replicant-frameworks_native/opengl/tests/hwc/hwcStress.cpp
Andy McFadden 6ef57d7b36 Restore old OpenGL tests
These tests call android_createDisplaySurface() to get a
FramebufferNativeWindow that is passed to EGL.  This relies on the
existence of the framebuffer HAL, which is not supported on many
recent devices.

This change adds a new "window surface" object that the tests
can use to get a window from SurfaceFlinger instead.  All tests
except for the HWC tests now appear to do things.

The HWC tests don't do anything useful, but they no longer depend
on the android_createDisplaySurface() function.

Bug 13323813

Change-Id: I2cbfbacb3452fb658c29e945b0c7ae7c94c1a4ba
2014-03-06 16:46:59 -08:00

646 lines
24 KiB
C++

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
/*
* Hardware Composer stress test
*
* Performs a pseudo-random (prandom) sequence of operations to the
* Hardware Composer (HWC), for a specified number of passes or for
* a specified period of time. By default the period of time is FLT_MAX,
* so that the number of passes will take precedence.
*
* The passes are grouped together, where (pass / passesPerGroup) specifies
* which group a particular pass is in. This causes every passesPerGroup
* worth of sequential passes to be within the same group. Computationally
* intensive operations are performed just once at the beginning of a group
* of passes and then used by all the passes in that group. This is done
* so as to increase both the average and peak rate of graphic operations,
* by moving computationally intensive operations to the beginning of a group.
* In particular, at the start of each group of passes a set of
* graphic buffers are created, then used by the first and remaining
* passes of that group of passes.
*
* The per-group initialization of the graphic buffers is performed
* by a function called initFrames. This function creates an array
* of smart pointers to the graphic buffers, in the form of a vector
* of vectors. The array is accessed in row major order, so each
* row is a vector of smart pointers. All the pointers of a single
* row point to graphic buffers which use the same pixel format and
* have the same dimension, although it is likely that each one is
* filled with a different color. This is done so that after doing
* the first HWC prepare then set call, subsequent set calls can
* be made with each of the layer handles changed to a different
* graphic buffer within the same row. Since the graphic buffers
* in a particular row have the same pixel format and dimension,
* additional HWC set calls can be made, without having to perform
* an HWC prepare call.
*
* This test supports the following command-line options:
*
* -v Verbose
* -s num Starting pass
* -e num Ending pass
* -p num Execute the single pass specified by num
* -n num Number of set operations to perform after each prepare operation
* -t float Maximum time in seconds to execute the test
* -d float Delay in seconds performed after each set operation
* -D float Delay in seconds performed after the last pass is executed
*
* Typically the test is executed for a large range of passes. By default
* passes 0 through 99999 (100,000 passes) are executed. Although this test
* does not validate the generated image, at times it is useful to reexecute
* a particular pass and leave the displayed image on the screen for an
* extended period of time. This can be done either by setting the -s
* and -e options to the desired pass, along with a large value for -D.
* This can also be done via the -p option, again with a large value for
* the -D options.
*
* So far this test only contains code to create graphic buffers with
* a continuous solid color. Although this test is unable to validate the
* image produced, any image that contains other than rectangles of a solid
* color are incorrect. Note that the rectangles may use a transparent
* color and have a blending operation that causes the color in overlapping
* rectangles to be mixed. In such cases the overlapping portions may have
* a different color from the rest of the rectangle.
*/
#include <algorithm>
#include <assert.h>
#include <cerrno>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <libgen.h>
#include <sched.h>
#include <sstream>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <vector>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <EGL/egl.h>
#include <EGL/eglext.h>
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#include <ui/GraphicBuffer.h>
#define LOG_TAG "hwcStressTest"
#include <utils/Log.h>
#include <testUtil.h>
#include <hardware/hwcomposer.h>
#include <glTestLib.h>
#include "hwcTestLib.h"
using namespace std;
using namespace android;
const float maxSizeRatio = 1.3; // Graphic buffers can be upto this munch
// larger than the default screen size
const unsigned int passesPerGroup = 10; // A group of passes all use the same
// graphic buffers
// Ratios at which rare and frequent conditions should be produced
const float rareRatio = 0.1;
const float freqRatio = 0.9;
// Defaults for command-line options
const bool defaultVerbose = false;
const unsigned int defaultStartPass = 0;
const unsigned int defaultEndPass = 99999;
const unsigned int defaultPerPassNumSet = 10;
const float defaultPerSetDelay = 0.0; // Default delay after each set
// operation. Default delay of
// zero used so as to perform the
// the set operations as quickly
// as possible.
