e0cd5dc3dc
This reverts commit 8c2a1a90a81f04573bfa578eab32f5fd4a30eafb. Conflicts: cmds/keystore/keystore.c Bug:4970237 Change-Id: I626023d695becfada47e5f319b18e0889b766563
811 lines
26 KiB
C++
811 lines
26 KiB
C++
/*
|
|
* Copyright (C) 2009 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <signal.h>
|
|
#include <errno.h>
|
|
#include <dirent.h>
|
|
#include <fcntl.h>
|
|
#include <limits.h>
|
|
#include <sys/types.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/time.h>
|
|
#include <arpa/inet.h>
|
|
|
|
#include <openssl/aes.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/md5.h>
|
|
|
|
#define LOG_TAG "keystore"
|
|
#include <cutils/log.h>
|
|
#include <cutils/sockets.h>
|
|
#include <private/android_filesystem_config.h>
|
|
|
|
#include "keystore.h"
|
|
|
|
/* KeyStore is a secured storage for key-value pairs. In this implementation,
|
|
* each file stores one key-value pair. Keys are encoded in file names, and
|
|
* values are encrypted with checksums. The encryption key is protected by a
|
|
* user-defined password. To keep things simple, buffers are always larger than
|
|
* the maximum space we needed, so boundary checks on buffers are omitted. */
|
|
|
|
#define KEY_SIZE ((NAME_MAX - 15) / 2)
|
|
#define VALUE_SIZE 32768
|
|
#define PASSWORD_SIZE VALUE_SIZE
|
|
|
|
struct Value {
|
|
int length;
|
|
uint8_t value[VALUE_SIZE];
|
|
};
|
|
|
|
/* Here is the encoding of keys. This is necessary in order to allow arbitrary
|
|
* characters in keys. Characters in [0-~] are not encoded. Others are encoded
|
|
* into two bytes. The first byte is one of [+-.] which represents the first
|
|
* two bits of the character. The second byte encodes the rest of the bits into
|
|
* [0-o]. Therefore in the worst case the length of a key gets doubled. Note
|
|
* that Base64 cannot be used here due to the need of prefix match on keys. */
|
|
|
|
static int encode_key(char* out, uid_t uid, const Value* key) {
|
|
int n = snprintf(out, NAME_MAX, "%u_", uid);
|
|
out += n;
|
|
const uint8_t* in = key->value;
|
|
int length = key->length;
|
|
for (int i = length; i > 0; --i, ++in, ++out) {
|
|
if (*in >= '0' && *in <= '~') {
|
|
*out = *in;
|
|
} else {
|
|
*out = '+' + (*in >> 6);
|
|
*++out = '0' + (*in & 0x3F);
|
|
++length;
|
|
}
|
|
}
|
|
*out = '\0';
|
|
return n + length;
|
|
}
|
|
|
|
static int decode_key(uint8_t* out, char* in, int length) {
|
|
for (int i = 0; i < length; ++i, ++in, ++out) {
|
|
if (*in >= '0' && *in <= '~') {
|
|
*out = *in;
|
|
} else {
|
|
*out = (*in - '+') << 6;
|
|
*out |= (*++in - '0') & 0x3F;
|
|
--length;
|
|
}
|
|
}
|
|
*out = '\0';
|
|
return length;
|
|
}
|
|
|
|
static size_t readFully(int fd, uint8_t* data, size_t size) {
|
|
size_t remaining = size;
|
|
while (remaining > 0) {
|
|
ssize_t n = TEMP_FAILURE_RETRY(read(fd, data, size));
|
|
if (n == -1 || n == 0) {
|
|
return size-remaining;
|
|
}
|
|
data += n;
|
|
remaining -= n;
|
|
}
|
|
return size;
|
|
}
|
|
|
|
static size_t writeFully(int fd, uint8_t* data, size_t size) {
|
|
size_t remaining = size;
|
|
while (remaining > 0) {
|
|
ssize_t n = TEMP_FAILURE_RETRY(write(fd, data, size));
|
|
if (n == -1 || n == 0) {
|
|
return size-remaining;
|
|
}
|
|
data += n;
|
|
remaining -= n;
|
|
}
|
|
return size;
|
|
