCore->validateConsistencyLocked();
return returnFlags;
}
status_t BufferQueueProducer::queueBuffer(int slot,
const QueueBufferInput &input, QueueBufferOutput *output) {
ATRACE_CALL();
ATRACE_BUFFER_INDEX(slot);
int64_t timestamp;
bool isAutoTimestamp;
android_dataspace dataSpace;
Rect crop;
int scalingMode;
uint32_t transform;
uint32_t stickyTransform;
bool async;
sp<Fence> fence;
input.deflate(&timestamp, &isAutoTimestamp, &dataSpace, &crop, &scalingMode,
&transform, &async, &fence, &stickyTransform);
Region surfaceDamage = input.getSurfaceDamage();
if (fence == NULL) {
BQ_LOGE("queueBuffer: fence is NULL");
return BAD_VALUE;
}
switch (scalingMode) {
case NATIVE_WINDOW_SCALING_MODE_FREEZE:
case NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW:
case NATIVE_WINDOW_SCALING_MODE_SCALE_CROP:
case NATIVE_WINDOW_SCALING_MODE_NO_SCALE_CROP:
break;
default:
BQ_LOGE("queueBuffer: unknown scaling mode %d", scalingMode);
return BAD_VALUE;
}
sp<IConsumerListener> frameAvailableListener;
sp<IConsumerListener> frameReplacedListener;
int callbackTicket = 0;
BufferItem item;
{ // Autolock scope
Mutex::Autolock lock(mCore->mMutex);
if (mCore->mIsAbandoned) {
BQ_LOGE("queueBuffer: BufferQueue has been abandoned");
return NO_INIT;
}
const int maxBufferCount = mCore->getMaxBufferCountLocked(async);
if (async && mCore->mOverrideMaxBufferCount) {
// FIXME: Some drivers are manually setting the buffer count
// (which they shouldn't), so we do this extra test here to
// handle that case. This is TEMPORARY until we get this fixed.
if (mCore->mOverrideMaxBufferCount < maxBufferCount) {
BQ_LOGE("queueBuffer: async mode is invalid with "
"buffer count override");
return BAD_VALUE;
}
}
if (slot < 0 || slot >= maxBufferCount) {
BQ_LOGE("queueBuffer: slot index %d out of range [0, %d)",
slot, maxBufferCount);
return BAD_VALUE;
} else if (mSlots[slot].mBufferState != BufferSlot::DEQUEUED) {
BQ_LOGE("queueBuffer: slot %d is not owned by the producer "
"(state = %d)", slot, mSlots[slot].mBufferState);
return BAD_VALUE;
} else if (!mSlots[slot].mRequestBufferCalled) {
BQ_LOGE("queueBuffer: slot %d was queued without requesting "
"a buffer", slot);
return BAD_VALUE;
}
BQ_LOGV("queueBuffer: slot=%d/%" PRIu64 " time=%" PRIu64 " dataSpace=%d"
" crop=[%d,%d,%d,%d] transform=%#x scale=%s",
slot, mCore->mFrameCounter + 1, timestamp, dataSpace,
crop.left, crop.top, crop.right, crop.bottom, transform,
BufferItem::scalingModeName(static_cast<uint32_t>(scalingMode)));
const sp<GraphicBuffer>& graphicBuffer(mSlots[slot].mGraphicBuffer);
Rect bufferRect(graphicBuffer->getWidth(), graphicBuffer->getHeight());
Rect croppedRect;
crop.intersect(bufferRect, &croppedRect);
if (croppedRect != crop) {
BQ_LOGE("queueBuffer: crop rect is not contained within the "
"buffer in slot %d", slot);
return BAD_VALUE;
}
// Override UNKNOWN dataspace with consumer default
if (dataSpace == HAL_DATASPACE_UNKNOWN) {
dataSpace = mCore->mDefaultBufferDataSpace;
}
mSlots[slot].mFence = fence;
mSlots[slot].mBufferState = BufferSlot::QUEUED;
++mCore->mFrameCounter;
mSlots[slot].mFrameNumber = mCore->mFrameCounter;
item.mAcquireCalled = mSlots[slot].mAcquireCalled;
item.mGraphicBuffer = mSlots[slot].mGraphicBuffer;
item.mCrop = crop;
item.mTransform = transform &
~static_cast<uint32_t>(NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY);
item.mTransformToDisplayInverse =
(transform & NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY) != 0;
item.mScalingMode = static_cast<uint32_t>(scalingMode);
item.mTimestamp = timestamp;
