replicant-frameworks_native/include/ui/EventHub.h
Jeff Brown a3477c862a Added support for full PC-style keyboards.
BREAKING CHANGE: Redesigned the key character map format to
accomodate full keyboards with more comprehensive suite of modifiers.
Old key character maps will not work anymore and must be updated.
The new format is plain text only and it not compiled to a binary
file (so the "kcm" tool will be removed in a subsequent check-in).

Added FULL keyboard type to support full PC-style keyboards.

Added SPECIAL_FUNCTION keyboard type to support special function
keypads that do not have any printable keys suitable for typing
and only have keys like HOME and POWER

Added a special VIRTUAL_KEYBOARD device id convention that maps
to a virtual keyboard with a fixed known layout.  This is designed
to work around issues injecting input events on devices whose
built-in keyboard does not have a useful key character map (ie.
when the built-in keyboard is a special function keyboard only.)

Modified several places where events were being synthesized
to use the virtual keyboard.

Removed support for the "qwerty" default layout.
The new default layout is "Generic".  For the most part "qwerty"
was being used as a backstop in case the built-in keyboard did
not have a key character map (probably because it was a special
function keypad) and the framework needed to be able to inject
key events anyways.  The latter issue is resolved by using the
special VIRTUAL_KEYBOARD device instead of BUILT_IN_KEYBOARD.

Added the concept of a key modifier behavior so that
MetaKeyKeyListener can distinguish between keyboards that use
chorded vs. toggled modifiers.

Wrote more robust key layout and key character map parsers
to enable support for new keyboard features and user installable
key maps.

Fixed a bug in InputReader generating key ups when keys
are released out of sequence.

Updated tons of documentation.

Currently QwertyKeyListener is being used for full keyboards
with autotext and capitalization disabled.  This mostly works
but causes some problems with character pickers, etc.
These issues will be resolved in subsequent changes.