}
|
|
|
|
class Entropy {
|
|
public:
|
|
Entropy() : mRandom(-1) {}
|
|
~Entropy() {
|
|
if (mRandom != -1) {
|
|
close(mRandom);
|
|
}
|
|
}
|
|
|
|
bool open() {
|
|
const char* randomDevice = "/dev/urandom";
|
|
mRandom = ::open(randomDevice, O_RDONLY);
|
|
if (mRandom == -1) {
|
|
LOGE("open: %s: %s", randomDevice, strerror(errno));
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool generate_random_data(uint8_t* data, size_t size) {
|
|
return (readFully(mRandom, data, size) == size);
|
|
}
|
|
|
|
private:
|
|
int mRandom;
|
|
};
|
|
|
|
/* Here is the file format. There are two parts in blob.value, the secret and
|
|
* the description. The secret is stored in ciphertext, and its original size
|
|
* can be found in blob.length. The description is stored after the secret in
|
|
* plaintext, and its size is specified in blob.info. The total size of the two
|
|
* parts must be no more than VALUE_SIZE bytes. The first three bytes of the
|
|
* file are reserved for future use and are always set to zero. Fields other
|
|
* than blob.info, blob.length, and blob.value are modified by encryptBlob()
|
|
* and decryptBlob(). Thus they should not be accessed from outside. */
|
|
|
|
struct __attribute__((packed)) blob {
|
|
uint8_t reserved[3];
|
|
uint8_t info;
|
|
uint8_t vector[AES_BLOCK_SIZE];
|
|
uint8_t encrypted[0];
|
|
uint8_t digest[MD5_DIGEST_LENGTH];
|
|
uint8_t digested[0];
|
|
int32_t length; // in network byte order when encrypted
|
|
uint8_t value[VALUE_SIZE + AES_BLOCK_SIZE];
|
|
};
|
|
|
|
class Blob {
|
|
public:
|
|
Blob(uint8_t* value, int32_t valueLength, uint8_t* info, uint8_t infoLength) {
|
|
mBlob.length = valueLength;
|
|
memcpy(mBlob.value, value, valueLength);
|
|
|
|
mBlob.info = infoLength;
|
|
memcpy(mBlob.value + valueLength, info, infoLength);
|
|
}
|
|
|
|
Blob(blob b) {
|
|
mBlob = b;
|
|
}
|
|
|
|
Blob() {}
|
|
|
|
uint8_t* getValue() {
|
|
return mBlob.value;
|
|
}
|
|
|
|
int32_t getLength() {
|
|
return mBlob.length;
|
|
}
|
|
|
|
uint8_t getInfo() {
|
|
return mBlob.info;
|
|
}
|
|
|
|
ResponseCode encryptBlob(const char* filename, AES_KEY *aes_key, Entropy* entropy) {
|
|
if (!entropy->generate_random_data(mBlob.vector, AES_BLOCK_SIZE)) {
|
|
return SYSTEM_ERROR;
|
|
}
|
|
|
|
// data includes the value and the value's length
|
|
size_t dataLength = mBlob.length + sizeof(mBlob.length);
|
|
// pad data to the AES_BLOCK_SIZE
|
|
size_t digestedLength = ((dataLength + AES_BLOCK_SIZE - 1)
|
|
/ AES_BLOCK_SIZE * AES_BLOCK_SIZE);
|
|
// encrypted data includes the digest value
|
|
size_t encryptedLength = digestedLength + MD5_DIGEST_LENGTH;
|
|
// move info after space for padding
|
|
memmove(&mBlob.encrypted[encryptedLength], &mBlob.value[mBlob.length], mBlob.info);
|
|
// zero padding area
|
|
memset(mBlob.value + mBlob.length, 0, digestedLength - dataLength);
|
|
|
|
mBlob.length = htonl(mBlob.length);
|
|
MD5(mBlob.digested, digestedLength, mBlob.digest);
|
|
|
|
uint8_t vector[AES_BLOCK_SIZE];
|
|
memcpy(vector, mBlob.vector, AES_BLOCK_SIZE);
|
|
AES_cbc_encrypt(mBlob.encrypted, mBlob.encrypted, encryptedLength,
|
|
aes_key, vector, AES_ENCRYPT);
|
|
|
|
memset(mBlob.reserved, 0, sizeof(mBlob.reserved));
|
|
size_t headerLength = (mBlob.encrypted - (uint8_t*) &mBlob);
