replicant-frameworks_native/include/ui/mat4.h
Mathias Agopian 595ea77f6b vector and matrix classes for graphics use
- this implements vec2, vec3, vec4, which are float vectors
of size 2, 3 and 4 respectively.

the code allows easy instantiation of vectors of a different
type via the tvec{2|3|4}<T> template classes.

- this also implements mat4 which is a float 4x4 matrix. the
tmat44<T> template class allows easy instantiation of a
4x4 matrix of a different value_type.

The vector types have some minimal support for the
glsl style swizzled access; for instance:

  vec4 u;
  vec3 v = u.xyz;

only .x, .xy, .xyz and their .stpq / .rgba equivalent are
supported.

most operators are supported on both vector and matrices:
arithmetic, unary, compound assignment and comparison
(bit-wise operators NOT supported).

- operations available on vectors include:
dot, length, distance, normalize and cross

- operations available on matrices include:
transpose, inverse, trace

- and a few utilities to create matrices:
ortho, frustum, lookAt

Change-Id: I64add89ae90fa78d3f2f59985b63495575378635
2013-08-26 20:41:13 -07:00

474 lines
14 KiB
C++

/*
* Copyright 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef UI_MAT4_H
#define UI_MAT4_H
#include <stdint.h>
#include <sys/types.h>
#include <ui/vec4.h>
#include <utils/String8.h>
#define TMAT_IMPLEMENTATION
#include <ui/TMatHelpers.h>
#define PURE __attribute__((pure))
namespace android {
// -------------------------------------------------------------------------------------
template <typename T>
class tmat44 : public TVecUnaryOperators<tmat44, T>,
public TVecComparisonOperators<tmat44, T>
{
public:
enum no_init { NO_INIT };
typedef T value_type;
typedef T& reference;
typedef T const& const_reference;
typedef size_t size_type;
typedef tvec4<T> col_type;
typedef tvec4<T> row_type;
// size of a column (i.e.: number of rows)
enum { COL_SIZE = col_type::SIZE };
static inline size_t col_size() { return COL_SIZE; }
// size of a row (i.e.: number of columns)
enum { ROW_SIZE = row_type::SIZE };
static inline size_t row_size() { return ROW_SIZE; }
static inline size_t size() { return row_size(); } // for TVec*<>
private:
/*
* <-- N columns -->
*
* a00 a10 a20 ... aN0 ^
* a01 a11 a21 ... aN1 |
* a02 a12 a22 ... aN2 M rows
* ... |
* a0M a1M a2M ... aNM v
*
* COL_SIZE = M
* ROW_SIZE = N
* m[0] = [a00 a01 a02 ... a01M]
*/
col_type mValue[ROW_SIZE];
public:
// array access
inline col_type const& operator [] (size_t i) const { return mValue[i]; }
inline col_type& operator [] (size_t i) { return mValue[i]; }
T const* asArray() const { return &mValue[0][0]; }
// -----------------------------------------------------------------------
// we don't provide copy-ctor and operator= on purpose
// because we want the compiler generated versions
/*
* constructors
*/
// leaves object uninitialized. use with caution.
explicit tmat44(no_init) { }
// initialize to identity
tmat44();
// initialize to Identity*scalar.
template<typename U>
explicit tmat44(U v);
// sets the diagonal to the passed vector
template <typename U>
explicit tmat44(const tvec4<U>& rhs);
// construct from another matrix of the same size
template <typename U>
explicit tmat44(const tmat44<U>& rhs);
// construct from 4 column vectors
template <typename A, typename B, typename C, typename D>
tmat44(const tvec4<A>& v0, const tvec4<B>& v1, const tvec4<C>& v2, const tvec4<D>& v3);
// construct from a C array
template <typename U>
explicit tmat44(U const* rawArray);
/*
* helpers
*/
static tmat44 ortho(T left, T right, T bottom, T top, T near, T far);
static tmat44 frustum(T left, T right, T bottom, T top, T near, T far);
template <typename A, typename B, typename C>
static tmat44 lookAt(const tvec3<A>& eye, const tvec3<B>& center, const tvec3<C>& up);
template <typename A>
static tmat44 translate(const tvec4<A>& t);
template <typename A>
static tmat44 scale(const tvec4<A>& s);
template <typename A, typename B>
static tmat44 rotate(A radian, const tvec3<B>& about);
/*
* Compound assignment arithmetic operators
*/
// add another matrix of the same size
template <typename U>
tmat44& operator += (const tmat44<U>& v);
// subtract another matrix of the same size
template <typename U>
tmat44& operator -= (const tmat44<U>& v);
// multiply by a scalar
template <typename U>
tmat44& operator *= (U v);
// divide by a scalar
template <typename U>
