cbb288bfe8
Rewrote SurfaceFlinger's buffer management from the ground-up. The design now support an arbitrary number of buffers per surface, however the current implementation is limited to four. Currently only 2 buffers are used in practice. The main new feature is to be able to dequeue all buffers at once (very important when there are only two). A client can dequeue all buffers until there are none available, it can lock all buffers except the last one that is used for composition. The client will block then, until a new buffer is enqueued. The current implementation requires that buffers are locked in the same order they are dequeued and enqueued in the same order they are locked. Only one buffer can be locked at a time. eg. Allowed sequence: DQ, DQ, LOCK, Q, LOCK, Q eg. Forbidden sequence: DQ, DQ, LOCK, LOCK, Q, Q
170 lines
5.2 KiB
C++
170 lines
5.2 KiB
C++
/*
|
|
* Copyright (C) 2007 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <utils/Errors.h>
|
|
#include <utils/Log.h>
|
|
|
|
#include "Buffer.h"
|
|
#include "BufferAllocator.h"
|
|
#include "LayerDim.h"
|
|
#include "SurfaceFlinger.h"
|
|
#include "DisplayHardware/DisplayHardware.h"
|
|
|
|
namespace android {
|
|
// ---------------------------------------------------------------------------
|
|
|
|
const uint32_t LayerDim::typeInfo = LayerBaseClient::typeInfo | 0x10;
|
|
const char* const LayerDim::typeID = "LayerDim";
|
|
|
|
bool LayerDim::sUseTexture;
|
|
GLuint LayerDim::sTexId;
|
|
EGLImageKHR LayerDim::sImage;
|
|
int32_t LayerDim::sWidth;
|
|
int32_t LayerDim::sHeight;
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
LayerDim::LayerDim(SurfaceFlinger* flinger, DisplayID display,
|
|
const sp<Client>& client, int32_t i)
|
|
: LayerBaseClient(flinger, display, client, i)
|
|
{
|
|
}
|
|
|
|
void LayerDim::initDimmer(SurfaceFlinger* flinger, uint32_t w, uint32_t h)
|
|
{
|
|
sTexId = -1;
|
|
sImage = EGL_NO_IMAGE_KHR;
|
|
sWidth = w;
|
|
sHeight = h;
|
|
sUseTexture = false;
|
|
|
|
#ifdef DIM_WITH_TEXTURE
|
|
|
|
#warning "using a texture to implement LayerDim"
|
|
|
|
/* On some h/w like msm7K, it is faster to use a texture because the
|
|
* software renderer will defer to copybit, for this to work we need to
|
|
* use an EGLImage texture so copybit can actually make use of it.
|
|
* This burns a full-screen worth of graphic memory.
|
|
*/
|
|
|
|
const DisplayHardware& hw(flinger->graphicPlane(0).displayHardware());
|
|
uint32_t flags = hw.getFlags();
|
|
|
|
if (LIKELY(flags & DisplayHardware::DIRECT_TEXTURE)) {
|
|
// TODO: api to pass the usage flags
|
|
sp<Buffer> buffer = new Buffer(w, h, PIXEL_FORMAT_RGB_565,
|
|
BufferAllocator::USAGE_SW_WRITE_OFTEN |
|
|
BufferAllocator::USAGE_HW_TEXTURE);
|
|
|
|
android_native_buffer_t* clientBuf = buffer->getNativeBuffer();
|
|
|
|
glGenTextures(1, &sTexId);
|
|
glBindTexture(GL_TEXTURE_2D, sTexId);
|
|
|
|
EGLDisplay dpy = eglGetCurrentDisplay();
|
|
sImage = eglCreateImageKHR(dpy, EGL_NO_CONTEXT,
|
|
EGL_NATIVE_BUFFER_ANDROID, (EGLClientBuffer)clientBuf, 0);
|
|
if (sImage == EGL_NO_IMAGE_KHR) {
|
|
LOGE("eglCreateImageKHR() failed. err=0x%4x", eglGetError());
|
|
return;
|
|
}
|
|
|
|
glEGLImageTargetTexture2DOES(GL_TEXTURE_2D, (GLeglImageOES)sImage);
|
|
GLint error = glGetError();
|
|
if (error != GL_NO_ERROR) {
|
|
eglDestroyImageKHR(dpy, sImage);
|
|
LOGE("glEGLImageTargetTexture2DOES() failed. err=0x%4x", error);
|
|
return;
|
|
}
|
|
|
|
// initialize the texture with zeros
|
|
GGLSurface t;
|
|
buffer->lock(&t, GRALLOC_USAGE_SW_WRITE_OFTEN);
|
|
memset(t.data, 0, t.stride * t.height * 2);
|
|
buffer->unlock();
|
|
sUseTexture = true;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
LayerDim::~LayerDim()
|
|
{
|
|
}
|
|
|
|
void LayerDim::onDraw(const Region& clip) const
|
|
{
|
|
const State& s(drawingState());
|
|
Region::const_iterator it = clip.begin();
|
|
Region::const_iterator const end = clip.end();
|
|
if (s.alpha>0 && (it != end)) {
|
|
const DisplayHardware& hw(graphicPlane(0).displayHardware());
|
|
const GGLfixed alpha = (s.alpha << 16)/255;
|
|
const uint32_t fbHeight = hw.getHeight();
|
|
glDisable(GL_DITHER);
|
|
glEnable(GL_BLEND);
|
|
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
|
|
glColor4x(0, 0, 0, alpha);
|
|
|
|
#ifdef DIM_WITH_TEXTURE
|
|
if (sUseTexture) {
|
|
glBindTexture(GL_TEXTURE_2D, sTexId);
|
|
glEnable(GL_TEXTURE_2D);
|
|
glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
|
|
const GLshort texCoords[4][2] = {
|
|
{ 0, 0 },
|
|
{ 0, 1 },
|
|
{ 1, 1 },
|
|
{ 1, 0 }
|
|
};
|
|
glMatrixMode(GL_TEXTURE);
|
|
glLoadIdentity();
|
|
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
|
|
glTexCoordPointer(2, GL_SHORT, 0, texCoords);
|
|
} else
|
|
#endif
|
|
{
|
|
glDisable(GL_TEXTURE_2D);
|
|
}
|
|
|
|
GLshort w = sWidth;
|
|
GLshort h = sHeight;
|
|
const GLshort vertices[4][2] = {
|
|
{ 0, 0 },
|
|
{ 0, h },
|
|
{ w, h },
|
|
{ w, 0 }
|
|
};
|
|
glVertexPointer(2, GL_SHORT, 0, vertices);
|
|
|
|
while (it != end) {
|
|
const Rect& r = *it++;
|
|
const GLint sy = fbHeight - (r.top + r.height());
|
|
glScissor(r.left, sy, r.width(), r.height());
|
|
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
|
|
}
|
|
}
|
|
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
}; // namespace android
|