const float defaultEndDelay = 2.0; // Default delay between completion of
// final pass and restart of framework
const float defaultDuration = FLT_MAX; // A fairly long time, so that
// range of passes will have
// precedence
// Command-line option settings
static bool verbose = defaultVerbose;
static unsigned int startPass = defaultStartPass;
static unsigned int endPass = defaultEndPass;
static unsigned int numSet = defaultPerPassNumSet;
static float perSetDelay = defaultPerSetDelay;
static float endDelay = defaultEndDelay;
static float duration = defaultDuration;
// Command-line mutual exclusion detection flags.
// Corresponding flag set true once an option is used.
bool eFlag, sFlag, pFlag;
#define MAXSTR 100
#define MAXCMD 200
#define BITSPERBYTE 8 // TODO: Obtain from <values.h>, once
// it has been added
#define CMD_STOP_FRAMEWORK "stop 2>&1"
#define CMD_START_FRAMEWORK "start 2>&1"
#define NUMA(a) (sizeof(a) / sizeof(a [0]))
#define MEMCLR(addr, size) do { \
memset((addr), 0, (size)); \
} while (0)
// File scope constants
const unsigned int blendingOps[] = {
HWC_BLENDING_NONE,
HWC_BLENDING_PREMULT,
HWC_BLENDING_COVERAGE,
};
const unsigned int layerFlags[] = {
HWC_SKIP_LAYER,
};
const vector<unsigned int> vecLayerFlags(layerFlags,
layerFlags + NUMA(layerFlags));
const unsigned int transformFlags[] = {
HWC_TRANSFORM_FLIP_H,
HWC_TRANSFORM_FLIP_V,
HWC_TRANSFORM_ROT_90,
// ROT_180 & ROT_270 intentionally not listed, because they
// they are formed from combinations of the flags already listed.
};
const vector<unsigned int> vecTransformFlags(transformFlags,
transformFlags + NUMA(transformFlags));
// File scope globals
static const int texUsage = GraphicBuffer::USAGE_HW_TEXTURE |
GraphicBuffer::USAGE_SW_WRITE_RARELY;
static hwc_composer_device_1_t *hwcDevice;
static EGLDisplay dpy;
static EGLSurface surface;
static EGLint width, height;
static vector <vector <sp<GraphicBuffer> > > frames;
// File scope prototypes
void init(void);
void initFrames(unsigned int seed);
template <class T> vector<T> vectorRandSelect(const vector<T>& vec, size_t num);
template <class T> T vectorOr(const vector<T>& vec);
/*
* Main
*
* Performs the following high-level sequence of operations:
*
* 1. Command-line parsing
*
* 2. Initialization
*
* 3. For each pass:
*
* a. If pass is first pass or in a different group from the
* previous pass, initialize the array of graphic buffers.
*
* b. Create a HWC list with room to specify a prandomly
* selected number of layers.
*
* c. Select a subset of the rows from the graphic buffer array,
* such that there is a unique row to be used for each
* of the layers in the HWC list.
*
* d. Prandomly fill in the HWC list with handles
* selected from any of the columns of the selected row.
*
* e. Pass the populated list to the HWC prepare call.
*
* f. Pass the populated list to the HWC set call.
*
* g. If additional set calls are to be made, then for each
* additional set call, select a new set of handles and
* perform the set call.