tmat44& operator /= (U v);
/*
* debugging
*/
String8 asString() const;
};
// ----------------------------------------------------------------------------------------
// Constructors
// ----------------------------------------------------------------------------------------
/*
* Since the matrix code could become pretty big quickly, we don't inline most
* operations.
*/
template <typename T>
tmat44<T>::tmat44() {
mValue[0] = col_type(1,0,0,0);
mValue[1] = col_type(0,1,0,0);
mValue[2] = col_type(0,0,1,0);
mValue[3] = col_type(0,0,0,1);
}
template <typename T>
template <typename U>
tmat44<T>::tmat44(U v) {
mValue[0] = col_type(v,0,0,0);
mValue[1] = col_type(0,v,0,0);
mValue[2] = col_type(0,0,v,0);
mValue[3] = col_type(0,0,0,v);
}
template<typename T>
template<typename U>
tmat44<T>::tmat44(const tvec4<U>& v) {
mValue[0] = col_type(v.x,0,0,0);
mValue[1] = col_type(0,v.y,0,0);
mValue[2] = col_type(0,0,v.z,0);
mValue[3] = col_type(0,0,0,v.w);
}
template <typename T>
template <typename U>
tmat44<T>::tmat44(const tmat44<U>& rhs) {
for (size_t r=0 ; r<row_size() ; r++)
mValue[r] = rhs[r];
}
template <typename T>
template <typename A, typename B, typename C, typename D>
tmat44<T>::tmat44(const tvec4<A>& v0, const tvec4<B>& v1, const tvec4<C>& v2, const tvec4<D>& v3) {
mValue[0] = v0;
mValue[1] = v1;
mValue[2] = v2;
mValue[3] = v3;
}
template <typename T>
template <typename U>
tmat44<T>::tmat44(U const* rawArray) {
for (size_t r=0 ; r<row_size() ; r++)
for (size_t c=0 ; c<col_size() ; c++)
mValue[r][c] = *rawArray++;
}
// ----------------------------------------------------------------------------------------
// Helpers
// ----------------------------------------------------------------------------------------
template <typename T>
tmat44<T> tmat44<T>::ortho(T left, T right, T bottom, T top, T near, T far) {
tmat44<T> m;
m[0][0] = 2 / (right - left);
m[1][1] = 2 / (top - bottom);
m[2][2] = -2 / (far - near);
m[3][0] = -(right + left) / (right - left);
m[3][1] = -(top + bottom) / (top - bottom);
m[3][2] = -(far + near) / (far - near);
return m;
}
template <typename T>
tmat44<T> tmat44<T>::frustum(T left, T right, T bottom, T top, T near, T far) {
tmat44<T> m;
T A = (right + left) / (right - left);
T B = (top + bottom) / (top - bottom);
T C = (far + near) / (far - near);
T D = (2 * far * near) / (far - near);
m[0][0] = (2 * near) / (right - left);
m[1][1] = (2 * near) / (top - bottom);
m[2][0] = A;
m[2][1] = B;
m[2][2] = C;
m[2][3] =-1;
m[3][2] = D;
m[3][3] = 0;
return m;
}
template <typename T>
template <typename A, typename B, typename C>
tmat44<T> tmat44<T>::lookAt(const tvec3<A>& eye, const tvec3<B>& center, const tvec3<C>& up) {
tvec3<T> L(normalize(center - eye));
tvec3<T> S(normalize( cross(L, up) ));
tvec3<T> U(cross(S, L));
return tmat44<T>(
tvec4<T>( S, 0),
tvec4<T>( U, 0),
tvec4<T>(-L, 0),
tvec4<T>(-eye, 1));
}
template <typename T>
template <typename A>
tmat44<T> tmat44<T>::translate(const tvec4<A>& t) {
tmat44<T> r;
r[3] = t;
return r;
}
template <typename T>
template <typename A>
tmat44<T> tmat44<T>::scale(const tvec4<A>& s) {
tmat44<T> r;
r[0][0] = s[0];
r[1][1] = s[1];
r[2][2] = s[2];
r[3][3] = s[3];
return r;
}
template <typename T>
template <typename A, typename B>
tmat44<T> tmat44<T>::rotate(A radian, const tvec3<B>& about) {
tmat44<T> rotation;
T* r = const_cast<T*>(rotation.asArray());
T c = cos(radian);
T s = sin(radian);
if (about.x==1 && about.y==0 && about.z==0) {
r[5] = c; r[10]= c;
r[6] = s; r[9] = -s;
} else if (about.x==0 && about.y==1 && about.z==0) {
r[0] = c; r[10]= c;
r[8] = s; r[2] = -s;
} else if (about.x==0 && about.y==0 && about.z==1) {
r[0] = c; r[5] = c;
r[1] = s; r[4] = -s;
} else {
tvec3<B> nabout = normalize(about);
B x = nabout.x;
B y = nabout.y;
B z = nabout.z;
T nc = 1 - c;
T xy = x * y;
T yz = y * z;
T zx = z * x;
T xs = x * s;
T ys = y * s;
T zs = z * s;
r[ 0] = x*x*nc + c; r[ 4] = xy*nc - zs; r[ 8] = zx*nc + ys;
r[ 1] = xy*nc + zs; r[ 5] = y*y*nc + c; r[ 9] = yz*nc - xs;
r[ 2] = zx*nc - ys; r[ 6] = yz*nc + xs; r[10] = z*z*nc + c;
}
}
// ----------------------------------------------------------------------------------------
// Compound assignment arithmetic operators
// ----------------------------------------------------------------------------------------
template <typename T>
template <typename U>
tmat44<T>& tmat44<T>::operator += (const tmat44<U>& v) {