item.mIsAutoTimestamp = isAutoTimestamp;
item.mDataSpace = dataSpace;
item.mFrameNumber = mCore->mFrameCounter;
item.mSlot = slot;
item.mFence = fence;
item.mIsDroppable = mCore->mDequeueBufferCannotBlock || async;
item.mSurfaceDamage = surfaceDamage;
mStickyTransform = stickyTransform;
if (mCore->mQueue.empty()) {
// When the queue is empty, we can ignore mDequeueBufferCannotBlock
// and simply queue this buffer
mCore->mQueue.push_back(item);
frameAvailableListener = mCore->mConsumerListener;
} else {
// When the queue is not empty, we need to look at the front buffer
// state to see if we need to replace it
BufferQueueCore::Fifo::iterator front(mCore->mQueue.begin());
if (front->mIsDroppable) {
// If the front queued buffer is still being tracked, we first
// mark it as freed
if (mCore->stillTracking(front)) {
mSlots[front->mSlot].mBufferState = BufferSlot::FREE;
mCore->mFreeBuffers.push_front(front->mSlot);
}
// Overwrite the droppable buffer with the incoming one
*front = item;
frameReplacedListener = mCore->mConsumerListener;
} else {
mCore->mQueue.push_back(item);
frameAvailableListener = mCore->mConsumerListener;
}
}
mCore->mBufferHasBeenQueued = true;
mCore->mDequeueCondition.broadcast();
output->inflate(mCore->mDefaultWidth, mCore->mDefaultHeight,
mCore->mTransformHint,
static_cast<uint32_t>(mCore->mQueue.size()));
ATRACE_INT(mCore->mConsumerName.string(), mCore->mQueue.size());
// Take a ticket for the callback functions
callbackTicket = mNextCallbackTicket++;
mCore->validateConsistencyLocked();
} // Autolock scope
// Wait without lock held
if (mCore->mConnectedApi == NATIVE_WINDOW_API_EGL) {
// Waiting here allows for two full buffers to be queued but not a
// third. In the event that frames take varying time, this makes a
// small trade-off in favor of latency rather than throughput.
mLastQueueBufferFence->waitForever("Throttling EGL Production");
mLastQueueBufferFence = fence;
}
// Don't send the GraphicBuffer through the callback, and don't send
// the slot number, since the consumer shouldn't need it
item.mGraphicBuffer.clear();
item.mSlot = BufferItem::INVALID_BUFFER_SLOT;
// Call back without the main BufferQueue lock held, but with the callback
// lock held so we can ensure that callbacks occur in order
{
Mutex::Autolock lock(mCallbackMutex);
while (callbackTicket != mCurrentCallbackTicket) {
mCallbackCondition.wait(mCallbackMutex);
}
if (frameAvailableListener != NULL) {
frameAvailableListener->onFrameAvailable(item);
} else if (frameReplacedListener != NULL) {
frameReplacedListener->onFrameReplaced(item);
}
++mCurrentCallbackTicket;
mCallbackCondition.broadcast();
}
return NO_ERROR;
}
void BufferQueueProducer::cancelBuffer(int slot, const sp<Fence>& fence) {
ATRACE_CALL();
BQ_LOGV("cancelBuffer: slot %d", slot);
Mutex::Autolock lock(mCore->mMutex);
if (mCore->mIsAbandoned) {
BQ_LOGE("cancelBuffer: BufferQueue has been abandoned");
return;
}
if (slot < 0 || slot >= BufferQueueDefs::NUM_BUFFER_SLOTS) {
BQ_LOGE("cancelBuffer: slot index %d out of range [0, %d)",
slot, BufferQueueDefs::NUM_BUFFER_SLOTS);
return;
} else if (mSlots[slot].mBufferState != BufferSlot::DEQUEUED) {
BQ_LOGE("cancelBuffer: slot %d is not owned by the producer "
"(state = %d)", slot, mSlots[slot].mBufferState);
return;
} else if (fence == NULL) {
BQ_LOGE("cancelBuffer: fence is NULL");
return;
}
mCore->mFreeBuffers.push_front(slot);
mSlots[slot].mBufferState = BufferSlot::FREE;
mSlots[slot].mFence = fence;
mCore->mDequeueCondition.broadcast();
mCore->validateConsistencyLocked();