*/
int
main(int argc, char *argv[])
{
int rv, opt;
char *chptr;
unsigned int pass;
char cmd[MAXCMD];
struct timeval startTime, currentTime, delta;
testSetLogCatTag(LOG_TAG);
// Parse command line arguments
while ((opt = getopt(argc, argv, "vp:d:D:n:s:e:t:?h")) != -1) {
switch (opt) {
case 'd': // Delay after each set operation
perSetDelay = strtod(optarg, &chptr);
if ((*chptr != '\0') || (perSetDelay < 0.0)) {
testPrintE("Invalid command-line specified per pass delay of: "
"%s", optarg);
exit(1);
}
break;
case 'D': // End of test delay
// Delay between completion of final pass and restart
// of framework
endDelay = strtod(optarg, &chptr);
if ((*chptr != '\0') || (endDelay < 0.0)) {
testPrintE("Invalid command-line specified end of test delay "
"of: %s", optarg);
exit(2);
}
break;
case 't': // Duration
duration = strtod(optarg, &chptr);
if ((*chptr != '\0') || (duration < 0.0)) {
testPrintE("Invalid command-line specified duration of: %s",
optarg);
exit(3);
}
break;
case 'n': // Num set operations per pass
numSet = strtoul(optarg, &chptr, 10);
if (*chptr != '\0') {
testPrintE("Invalid command-line specified num set per pass "
"of: %s", optarg);
exit(4);
}
break;
case 's': // Starting Pass
sFlag = true;
if (pFlag) {
testPrintE("Invalid combination of command-line options.");
testPrintE(" The -p option is mutually exclusive from the");
testPrintE(" -s and -e options.");
exit(5);
}
startPass = strtoul(optarg, &chptr, 10);
if (*chptr != '\0') {
testPrintE("Invalid command-line specified starting pass "
"of: %s", optarg);
exit(6);
}
break;
case 'e': // Ending Pass
eFlag = true;
if (pFlag) {
testPrintE("Invalid combination of command-line options.");
testPrintE(" The -p option is mutually exclusive from the");
testPrintE(" -s and -e options.");
exit(7);
}
endPass = strtoul(optarg, &chptr, 10);
if (*chptr != '\0') {
testPrintE("Invalid command-line specified ending pass "
"of: %s", optarg);
exit(8);
}
break;
case 'p': // Run a single specified pass
pFlag = true;
if (sFlag || eFlag) {
testPrintE("Invalid combination of command-line options.");
testPrintE(" The -p option is mutually exclusive from the");
testPrintE(" -s and -e options.");
exit(9);
}
startPass = endPass = strtoul(optarg, &chptr, 10);
if (*chptr != '\0') {
testPrintE("Invalid command-line specified pass of: %s",
optarg);
exit(10);
}
break;
case 'v': // Verbose
verbose = true;
break;
case 'h': // Help
case '?':
default:
testPrintE(" %s [options]", basename(argv[0]));
testPrintE(" options:");
testPrintE(" -p Execute specified pass");
testPrintE(" -s Starting pass");
testPrintE(" -e Ending pass");
testPrintE(" -t Duration");
testPrintE(" -d Delay after each set operation");
testPrintE(" -D End of test delay");
testPrintE(" -n Num set operations per pass");
testPrintE(" -v Verbose");
exit(((optopt == 0) || (optopt == '?')) ? 0 : 11);
}
}
if (endPass < startPass) {
testPrintE("Unexpected ending pass before starting pass");
testPrintE(" startPass: %u endPass: %u", startPass, endPass);
exit(12);
}
if (argc != optind) {
testPrintE("Unexpected command-line postional argument");
testPrintE(" %s [-s start_pass] [-e end_pass] [-t duration]",
basename(argv[0]));
exit(13);
}
testPrintI("duration: %g", duration);
testPrintI("startPass: %u", startPass);
testPrintI("endPass: %u", endPass);
testPrintI("numSet: %u", numSet);
// Stop framework
rv = snprintf(cmd, sizeof(cmd), "%s", CMD_STOP_FRAMEWORK);
if (rv >= (signed) sizeof(cmd) - 1) {
testPrintE("Command too long for: %s", CMD_STOP_FRAMEWORK);
exit(14);
}
testExecCmd(cmd);
testDelay(1.0); // TODO - need means to query whether asyncronous stop
// framework operation has completed. For now, just wait
// a long time.
init();
// For each pass
gettimeofday(&startTime, NULL);
for (pass = startPass; pass <= endPass; pass++) {
// Stop if duration of work has already been performed
gettimeofday(&currentTime, NULL);
delta = tvDelta(&startTime, &currentTime);
if (tv2double(&delta) > duration) { break; }
// Regenerate a new set of test frames when this pass is
// either the first pass or is in a different group then
// the previous pass. A group of passes are passes that
// all have the same quotient when their pass number is
// divided by passesPerGroup.
if ((pass == startPass)
|| ((pass / passesPerGroup) != ((pass - 1) / passesPerGroup))) {
initFrames(pass / passesPerGroup);
}
testPrintI("==== Starting pass: %u", pass);
// Cause deterministic sequence of prandom numbers to be
// generated for this pass.