Change-Id: Ica48f6097a551141c215bc0d2c6f7b3fb634d354
2010-11-18 09:49:03 -08:00

310 lines
10 KiB
C++

/*
* Copyright (C) 2005 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//
#ifndef _RUNTIME_EVENT_HUB_H
#define _RUNTIME_EVENT_HUB_H
#include <android/input.h>
#include <ui/Keyboard.h>
#include <utils/String8.h>
#include <utils/threads.h>
#include <utils/Log.h>
#include <utils/threads.h>
#include <utils/List.h>
#include <utils/Errors.h>
#include <linux/input.h>
/* These constants are not defined in linux/input.h but they are part of the multitouch
* input protocol. */
#define ABS_MT_TOUCH_MAJOR 0x30 /* Major axis of touching ellipse */
#define ABS_MT_TOUCH_MINOR 0x31 /* Minor axis (omit if circular) */
#define ABS_MT_WIDTH_MAJOR 0x32 /* Major axis of approaching ellipse */
#define ABS_MT_WIDTH_MINOR 0x33 /* Minor axis (omit if circular) */
#define ABS_MT_ORIENTATION 0x34 /* Ellipse orientation */
#define ABS_MT_POSITION_X 0x35 /* Center X ellipse position */
#define ABS_MT_POSITION_Y 0x36 /* Center Y ellipse position */
#define ABS_MT_TOOL_TYPE 0x37 /* Type of touching device (finger, pen, ...) */
#define ABS_MT_BLOB_ID 0x38 /* Group a set of packets as a blob */
#define ABS_MT_TRACKING_ID 0x39 /* Unique ID of initiated contact */
#define ABS_MT_PRESSURE 0x3a /* Pressure on contact area */
#define MT_TOOL_FINGER 0 /* Identifies a finger */
#define MT_TOOL_PEN 1 /* Identifies a pen */
#define SYN_MT_REPORT 2
/* Convenience constants. */
#define BTN_FIRST 0x100 // first button scancode
#define BTN_LAST 0x15f // last button scancode
struct pollfd;
namespace android {
class KeyLayoutMap;
/*
* A raw event as retrieved from the EventHub.
*/
struct RawEvent {
nsecs_t when;
int32_t deviceId;
int32_t type;
int32_t scanCode;
int32_t keyCode;
int32_t value;
uint32_t flags;
};
/* Describes an absolute axis. */
struct RawAbsoluteAxisInfo {
bool valid; // true if the information is valid, false otherwise
int32_t minValue; // minimum value
int32_t maxValue; // maximum value
int32_t flat; // center flat position, eg. flat == 8 means center is between -8 and 8
int32_t fuzz; // error tolerance, eg. fuzz == 4 means value is +/- 4 due to noise
inline int32_t getRange() { return maxValue - minValue; }
inline void clear() {
valid = false;
minValue = 0;
maxValue = 0;
flat = 0;
fuzz = 0;
}
};
/*
* Input device classes.
*/
enum {
/* The input device is a keyboard. */
INPUT_DEVICE_CLASS_KEYBOARD = 0x00000001,
/* The input device is an alpha-numeric keyboard (not just a dial pad). */
INPUT_DEVICE_CLASS_ALPHAKEY = 0x00000002,
/* The input device is a touchscreen (either single-touch or multi-touch). */
INPUT_DEVICE_CLASS_TOUCHSCREEN = 0x00000004,
/* The input device is a trackball. */
INPUT_DEVICE_CLASS_TRACKBALL = 0x00000008,
/* The input device is a multi-touch touchscreen. */
INPUT_DEVICE_CLASS_TOUCHSCREEN_MT= 0x00000010,
/* The input device is a directional pad (implies keyboard, has DPAD keys). */
INPUT_DEVICE_CLASS_DPAD = 0x00000020,
/* The input device is a gamepad (implies keyboard, has BUTTON keys). */
INPUT_DEVICE_CLASS_GAMEPAD = 0x00000040,
/* The input device has switches. */
INPUT_DEVICE_CLASS_SWITCH = 0x00000080,
};
/*
* Grand Central Station for events.
*
* The event hub aggregates input events received across all known input
* devices on the system, including devices that may be emulated by the simulator
* environment. In addition, the event hub generates fake input events to indicate
* when devices are added or removed.
*
* The event hub provies a stream of input events (via the getEvent function).
* It also supports querying the current actual state of input devices such as identifying
* which keys are currently down. Finally, the event hub keeps track of the capabilities of
* individual input devices, such as their class and the set of key codes that they support.
*/
class EventHubInterface : public virtual RefBase {
protected:
EventHubInterface() { }
virtual ~EventHubInterface() { }
public:
// Synthetic raw event type codes produced when devices are added or removed.
enum {
// Sent when a device is added.
DEVICE_ADDED = 0x10000000,
// Sent when a device is removed.
DEVICE_REMOVED = 0x20000000,
// Sent when all added/removed devices from the most recent scan have been reported.
// This event is always sent at least once.
FINISHED_DEVICE_SCAN = 0x30000000,
};
virtual uint32_t getDeviceClasses(int32_t deviceId) const = 0;