|
|
size_t fileLength = encryptedLength + headerLength + mBlob.info;
|
|
|
|
const char* tmpFileName = ".tmp";
|
|
int out = open(tmpFileName, O_WRONLY | O_TRUNC | O_CREAT, S_IRUSR | S_IWUSR);
|
|
if (out == -1) {
|
|
return SYSTEM_ERROR;
|
|
}
|
|
size_t writtenBytes = writeFully(out, (uint8_t*) &mBlob, fileLength);
|
|
if (close(out) != 0) {
|
|
return SYSTEM_ERROR;
|
|
}
|
|
if (writtenBytes != fileLength) {
|
|
unlink(tmpFileName);
|
|
return SYSTEM_ERROR;
|
|
}
|
|
return (rename(tmpFileName, filename) == 0) ? NO_ERROR : SYSTEM_ERROR;
|
|
}
|
|
|
|
ResponseCode decryptBlob(const char* filename, AES_KEY *aes_key) {
|
|
int in = open(filename, O_RDONLY);
|
|
if (in == -1) {
|
|
return (errno == ENOENT) ? KEY_NOT_FOUND : SYSTEM_ERROR;
|
|
}
|
|
// fileLength may be less than sizeof(mBlob) since the in
|
|
// memory version has extra padding to tolerate rounding up to
|
|
// the AES_BLOCK_SIZE
|
|
size_t fileLength = readFully(in, (uint8_t*) &mBlob, sizeof(mBlob));
|
|
if (close(in) != 0) {
|
|
return SYSTEM_ERROR;
|
|
}
|
|
size_t headerLength = (mBlob.encrypted - (uint8_t*) &mBlob);
|
|
if (fileLength < headerLength) {
|
|
return VALUE_CORRUPTED;
|
|
}
|
|
|
|
ssize_t encryptedLength = fileLength - (headerLength + mBlob.info);
|
|
if (encryptedLength < 0 || encryptedLength % AES_BLOCK_SIZE != 0) {
|
|
return VALUE_CORRUPTED;
|
|
}
|
|
AES_cbc_encrypt(mBlob.encrypted, mBlob.encrypted, encryptedLength, aes_key,
|
|
mBlob.vector, AES_DECRYPT);
|
|
size_t digestedLength = encryptedLength - MD5_DIGEST_LENGTH;
|
|
uint8_t computedDigest[MD5_DIGEST_LENGTH];
|
|
MD5(mBlob.digested, digestedLength, computedDigest);
|
|
if (memcmp(mBlob.digest, computedDigest, MD5_DIGEST_LENGTH) != 0) {
|
|
return VALUE_CORRUPTED;
|
|
}
|
|
|
|
ssize_t maxValueLength = digestedLength - sizeof(mBlob.length);
|
|
mBlob.length = ntohl(mBlob.length);
|
|
if (mBlob.length < 0 || mBlob.length > maxValueLength) {
|
|
return VALUE_CORRUPTED;
|
|
}
|
|
if (mBlob.info != 0) {
|
|
// move info from after padding to after data
|
|
memmove(&mBlob.value[mBlob.length], &mBlob.value[maxValueLength], mBlob.info);
|
|
}
|
|
return NO_ERROR;
|
|
}
|
|
|
|
private:
|
|
struct blob mBlob;
|
|
};
|
|
|
|
class KeyStore {
|
|
public:
|
|
KeyStore(Entropy* entropy) : mEntropy(entropy), mRetry(MAX_RETRY) {
|
|
if (access(MASTER_KEY_FILE, R_OK) == 0) {
|
|
setState(STATE_LOCKED);
|
|
} else {
|
|
setState(STATE_UNINITIALIZED);
|
|
}
|
|
}
|
|
|
|
State getState() {
|
|
return mState;
|
|
}
|
|
|
|
int8_t getRetry() {
|
|
return mRetry;
|
|
}
|
|
|
|
ResponseCode initialize(Value* pw) {
|
|
if (!generateMasterKey()) {
|
|
return SYSTEM_ERROR;
|
|
}
|
|
ResponseCode response = writeMasterKey(pw);
|
|
if (response != NO_ERROR) {
|
|
return response;
|
|
}
|
|
setupMasterKeys();
|
|
return NO_ERROR;
|
|
}
|
|
|
|
ResponseCode writeMasterKey(Value* pw) {
|
|
uint8_t passwordKey[MASTER_KEY_SIZE_BYTES];
|
|
generateKeyFromPassword(passwordKey, MASTER_KEY_SIZE_BYTES, pw, mSalt);
|
|
AES_KEY passwordAesKey;
|
|
AES_set_encrypt_key(passwordKey, MASTER_KEY_SIZE_BITS, &passwordAesKey);
|
|
Blob masterKeyBlob(mMasterKey, sizeof(mMasterKey), mSalt, sizeof(mSalt));
|
|
return masterKeyBlob.encryptBlob(MASTER_KEY_FILE, &passwordAesKey, mEntropy);
|
|
}
|
|
|
|