srand48(pass);
hwc_display_contents_1_t *list;
list = hwcTestCreateLayerList(testRandMod(frames.size()) + 1);
if (list == NULL) {
testPrintE("hwcTestCreateLayerList failed");
exit(20);
}
// Prandomly select a subset of frames to be used by this pass.
vector <vector <sp<GraphicBuffer> > > selectedFrames;
selectedFrames = vectorRandSelect(frames, list->numHwLayers);
// Any transform tends to create a layer that the hardware
// composer is unable to support and thus has to leave for
// SurfaceFlinger. Place heavy bias on specifying no transforms.
bool noTransform = testRandFract() > rareRatio;
for (unsigned int n1 = 0; n1 < list->numHwLayers; n1++) {
unsigned int idx = testRandMod(selectedFrames[n1].size());
sp<GraphicBuffer> gBuf = selectedFrames[n1][idx];
hwc_layer_1_t *layer = &list->hwLayers[n1];
layer->handle = gBuf->handle;
layer->blending = blendingOps[testRandMod(NUMA(blendingOps))];
layer->flags = (testRandFract() > rareRatio) ? 0
: vectorOr(vectorRandSelect(vecLayerFlags,
testRandMod(vecLayerFlags.size() + 1)));
layer->transform = (noTransform || testRandFract() > rareRatio) ? 0
: vectorOr(vectorRandSelect(vecTransformFlags,
testRandMod(vecTransformFlags.size() + 1)));
layer->sourceCrop.left = testRandMod(gBuf->getWidth());
layer->sourceCrop.top = testRandMod(gBuf->getHeight());
layer->sourceCrop.right = layer->sourceCrop.left
+ testRandMod(gBuf->getWidth() - layer->sourceCrop.left) + 1;
layer->sourceCrop.bottom = layer->sourceCrop.top
+ testRandMod(gBuf->getHeight() - layer->sourceCrop.top) + 1;
layer->displayFrame.left = testRandMod(width);
layer->displayFrame.top = testRandMod(height);
layer->displayFrame.right = layer->displayFrame.left
+ testRandMod(width - layer->displayFrame.left) + 1;
layer->displayFrame.bottom = layer->displayFrame.top
+ testRandMod(height - layer->displayFrame.top) + 1;
// Increase the frequency that a scale factor of 1.0 from
// the sourceCrop to displayFrame occurs. This is the
// most common scale factor used by applications and would
// be rarely produced by this stress test without this
// logic.
if (testRandFract() <= freqRatio) {
// Only change to scale factor to 1.0 if both the
// width and height will fit.
int sourceWidth = layer->sourceCrop.right
- layer->sourceCrop.left;
int sourceHeight = layer->sourceCrop.bottom
- layer->sourceCrop.top;
if (((layer->displayFrame.left + sourceWidth) <= width)
&& ((layer->displayFrame.top + sourceHeight) <= height)) {
layer->displayFrame.right = layer->displayFrame.left
+ sourceWidth;
layer->displayFrame.bottom = layer->displayFrame.top
+ sourceHeight;
}
}
layer->visibleRegionScreen.numRects = 1;
layer->visibleRegionScreen.rects = &layer->displayFrame;
}
// Perform prepare operation
if (verbose) { testPrintI("Prepare:"); hwcTestDisplayList(list); }
hwcDevice->prepare(hwcDevice, 1, &list);
if (verbose) {
testPrintI("Post Prepare:");
hwcTestDisplayListPrepareModifiable(list);
}
// Turn off the geometry changed flag
list->flags &= ~HWC_GEOMETRY_CHANGED;
// Perform the set operation(s)
if (verbose) {testPrintI("Set:"); }
for (unsigned int n1 = 0; n1 < numSet; n1++) {
if (verbose) { hwcTestDisplayListHandles(list); }
list->dpy = dpy;
list->sur = surface;
hwcDevice->set(hwcDevice, 1, &list);
// Prandomly select a new set of handles
for (unsigned int n1 = 0; n1 < list->numHwLayers; n1++) {
unsigned int idx = testRandMod(selectedFrames[n1].size());
sp<GraphicBuffer> gBuf = selectedFrames[n1][idx];
hwc_layer_1_t *layer = &list->hwLayers[n1];
layer->handle = (native_handle_t *) gBuf->handle;
}
testDelay(perSetDelay);
}
hwcTestFreeLayerList(list);
testPrintI("==== Completed pass: %u", pass);
}
testDelay(endDelay);
// Start framework
rv = snprintf(cmd, sizeof(cmd), "%s", CMD_START_FRAMEWORK);
if (rv >= (signed) sizeof(cmd) - 1) {
testPrintE("Command too long for: %s", CMD_START_FRAMEWORK);
exit(21);
}
testExecCmd(cmd);
testPrintI("Successfully completed %u passes", pass - startPass);
return 0;
}
void init(void)
{
srand48(0); // Defensively set pseudo random number generator.