}
int BufferQueueProducer::query(int what, int *outValue) {
ATRACE_CALL();
Mutex::Autolock lock(mCore->mMutex);
if (outValue == NULL) {
BQ_LOGE("query: outValue was NULL");
return BAD_VALUE;
}
if (mCore->mIsAbandoned) {
BQ_LOGE("query: BufferQueue has been abandoned");
return NO_INIT;
}
int value;
switch (what) {
case NATIVE_WINDOW_WIDTH:
value = static_cast<int32_t>(mCore->mDefaultWidth);
break;
case NATIVE_WINDOW_HEIGHT:
value = static_cast<int32_t>(mCore->mDefaultHeight);
break;
case NATIVE_WINDOW_FORMAT:
value = static_cast<int32_t>(mCore->mDefaultBufferFormat);
break;
case NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS:
value = mCore->getMinUndequeuedBufferCountLocked(false);
break;
case NATIVE_WINDOW_STICKY_TRANSFORM:
value = static_cast<int32_t>(mStickyTransform);
break;
case NATIVE_WINDOW_CONSUMER_RUNNING_BEHIND:
value = (mCore->mQueue.size() > 1);
break;
case NATIVE_WINDOW_CONSUMER_USAGE_BITS:
value = static_cast<int32_t>(mCore->mConsumerUsageBits);
break;
case NATIVE_WINDOW_DEFAULT_DATASPACE:
value = static_cast<int32_t>(mCore->mDefaultBufferDataSpace);
break;
case NATIVE_WINDOW_BUFFER_AGE:
if (mCore->mBufferAge > INT32_MAX) {
value = 0;
} else {
value = static_cast<int32_t>(mCore->mBufferAge);
}
break;
default:
return BAD_VALUE;
}
BQ_LOGV("query: %d? %d", what, value);
*outValue = value;
return NO_ERROR;
}
status_t BufferQueueProducer::connect(const sp<IProducerListener>& listener,
int api, bool producerControlledByApp, QueueBufferOutput *output) {
ATRACE_CALL();
Mutex::Autolock lock(mCore->mMutex);
mConsumerName = mCore->mConsumerName;
BQ_LOGV("connect(P): api=%d producerControlledByApp=%s", api,
producerControlledByApp ? "true" : "false");
if (mCore->mIsAbandoned) {
BQ_LOGE("connect(P): BufferQueue has been abandoned");
return NO_INIT;
}
if (mCore->mConsumerListener == NULL) {
BQ_LOGE("connect(P): BufferQueue has no consumer");
return NO_INIT;
}
if (output == NULL) {
BQ_LOGE("connect(P): output was NULL");
return BAD_VALUE;
}
if (mCore->mConnectedApi != BufferQueueCore::NO_CONNECTED_API) {
BQ_LOGE("connect(P): already connected (cur=%d req=%d)",
mCore->mConnectedApi, api);
return BAD_VALUE;
}
int status = NO_ERROR;
switch (api) {
case NATIVE_WINDOW_API_EGL:
case NATIVE_WINDOW_API_CPU:
case NATIVE_WINDOW_API_MEDIA:
case NATIVE_WINDOW_API_CAMERA:
mCore->mConnectedApi = api;
output->inflate(mCore->mDefaultWidth, mCore->mDefaultHeight,
mCore->mTransformHint,
static_cast<uint32_t>(mCore->mQueue.size()));
// Set up a death notification so that we can disconnect
// automatically if the remote producer dies
if (listener != NULL &&
IInterface::asBinder(listener)->remoteBinder() != NULL) {
status = IInterface::asBinder(listener)->linkToDeath(
static_cast<IBinder::DeathRecipient*>(this));
if (status != NO_ERROR) {
BQ_LOGE("connect(P): linkToDeath failed: %s (%d)",
strerror(-status), status);
}
}
mCore->mConnectedProducerListener = listener;
break;
default:
BQ_LOGE("connect(P): unknown API %d", api);
status = BAD_VALUE;
break;
}
mCore->mBufferHasBeenQueued = false;
mCore->mDequeueBufferCannotBlock =
mCore->mConsumerControlledByApp && producerControlledByApp;
return status;
}
status_t BufferQueueProducer::disconnect(int api) {
ATRACE_CALL();
BQ_LOGV("disconnect(P): api %d", api);
int status = NO_ERROR;
sp<IConsumerListener> listener;
{ // Autolock scope
Mutex::Autolock lock(mCore->mMutex);
mCore->waitWhileAllocatingLocked();
if (mCore->mIsAbandoned) {
// It's not really an error to disconnect after the surface has
// been abandoned; it should just be a no-op.