for (size_t r=0 ; r<row_size() ; r++)
mValue[r] += v[r];
return *this;
}
template <typename T>
template <typename U>
tmat44<T>& tmat44<T>::operator -= (const tmat44<U>& v) {
for (size_t r=0 ; r<row_size() ; r++)
mValue[r] -= v[r];
return *this;
}
template <typename T>
template <typename U>
tmat44<T>& tmat44<T>::operator *= (U v) {
for (size_t r=0 ; r<row_size() ; r++)
mValue[r] *= v;
return *this;
}
template <typename T>
template <typename U>
tmat44<T>& tmat44<T>::operator /= (U v) {
for (size_t r=0 ; r<row_size() ; r++)
mValue[r] /= v;
return *this;
}
// ----------------------------------------------------------------------------------------
// Arithmetic operators outside of class
// ----------------------------------------------------------------------------------------
/* We use non-friend functions here to prevent the compiler from using
* implicit conversions, for instance of a scalar to a vector. The result would
* not be what the caller expects.
*
* Also note that the order of the arguments in the inner loop is important since
* it determines the output type (only relevant when T != U).
*/
// matrix + matrix, result is a matrix of the same type than the lhs matrix
template <typename T, typename U>
tmat44<T> PURE operator +(const tmat44<T>& lhs, const tmat44<U>& rhs) {
tmat44<T> result(tmat44<T>::NO_INIT);
for (size_t r=0 ; r<tmat44<T>::row_size() ; r++)
result[r] = lhs[r] + rhs[r];
return result;
}
// matrix - matrix, result is a matrix of the same type than the lhs matrix
template <typename T, typename U>
tmat44<T> PURE operator -(const tmat44<T>& lhs, const tmat44<U>& rhs) {
tmat44<T> result(tmat44<T>::NO_INIT);
for (size_t r=0 ; r<tmat44<T>::row_size() ; r++)
result[r] = lhs[r] - rhs[r];
return result;
}
// matrix * vector, result is a vector of the same type than the input vector
template <typename T, typename U>
typename tmat44<U>::col_type PURE operator *(const tmat44<T>& lv, const tvec4<U>& rv) {
typename tmat44<U>::col_type result;
for (size_t r=0 ; r<tmat44<T>::row_size() ; r++)
result += rv[r]*lv[r];
return result;
}
// vector * matrix, result is a vector of the same type than the input vector
template <typename T, typename U>
typename tmat44<U>::row_type PURE operator *(const tvec4<U>& rv, const tmat44<T>& lv) {
typename tmat44<U>::row_type result(tmat44<U>::row_type::NO_INIT);
for (size_t r=0 ; r<tmat44<T>::row_size() ; r++)
result[r] = dot(rv, lv[r]);
return result;
}
// matrix * scalar, result is a matrix of the same type than the input matrix
template <typename T, typename U>
tmat44<T> PURE operator *(const tmat44<T>& lv, U rv) {
tmat44<T> result(tmat44<T>::NO_INIT);
for (size_t r=0 ; r<tmat44<T>::row_size() ; r++)
result[r] = lv[r]*rv;
return result;
}
// scalar * matrix, result is a matrix of the same type than the input matrix
template <typename T, typename U>
tmat44<T> PURE operator *(U rv, const tmat44<T>& lv) {
tmat44<T> result(tmat44<T>::NO_INIT);
for (size_t r=0 ; r<tmat44<T>::row_size() ; r++)
result[r] = lv[r]*rv;
return result;
}
// matrix * matrix, result is a matrix of the same type than the lhs matrix
template <typename T, typename U>
tmat44<T> PURE operator *(const tmat44<T>& lhs, const tmat44<U>& rhs) {
return matrix::multiply< tmat44<T> >(lhs, rhs);
}
// ----------------------------------------------------------------------------------------
// Functions
// ----------------------------------------------------------------------------------------
// inverse a matrix
template <typename T>
tmat44<T> PURE inverse(const tmat44<T>& m) {
return matrix::inverse(m);
}
template <typename T>
tmat44<T> PURE transpose(const tmat44<T>& m) {
return matrix::transpose(m);
}
template <typename T>
T PURE trace(const tmat44<T>& m) {
return matrix::trace(m);
}
template <typename T>
tvec4<T> PURE diag(const tmat44<T>& m) {
return matrix::diag(m);
}
// ----------------------------------------------------------------------------------------
// Debugging
// ----------------------------------------------------------------------------------------
template <typename T>
String8 tmat44<T>::asString() const {
return matrix::asString(*this);
}
// ----------------------------------------------------------------------------------------
typedef tmat44<float> mat4;
// ----------------------------------------------------------------------------------------
}; // namespace android
#undef PURE
#endif /* UI_MAT4_H */