ResponseCode readMasterKey(Value* pw) {
|
|
int in = open(MASTER_KEY_FILE, O_RDONLY);
|
|
if (in == -1) {
|
|
return SYSTEM_ERROR;
|
|
}
|
|
|
|
// we read the raw blob to just to get the salt to generate
|
|
// the AES key, then we create the Blob to use with decryptBlob
|
|
blob rawBlob;
|
|
size_t length = readFully(in, (uint8_t*) &rawBlob, sizeof(rawBlob));
|
|
if (close(in) != 0) {
|
|
return SYSTEM_ERROR;
|
|
}
|
|
// find salt at EOF if present, otherwise we have an old file
|
|
uint8_t* salt;
|
|
if (length > SALT_SIZE && rawBlob.info == SALT_SIZE) {
|
|
salt = (uint8_t*) &rawBlob + length - SALT_SIZE;
|
|
} else {
|
|
salt = NULL;
|
|
}
|
|
uint8_t passwordKey[MASTER_KEY_SIZE_BYTES];
|
|
generateKeyFromPassword(passwordKey, MASTER_KEY_SIZE_BYTES, pw, salt);
|
|
AES_KEY passwordAesKey;
|
|
AES_set_decrypt_key(passwordKey, MASTER_KEY_SIZE_BITS, &passwordAesKey);
|
|
Blob masterKeyBlob(rawBlob);
|
|
ResponseCode response = masterKeyBlob.decryptBlob(MASTER_KEY_FILE, &passwordAesKey);
|
|
if (response == SYSTEM_ERROR) {
|
|
return SYSTEM_ERROR;
|
|
}
|
|
if (response == NO_ERROR && masterKeyBlob.getLength() == MASTER_KEY_SIZE_BYTES) {
|
|
// if salt was missing, generate one and write a new master key file with the salt.
|
|
if (salt == NULL) {
|
|
if (!generateSalt()) {
|
|
return SYSTEM_ERROR;
|
|
}
|
|
response = writeMasterKey(pw);
|
|
}
|
|
if (response == NO_ERROR) {
|
|
memcpy(mMasterKey, masterKeyBlob.getValue(), MASTER_KEY_SIZE_BYTES);
|
|
setupMasterKeys();
|
|
}
|
|
return response;
|
|
}
|
|
if (mRetry <= 0) {
|
|
reset();
|
|
return UNINITIALIZED;
|
|
}
|
|
--mRetry;
|
|
switch (mRetry) {
|
|
case 0: return WRONG_PASSWORD_0;
|
|
case 1: return WRONG_PASSWORD_1;
|
|
case 2: return WRONG_PASSWORD_2;
|
|
case 3: return WRONG_PASSWORD_3;
|
|
default: return WRONG_PASSWORD_3;
|
|
}
|
|
}
|
|
|
|
bool reset() {
|
|
clearMasterKeys();
|
|
setState(STATE_UNINITIALIZED);
|
|
|
|
DIR* dir = opendir(".");
|
|
struct dirent* file;
|
|
|
|
if (!dir) {
|
|
return false;
|
|
}
|
|
while ((file = readdir(dir)) != NULL) {
|
|
unlink(file->d_name);
|
|
}
|
|
closedir(dir);
|
|
return true;
|
|
}
|
|
|
|
bool isEmpty() {
|
|
DIR* dir = opendir(".");
|
|
struct dirent* file;
|
|
if (!dir) {
|
|
return true;
|
|
}
|
|
bool result = true;
|
|
while ((file = readdir(dir)) != NULL) {
|
|
if (isKeyFile(file->d_name)) {
|
|
result = false;
|
|
break;
|
|
}
|
|
}
|
|
closedir(dir);
|
|
return result;
|
|
}
|
|
|
|
void lock() {
|
|
clearMasterKeys();
|
|
setState(STATE_LOCKED);
|
|
}
|
|
|
|
ResponseCode get(const char* filename, Blob* keyBlob) {
|
|
return keyBlob->decryptBlob(filename, &mMasterKeyDecryption);
|
|
}
|
|
|
|
ResponseCode put(const char* filename, Blob* keyBlob) {
|
|
return keyBlob->encryptBlob(filename, &mMasterKeyEncryption, mEntropy);
|
|
}
|
|
|
|
private:
|
|
static const char* MASTER_KEY_FILE;
|
|
static const int MASTER_KEY_SIZE_BYTES = 16;
|
|
static const int MASTER_KEY_SIZE_BITS = MASTER_KEY_SIZE_BYTES * 8;
|
|
|
|
static const int MAX_RETRY = 4;
|
|
static const size_t SALT_SIZE = 16;
|
|
|
|
Entropy* mEntropy;
|
|
|
|
State mState;
|
|
int8_t mRetry;
|
|
|
|
uint8_t mMasterKey[MASTER_KEY_SIZE_BYTES];
|
|
uint8_t mSalt[SALT_SIZE];
|
|
|
|
AES_KEY mMasterKeyEncryption;
|
|
AES_KEY mMasterKeyDecryption;