return NO_ERROR;
}
switch (api) {
case NATIVE_WINDOW_API_EGL:
case NATIVE_WINDOW_API_CPU:
case NATIVE_WINDOW_API_MEDIA:
case NATIVE_WINDOW_API_CAMERA:
if (mCore->mConnectedApi == api) {
mCore->freeAllBuffersLocked();
// Remove our death notification callback if we have one
if (mCore->mConnectedProducerListener != NULL) {
sp<IBinder> token =
IInterface::asBinder(mCore->mConnectedProducerListener);
// This can fail if we're here because of the death
// notification, but we just ignore it
token->unlinkToDeath(
static_cast<IBinder::DeathRecipient*>(this));
}
mCore->mConnectedProducerListener = NULL;
mCore->mConnectedApi = BufferQueueCore::NO_CONNECTED_API;
mCore->mSidebandStream.clear();
mCore->mDequeueCondition.broadcast();
listener = mCore->mConsumerListener;
} else {
BQ_LOGE("disconnect(P): connected to another API "
"(cur=%d req=%d)", mCore->mConnectedApi, api);
status = BAD_VALUE;
}
break;
default:
BQ_LOGE("disconnect(P): unknown API %d", api);
status = BAD_VALUE;
break;
}
} // Autolock scope
// Call back without lock held
if (listener != NULL) {
listener->onBuffersReleased();
}
return status;
}
status_t BufferQueueProducer::setSidebandStream(const sp<NativeHandle>& stream) {
sp<IConsumerListener> listener;
{ // Autolock scope
Mutex::Autolock _l(mCore->mMutex);
mCore->mSidebandStream = stream;
listener = mCore->mConsumerListener;
} // Autolock scope
if (listener != NULL) {
listener->onSidebandStreamChanged();
}
return NO_ERROR;
}
void BufferQueueProducer::allocateBuffers(bool async, uint32_t width,
uint32_t height, PixelFormat format, uint32_t usage) {
ATRACE_CALL();
while (true) {
Vector<int> freeSlots;
size_t newBufferCount = 0;
uint32_t allocWidth = 0;
uint32_t allocHeight = 0;
PixelFormat allocFormat = PIXEL_FORMAT_UNKNOWN;
uint32_t allocUsage = 0;
{ // Autolock scope
Mutex::Autolock lock(mCore->mMutex);
mCore->waitWhileAllocatingLocked();
if (!mCore->mAllowAllocation) {
BQ_LOGE("allocateBuffers: allocation is not allowed for this "
"BufferQueue");
return;
}
int currentBufferCount = 0;
for (int slot = 0; slot < BufferQueueDefs::NUM_BUFFER_SLOTS; ++slot) {
if (mSlots[slot].mGraphicBuffer != NULL) {
++currentBufferCount;
} else {
if (mSlots[slot].mBufferState != BufferSlot::FREE) {
BQ_LOGE("allocateBuffers: slot %d without buffer is not FREE",
slot);
continue;
}
freeSlots.push_back(slot);
}
}
int maxBufferCount = mCore->getMaxBufferCountLocked(async);
BQ_LOGV("allocateBuffers: allocating from %d buffers up to %d buffers",
currentBufferCount, maxBufferCount);
if (maxBufferCount <= currentBufferCount)
return;
newBufferCount =
static_cast<size_t>(maxBufferCount - currentBufferCount);
if (freeSlots.size() < newBufferCount) {
BQ_LOGE("allocateBuffers: ran out of free slots");
return;
}
allocWidth = width > 0 ? width : mCore->mDefaultWidth;
allocHeight = height > 0 ? height : mCore->mDefaultHeight;