// Should not need to set this, because a stress test
// sets the seed on each pass. Defensively set it here
// so that future code that uses pseudo random numbers
// before the first pass will be deterministic.
hwcTestInitDisplay(verbose, &dpy, &surface, &width, &height);
hwcTestOpenHwc(&hwcDevice);
}
/*
* Initialize Frames
*
* Creates an array of graphic buffers, within the global variable
* named frames. The graphic buffers are contained within a vector of
* vectors. All the graphic buffers in a particular row are of the same
* format and dimension. Each graphic buffer is uniformly filled with a
* prandomly selected color. It is likely that each buffer, even
* in the same row, will be filled with a unique color.
*/
void initFrames(unsigned int seed)
{
int rv;
const size_t maxRows = 5;
const size_t minCols = 2; // Need at least double buffering
const size_t maxCols = 4; // One more than triple buffering
if (verbose) { testPrintI("initFrames seed: %u", seed); }
srand48(seed);
size_t rows = testRandMod(maxRows) + 1;
frames.clear();
frames.resize(rows);
for (unsigned int row = 0; row < rows; row++) {
// All frames within a row have to have the same format and
// dimensions. Width and height need to be >= 1.
unsigned int formatIdx = testRandMod(NUMA(hwcTestGraphicFormat));
const struct hwcTestGraphicFormat *formatPtr
= &hwcTestGraphicFormat[formatIdx];
int format = formatPtr->format;
// Pick width and height, which must be >= 1 and the size
// mod the wMod/hMod value must be equal to 0.
size_t w = (width * maxSizeRatio) * testRandFract();
size_t h = (height * maxSizeRatio) * testRandFract();
w = max(size_t(1u), w);
h = max(size_t(1u), h);
if ((w % formatPtr->wMod) != 0) {
w += formatPtr->wMod - (w % formatPtr->wMod);
}
if ((h % formatPtr->hMod) != 0) {
h += formatPtr->hMod - (h % formatPtr->hMod);
}
if (verbose) {
testPrintI(" frame %u width: %u height: %u format: %u %s",
row, w, h, format, hwcTestGraphicFormat2str(format));
}
size_t cols = testRandMod((maxCols + 1) - minCols) + minCols;
frames[row].resize(cols);
for (unsigned int col = 0; col < cols; col++) {
ColorFract color(testRandFract(), testRandFract(), testRandFract());
float alpha = testRandFract();
frames[row][col] = new GraphicBuffer(w, h, format, texUsage);
if ((rv = frames[row][col]->initCheck()) != NO_ERROR) {
testPrintE("GraphicBuffer initCheck failed, rv: %i", rv);
testPrintE(" frame %u width: %u height: %u format: %u %s",
row, w, h, format, hwcTestGraphicFormat2str(format));
exit(80);
}
hwcTestFillColor(frames[row][col].get(), color, alpha);
if (verbose) {
testPrintI(" buf: %p handle: %p color: %s alpha: %f",
frames[row][col].get(), frames[row][col]->handle,
string(color).c_str(), alpha);
}
}
}
}
/*
* Vector Random Select
*
* Prandomly selects and returns num elements from vec.
*/
template <class T>
vector<T> vectorRandSelect(const vector<T>& vec, size_t num)
{
vector<T> rv = vec;
while (rv.size() > num) {
rv.erase(rv.begin() + testRandMod(rv.size()));
}
return rv;
}
/*
* Vector Or
*
* Or's togethen the values of each element of vec and returns the result.
*/
template <class T>
T vectorOr(const vector<T>& vec)
{
T rv = 0;
for (size_t n1 = 0; n1 < vec.size(); n1++) {
rv |= vec[n1];
}
return rv;
}