|
|
|
|
void setState(State state) {
|
|
mState = state;
|
|
if (mState == STATE_NO_ERROR || mState == STATE_UNINITIALIZED) {
|
|
mRetry = MAX_RETRY;
|
|
}
|
|
}
|
|
|
|
bool generateSalt() {
|
|
return mEntropy->generate_random_data(mSalt, sizeof(mSalt));
|
|
}
|
|
|
|
bool generateMasterKey() {
|
|
if (!mEntropy->generate_random_data(mMasterKey, sizeof(mMasterKey))) {
|
|
return false;
|
|
}
|
|
if (!generateSalt()) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void setupMasterKeys() {
|
|
AES_set_encrypt_key(mMasterKey, MASTER_KEY_SIZE_BITS, &mMasterKeyEncryption);
|
|
AES_set_decrypt_key(mMasterKey, MASTER_KEY_SIZE_BITS, &mMasterKeyDecryption);
|
|
setState(STATE_NO_ERROR);
|
|
}
|
|
|
|
void clearMasterKeys() {
|
|
memset(mMasterKey, 0, sizeof(mMasterKey));
|
|
memset(mSalt, 0, sizeof(mSalt));
|
|
memset(&mMasterKeyEncryption, 0, sizeof(mMasterKeyEncryption));
|
|
memset(&mMasterKeyDecryption, 0, sizeof(mMasterKeyDecryption));
|
|
}
|
|
|
|
static void generateKeyFromPassword(uint8_t* key, ssize_t keySize, Value* pw, uint8_t* salt) {
|
|
size_t saltSize;
|
|
if (salt != NULL) {
|
|
saltSize = SALT_SIZE;
|
|
} else {
|
|
// pre-gingerbread used this hardwired salt, readMasterKey will rewrite these when found
|
|
salt = (uint8_t*) "keystore";
|
|
// sizeof = 9, not strlen = 8
|
|
saltSize = sizeof("keystore");
|
|
}
|
|
PKCS5_PBKDF2_HMAC_SHA1((char*) pw->value, pw->length, salt, saltSize, 8192, keySize, key);
|
|
}
|
|
|
|
static bool isKeyFile(const char* filename) {
|
|
return ((strcmp(filename, MASTER_KEY_FILE) != 0)
|
|
&& (strcmp(filename, ".") != 0)
|
|
&& (strcmp(filename, "..") != 0));
|
|
}
|
|
};
|
|
|
|
const char* KeyStore::MASTER_KEY_FILE = ".masterkey";
|
|
|
|
/* Here is the protocol used in both requests and responses:
|
|
* code [length_1 message_1 ... length_n message_n] end-of-file
|
|
* where code is one byte long and lengths are unsigned 16-bit integers in
|
|
* network order. Thus the maximum length of a message is 65535 bytes. */
|
|
|
|
static int recv_code(int sock, int8_t* code) {
|
|
return recv(sock, code, 1, 0) == 1;
|
|
}
|
|
|
|
static int recv_message(int sock, uint8_t* message, int length) {
|
|
uint8_t bytes[2];
|
|
if (recv(sock, &bytes[0], 1, 0) != 1 ||
|
|
recv(sock, &bytes[1], 1, 0) != 1) {
|
|
return -1;
|
|
} else {
|
|
int offset = bytes[0] << 8 | bytes[1];
|
|
if (length < offset) {
|
|
return -1;
|
|
}
|
|
length = offset;
|
|
offset = 0;
|
|
while (offset < length) {
|
|
int n = recv(sock, &message[offset], length - offset, 0);
|
|
if (n <= 0) {
|
|
return -1;
|
|
}
|
|
offset += n;
|
|
}
|
|
}
|
|
return length;
|
|
}
|
|
|
|
static int recv_end_of_file(int sock) {
|
|
uint8_t byte;
|
|
return recv(sock, &byte, 1, 0) == 0;
|
|
}
|
|
|
|
static void send_code(int sock, int8_t code) {
|
|
send(sock, &code, 1, 0);
|
|
}
|
|
|
|
static void send_message(int sock, uint8_t* message, int length) {
|
|
uint16_t bytes = htons(length);
|
|
send(sock, &bytes, 2, 0);
|
|
send(sock, message, length, 0);
|
|
}
|
|
|
|
/* Here are the actions. Each of them is a function without arguments. All
|
|
* information is defined in global variables, which are set properly before
|
|
* performing an action. The number of parameters required by each action is
|
|