virtual String8 getDeviceName(int32_t deviceId) const = 0;
virtual status_t getAbsoluteAxisInfo(int32_t deviceId, int axis,
RawAbsoluteAxisInfo* outAxisInfo) const = 0;
virtual status_t scancodeToKeycode(int32_t deviceId, int scancode,
int32_t* outKeycode, uint32_t* outFlags) const = 0;
// exclude a particular device from opening
// this can be used to ignore input devices for sensors
virtual void addExcludedDevice(const char* deviceName) = 0;
/*
* Wait for the next event to become available and return it.
* After returning, the EventHub holds onto a wake lock until the next call to getEvent.
* This ensures that the device will not go to sleep while the event is being processed.
* If the device needs to remain awake longer than that, then the caller is responsible
* for taking care of it (say, by poking the power manager user activity timer).
*/
virtual bool getEvent(RawEvent* outEvent) = 0;
/*
* Query current input state.
*/
virtual int32_t getScanCodeState(int32_t deviceId, int32_t scanCode) const = 0;
virtual int32_t getKeyCodeState(int32_t deviceId, int32_t keyCode) const = 0;
virtual int32_t getSwitchState(int32_t deviceId, int32_t sw) const = 0;
/*
* Examine key input devices for specific framework keycode support
*/
virtual bool markSupportedKeyCodes(int32_t deviceId, size_t numCodes, const int32_t* keyCodes,
uint8_t* outFlags) const = 0;
virtual bool hasLed(int32_t deviceId, int32_t led) const = 0;
virtual void setLedState(int32_t deviceId, int32_t led, bool on) = 0;
virtual void dump(String8& dump) = 0;
};
class EventHub : public EventHubInterface
{
public:
EventHub();
status_t errorCheck() const;
virtual uint32_t getDeviceClasses(int32_t deviceId) const;
virtual String8 getDeviceName(int32_t deviceId) const;
virtual status_t getAbsoluteAxisInfo(int32_t deviceId, int axis,
RawAbsoluteAxisInfo* outAxisInfo) const;
virtual status_t scancodeToKeycode(int32_t deviceId, int scancode,
int32_t* outKeycode, uint32_t* outFlags) const;
virtual void addExcludedDevice(const char* deviceName);
virtual int32_t getScanCodeState(int32_t deviceId, int32_t scanCode) const;
virtual int32_t getKeyCodeState(int32_t deviceId, int32_t keyCode) const;
virtual int32_t getSwitchState(int32_t deviceId, int32_t sw) const;
virtual bool markSupportedKeyCodes(int32_t deviceId, size_t numCodes,
const int32_t* keyCodes, uint8_t* outFlags) const;
virtual bool getEvent(RawEvent* outEvent);
virtual bool hasLed(int32_t deviceId, int32_t led) const;
virtual void setLedState(int32_t deviceId, int32_t led, bool on);
virtual void dump(String8& dump);
protected:
virtual ~EventHub();
private:
bool openPlatformInput(void);
int openDevice(const char *device);
int closeDevice(const char *device);
int scanDir(const char *dirname);
int readNotify(int nfd);
status_t mError;
struct device_t {
const int32_t id;
const String8 path;
String8 name;
uint32_t classes;
uint8_t* keyBitmask;
KeyLayoutMap* layoutMap;
KeyMapInfo keyMapInfo;
int fd;
device_t* next;
device_t(int32_t _id, const char* _path, const char* name);
~device_t();
};
device_t* getDeviceLocked(int32_t deviceId) const;
bool hasKeycodeLocked(device_t* device, int keycode) const;
int32_t getScanCodeStateLocked(device_t* device, int32_t scanCode) const;
int32_t getKeyCodeStateLocked(device_t* device, int32_t keyCode) const;
int32_t getSwitchStateLocked(device_t* device, int32_t sw) const;
bool markSupportedKeyCodesLocked(device_t* device, size_t numCodes,
const int32_t* keyCodes, uint8_t* outFlags) const;
void configureKeyMap(device_t* device);
void setKeyboardProperties(device_t* device, bool firstKeyboard);
void clearKeyboardProperties(device_t* device, bool firstKeyboard);
// Protect all internal state.
mutable Mutex mLock;
bool mHaveFirstKeyboard;
int32_t mFirstKeyboardId; // the API is that the built-in keyboard is id 0, so map it
struct device_ent {
device_t* device;
uint32_t seq;
};
device_ent *mDevicesById;
int mNumDevicesById;
device_t *mOpeningDevices;
device_t *mClosingDevices;
device_t **mDevices;
struct pollfd *mFDs;
int mFDCount;
bool mOpened;
bool mNeedToSendFinishedDeviceScan;
List<String8> mExcludedDevices;
// device ids that report particular switches.
#ifdef EV_SW
int32_t mSwitches[SW_MAX + 1];
#endif
static const int INPUT_BUFFER_SIZE = 64;
struct input_event mInputBufferData[INPUT_BUFFER_SIZE];
int32_t mInputBufferIndex;
int32_t mInputBufferCount;
int32_t mInputDeviceIndex;
};
}; // namespace android
#endif // _RUNTIME_EVENT_HUB_H