allocFormat = format != 0 ? format : mCore->mDefaultBufferFormat;
allocUsage = usage | mCore->mConsumerUsageBits;
mCore->mIsAllocating = true;
} // Autolock scope
Vector<sp<GraphicBuffer>> buffers;
for (size_t i = 0; i < newBufferCount; ++i) {
status_t result = NO_ERROR;
sp<GraphicBuffer> graphicBuffer(mCore->mAllocator->createGraphicBuffer(
allocWidth, allocHeight, allocFormat, allocUsage, &result));
if (result != NO_ERROR) {
BQ_LOGE("allocateBuffers: failed to allocate buffer (%u x %u, format"
" %u, usage %u)", width, height, format, usage);
Mutex::Autolock lock(mCore->mMutex);
mCore->mIsAllocating = false;
mCore->mIsAllocatingCondition.broadcast();
return;
}
buffers.push_back(graphicBuffer);
}
{ // Autolock scope
Mutex::Autolock lock(mCore->mMutex);
uint32_t checkWidth = width > 0 ? width : mCore->mDefaultWidth;
uint32_t checkHeight = height > 0 ? height : mCore->mDefaultHeight;
PixelFormat checkFormat = format != 0 ?
format : mCore->mDefaultBufferFormat;
uint32_t checkUsage = usage | mCore->mConsumerUsageBits;
if (checkWidth != allocWidth || checkHeight != allocHeight ||
checkFormat != allocFormat || checkUsage != allocUsage) {
// Something changed while we released the lock. Retry.
BQ_LOGV("allocateBuffers: size/format/usage changed while allocating. Retrying.");
mCore->mIsAllocating = false;
mCore->mIsAllocatingCondition.broadcast();
continue;
}
for (size_t i = 0; i < newBufferCount; ++i) {
int slot = freeSlots[i];
if (mSlots[slot].mBufferState != BufferSlot::FREE) {
// A consumer allocated the FREE slot with attachBuffer. Discard the buffer we
// allocated.
BQ_LOGV("allocateBuffers: slot %d was acquired while allocating. "
"Dropping allocated buffer.", slot);
continue;
}
mCore->freeBufferLocked(slot); // Clean up the slot first
mSlots[slot].mGraphicBuffer = buffers[i];
mSlots[slot].mFence = Fence::NO_FENCE;
// freeBufferLocked puts this slot on the free slots list. Since
// we then attached a buffer, move the slot to free buffer list.
mCore->mFreeSlots.erase(slot);
mCore->mFreeBuffers.push_front(slot);
BQ_LOGV("allocateBuffers: allocated a new buffer in slot %d", slot);
}
mCore->mIsAllocating = false;
mCore->mIsAllocatingCondition.broadcast();
mCore->validateConsistencyLocked();
} // Autolock scope
}
}
status_t BufferQueueProducer::allowAllocation(bool allow) {
ATRACE_CALL();
BQ_LOGV("allowAllocation: %s", allow ? "true" : "false");
Mutex::Autolock lock(mCore->mMutex);
mCore->mAllowAllocation = allow;
return NO_ERROR;
}
void BufferQueueProducer::binderDied(const wp<android::IBinder>& /* who */) {
// If we're here, it means that a producer we were connected to died.
// We're guaranteed that we are still connected to it because we remove
// this callback upon disconnect. It's therefore safe to read mConnectedApi
// without synchronization here.
int api = mCore->mConnectedApi;
disconnect(api);
}
} // namespace android