* fixed and defined in a table. If the return value of an action is positive,
|
|
* it will be treated as a response code and transmitted to the client. Note
|
|
* that the lengths of parameters are checked when they are received, so
|
|
* boundary checks on parameters are omitted. */
|
|
|
|
static const ResponseCode NO_ERROR_RESPONSE_CODE_SENT = (ResponseCode) 0;
|
|
|
|
static ResponseCode test(KeyStore* keyStore, int sock, uid_t uid, Value*, Value*) {
|
|
return (ResponseCode) keyStore->getState();
|
|
}
|
|
|
|
static ResponseCode get(KeyStore* keyStore, int sock, uid_t uid, Value* keyName, Value*) {
|
|
char filename[NAME_MAX];
|
|
encode_key(filename, uid, keyName);
|
|
Blob keyBlob;
|
|
ResponseCode responseCode = keyStore->get(filename, &keyBlob);
|
|
if (responseCode != NO_ERROR) {
|
|
return responseCode;
|
|
}
|
|
send_code(sock, NO_ERROR);
|
|
send_message(sock, keyBlob.getValue(), keyBlob.getLength());
|
|
return NO_ERROR_RESPONSE_CODE_SENT;
|
|
}
|
|
|
|
static ResponseCode insert(KeyStore* keyStore, int sock, uid_t uid, Value* keyName, Value* val) {
|
|
char filename[NAME_MAX];
|
|
encode_key(filename, uid, keyName);
|
|
Blob keyBlob(val->value, val->length, 0, NULL);
|
|
return keyStore->put(filename, &keyBlob);
|
|
}
|
|
|
|
static ResponseCode del(KeyStore* keyStore, int sock, uid_t uid, Value* keyName, Value*) {
|
|
char filename[NAME_MAX];
|
|
encode_key(filename, uid, keyName);
|
|
return (unlink(filename) && errno != ENOENT) ? SYSTEM_ERROR : NO_ERROR;
|
|
}
|
|
|
|
static ResponseCode exist(KeyStore* keyStore, int sock, uid_t uid, Value* keyName, Value*) {
|
|
char filename[NAME_MAX];
|
|
encode_key(filename, uid, keyName);
|
|
if (access(filename, R_OK) == -1) {
|
|
return (errno != ENOENT) ? SYSTEM_ERROR : KEY_NOT_FOUND;
|
|
}
|
|
return NO_ERROR;
|
|
}
|
|
|
|
static ResponseCode saw(KeyStore* keyStore, int sock, uid_t uid, Value* keyPrefix, Value*) {
|
|
DIR* dir = opendir(".");
|
|
if (!dir) {
|
|
return SYSTEM_ERROR;
|
|
}
|
|
char filename[NAME_MAX];
|
|
int n = encode_key(filename, uid, keyPrefix);
|
|
send_code(sock, NO_ERROR);
|
|
|
|
struct dirent* file;
|
|
while ((file = readdir(dir)) != NULL) {
|
|
if (!strncmp(filename, file->d_name, n)) {
|
|
char* p = &file->d_name[n];
|
|
keyPrefix->length = decode_key(keyPrefix->value, p, strlen(p));
|
|
send_message(sock, keyPrefix->value, keyPrefix->length);
|
|
}
|
|
}
|
|
closedir(dir);
|
|
return NO_ERROR_RESPONSE_CODE_SENT;
|
|
}
|
|
|
|
static ResponseCode reset(KeyStore* keyStore, int sock, uid_t uid, Value*, Value*) {
|
|
return keyStore->reset() ? NO_ERROR : SYSTEM_ERROR;
|
|
}
|
|
|
|
/* Here is the history. To improve the security, the parameters to generate the
|
|
* master key has been changed. To make a seamless transition, we update the
|
|
* file using the same password when the user unlock it for the first time. If
|
|
* any thing goes wrong during the transition, the new file will not overwrite
|
|
* the old one. This avoids permanent damages of the existing data. */
|
|
|
|
static ResponseCode password(KeyStore* keyStore, int sock, uid_t uid, Value* pw, Value*) {
|
|
switch (keyStore->getState()) {
|
|
case STATE_UNINITIALIZED: {
|
|
// generate master key, encrypt with password, write to file, initialize mMasterKey*.
|
|
return keyStore->initialize(pw);
|
|
}
|
|
case STATE_NO_ERROR: {
|
|
// rewrite master key with new password.
|
|
return keyStore->writeMasterKey(pw);
|
|
}
|
|
case STATE_LOCKED: {
|
|
// read master key, decrypt with password, initialize mMasterKey*.
|
|
return keyStore->readMasterKey(pw);
|
|
}
|
|
}
|
|
return SYSTEM_ERROR;
|
|
}
|
|
|
|
static ResponseCode lock(KeyStore* keyStore, int sock, uid_t uid, Value*, Value*) {
|
|
keyStore->lock();
|
|
return NO_ERROR;
|
|
}
|
|
|
|
static ResponseCode unlock(KeyStore* keyStore, int sock, uid_t uid, Value* pw, Value* unused) {
|
|
return password(keyStore, sock, uid, pw, unused);
|
|
}
|
|
|
|
static ResponseCode zero(KeyStore* keyStore, int sock, uid_t uid, Value*, Value*) {
|
|
return keyStore->isEmpty() ? KEY_NOT_FOUND : NO_ERROR;
|
|
}
|
|
|
|
/* Here are the permissions, actions, users, and the main function. */
|
|
|
|
enum perm {
|
|
TEST = 1,
|
|
GET = 2,
|
|
INSERT = 4,
|
|
DELETE = 8,
|
|
EXIST = 16,
|
|
SAW = 32,
|
|
RESET = 64,
|
|
PASSWORD = 128,
|
|
LOCK = 256,
|
|
UNLOCK = 512,
|
|
ZERO = 1024,
|
|
};
|
|
|
|
static const int MAX_PARAM = 2;
|
|
|
|
static const State STATE_ANY = (State) 0;
|
|
|
|
static struct action {
|
|
ResponseCode (*run)(KeyStore* keyStore, int sock, uid_t uid, Value* param1, Value* param2);
|
|
int8_t code;
|
|
State state;
|
|
uint32_t perm;
|
|
int lengths[MAX_PARAM];
|
|
} actions[] = {
|
|
{test, 't', STATE_ANY, TEST, {0, 0}},
|
|
{get, 'g', STATE_NO_ERROR, GET, {KEY_SIZE, 0}},
|
|
{insert, 'i', STATE_NO_ERROR, INSERT, {KEY_SIZE, VALUE_SIZE}},
|
|
{del, 'd', STATE_ANY, DELETE, {KEY_SIZE, 0}},
|
|
{exist, 'e', STATE_ANY, EXIST, {KEY_SIZE, 0}},
|
|
{saw, 's', STATE_ANY, SAW, {KEY_SIZE, 0}},
|
|
{reset, 'r', STATE_ANY, RESET, {0, 0}},
|
|
{password, 'p', STATE_ANY, PASSWORD, {PASSWORD_SIZE, 0}},
|
|
{lock, 'l', STATE_NO_ERROR, LOCK, {0, 0}},
|
|
{unlock, 'u', STATE_LOCKED, UNLOCK, {PASSWORD_SIZE, 0}},
|
|
{zero, 'z', STATE_ANY, ZERO, {0, 0}},
|
|
{NULL, 0 , STATE_ANY, 0, {0, 0}},
|
|
};
|
|
|
|
static struct user {
|
|
uid_t uid;
|
|
uid_t euid;
|
|
uint32_t perms;
|
|
} users[] = {
|
|
{AID_SYSTEM, ~0, ~0},
|
|
{AID_VPN, AID_SYSTEM, GET},
|
|
{AID_WIFI, AID_SYSTEM, GET},
|
|
{AID_ROOT, AID_SYSTEM, GET},
|
|
{~0, ~0, TEST | GET | INSERT | DELETE | EXIST | SAW},
|
|
};
|
|
|
|
static ResponseCode process(KeyStore* keyStore, int sock, uid_t uid, int8_t code) {
|
|
struct user* user = users;
|
|
struct action* action = actions;
|
|
int i;
|
|
|
|
while (~user->uid && user->uid != uid) {
|
|
++user;
|
|
}
|
|
while (action->code && action->code != code) {
|
|
++action;
|
|
}
|
|
if (!action->code) {
|
|
return UNDEFINED_ACTION;
|
|
}
|
|
if (!(action->perm & user->perms)) {
|
|
return PERMISSION_DENIED;
|
|
}
|
|
if (action->state != STATE_ANY && action->state != keyStore->getState()) {
|
|
return (ResponseCode) keyStore->getState();
|
|
}
|
|
if (~user->euid) {
|
|
uid = user->euid;
|
|
}
|
|
Value params[MAX_PARAM];
|
|
for (i = 0; i < MAX_PARAM && action->lengths[i] != 0; ++i) {
|
|
params[i].length = recv_message(sock, params[i].value, action->lengths[i]);
|
|
if (params[i].length < 0) {
|
|
return PROTOCOL_ERROR;
|
|
}
|
|
}
|
|
if (!recv_end_of_file(sock)) {
|
|
return PROTOCOL_ERROR;
|
|
}
|
|
return action->run(keyStore, sock, uid, ¶ms[0], ¶ms[1]);
|
|
}
|
|
|
|
int main(int argc, char* argv[]) {
|
|
int controlSocket = android_get_control_socket("keystore");
|
|
if (argc < 2) {
|
|
LOGE("A directory must be specified!");
|
|
return 1;
|
|
}
|
|
if (chdir(argv[1]) == -1) {
|
|
LOGE("chdir: %s: %s", argv[1], strerror(errno));
|
|
return 1;
|
|
}
|
|
|
|
Entropy entropy;
|
|
if (!entropy.open()) {
|
|
return 1;
|
|
}
|
|
if (listen(controlSocket, 3) == -1) {
|
|
LOGE("listen: %s", strerror(errno));
|
|
return 1;
|
|
}
|
|
|
|
signal(SIGPIPE, SIG_IGN);
|
|
|
|
KeyStore keyStore(&entropy);
|
|
int sock;
|
|
while ((sock = accept(controlSocket, NULL, 0)) != -1) {
|
|
struct timeval tv;
|
|
tv.tv_sec = 3;
|
|
setsockopt(sock, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv));
|
|
setsockopt(sock, SOL_SOCKET, SO_SNDTIMEO, &tv, sizeof(tv));
|
|
|
|
struct ucred cred;
|
|
socklen_t size = sizeof(cred);
|
|
int credResult = getsockopt(sock, SOL_SOCKET, SO_PEERCRED, &cred, &size);
|
|
if (credResult != 0) {
|
|
LOGW("getsockopt: %s", strerror(errno));
|
|
} else {
|
|
int8_t request;
|
|
if (recv_code(sock, &request)) {
|
|
State old_state = keyStore.getState();
|
|
ResponseCode response = process(&keyStore, sock, cred.uid, request);
|
|
if (response == NO_ERROR_RESPONSE_CODE_SENT) {
|
|
response = NO_ERROR;
|
|
} else {
|
|
send_code(sock, response);
|
|
}
|
|
LOGI("uid: %d action: %c -> %d state: %d -> %d retry: %d",
|
|
cred.uid,
|
|
request, response,
|
|
old_state, keyStore.getState(),
|
|
keyStore.getRetry());
|
|
}
|
|
}
|
|
close(sock);
|
|
}
|
|
LOGE("accept: %s", strerror(errno));
|
|
return 1;
|
|
}
|