replicant-frameworks_native/services/surfaceflinger/SurfaceFlingerConsumer.cpp
Dan Stoza 2e36f2283f SurfaceFlinger: Fix PTS on stale buffers
SurfaceFlinger's (Layer's) shadow copy of the BufferQueue queue was
getting out of sync for a few reasons. This change fixes these by
doing the following:

- Adds a check to re-synchronize the shadow copy every time we
  successfully acquire a buffer by first dropping stale buffers before
  removing the current buffer.
- Avoids trying to perform updates for buffers which have been rejected
  (for incorrect dimensions) by SurfaceFlinger.
- Adds IGraphicBufferConsumer::setShadowQueueSize, which allows the
  consumer to notify the BufferQueue that it is maintaining a shadow
  copy of the queue and prevents it from dropping so many buffers
  during acquireBuffer that it ends up returning a buffer for which the
  consumer has not yet received an onFrameAvailable call.

Bug: 20096136
Change-Id: I78d0738428005fc19b3be85cc8f1db498043612f
2015-04-30 15:29:05 -07:00

203 lines
6.9 KiB
C++

/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
//#define LOG_NDEBUG 0
#include "SurfaceFlingerConsumer.h"
#include <private/gui/SyncFeatures.h>
#include <gui/BufferItem.h>
#include <utils/Errors.h>
#include <utils/NativeHandle.h>
#include <utils/Trace.h>
namespace android {
// ---------------------------------------------------------------------------
status_t SurfaceFlingerConsumer::updateTexImage(BufferRejecter* rejecter,
const DispSync& dispSync)
{
ATRACE_CALL();
ALOGV("updateTexImage");
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
ALOGE("updateTexImage: GLConsumer is abandoned!");
return NO_INIT;
}
// Make sure the EGL state is the same as in previous calls.
status_t err = checkAndUpdateEglStateLocked();
if (err != NO_ERROR) {
return err;
}
BufferItem item;
// Acquire the next buffer.
// In asynchronous mode the list is guaranteed to be one buffer
// deep, while in synchronous mode we use the oldest buffer.
err = acquireBufferLocked(&item, computeExpectedPresent(dispSync));
if (err != NO_ERROR) {
if (err == BufferQueue::NO_BUFFER_AVAILABLE) {
err = NO_ERROR;
} else if (err == BufferQueue::PRESENT_LATER) {
// return the error, without logging
} else {
ALOGE("updateTexImage: acquire failed: %s (%d)",
strerror(-err), err);
}
return err;
}
// We call the rejecter here, in case the caller has a reason to
// not accept this buffer. This is used by SurfaceFlinger to
// reject buffers which have the wrong size
int buf = item.mBuf;
if (rejecter && rejecter->reject(mSlots[buf].mGraphicBuffer, item)) {
releaseBufferLocked(buf, mSlots[buf].mGraphicBuffer, EGL_NO_SYNC_KHR);
return BUFFER_REJECTED;
}
// Release the previous buffer.
err = updateAndReleaseLocked(item);
if (err != NO_ERROR) {
return err;
}
if (!SyncFeatures::getInstance().useNativeFenceSync()) {
// Bind the new buffer to the GL texture.
//
// Older devices require the "implicit" synchronization provided
// by glEGLImageTargetTexture2DOES, which this method calls. Newer
// devices will either call this in Layer::onDraw, or (if it's not
// a GL-composited layer) not at all.
err = bindTextureImageLocked();
}
return err;
}
status_t SurfaceFlingerConsumer::bindTextureImage()
{
Mutex::Autolock lock(mMutex);
return bindTextureImageLocked();
}
status_t SurfaceFlingerConsumer::acquireBufferLocked(BufferItem* item,
nsecs_t presentWhen) {
status_t result = GLConsumer::acquireBufferLocked(item, presentWhen);
if (result == NO_ERROR) {
mTransformToDisplayInverse = item->mTransformToDisplayInverse;
mSurfaceDamage = item->mSurfaceDamage;
}
return result;
}
bool SurfaceFlingerConsumer::getTransformToDisplayInverse() const {
return mTransformToDisplayInverse;
}
const Region& SurfaceFlingerConsumer::getSurfaceDamage() const {
return mSurfaceDamage;
}
sp<NativeHandle> SurfaceFlingerConsumer::getSidebandStream() const {
return mConsumer->getSidebandStream();
}
void SurfaceFlingerConsumer::setShadowQueueSize(size_t size) {
mConsumer->setShadowQueueSize(size);
}
// We need to determine the time when a buffer acquired now will be
// displayed. This can be calculated:
// time when previous buffer's actual-present fence was signaled
// + current display refresh rate * HWC latency
// + a little extra padding
//
// Buffer producers are expected to set their desired presentation time
// based on choreographer time stamps, which (coming from vsync events)
// will be slightly later then the actual-present timing. If we get a
// desired-present time that is unintentionally a hair after the next
// vsync, we'll hold the frame when we really want to display it. We
// need to take the offset between actual-present and reported-vsync
// into account.
//
// If the system is configured without a DispSync phase offset for the app,
// we also want to throw in a bit of padding to avoid edge cases where we
// just barely miss. We want to do it here, not in every app. A major
// source of trouble is the app's use of the display's ideal refresh time
// (via Display.getRefreshRate()), which could be off of the actual refresh
// by a few percent, with the error multiplied by the number of frames
// between now and when the buffer should be displayed.
//
// If the refresh reported to the app has a phase offset, we shouldn't need
// to tweak anything here.
nsecs_t SurfaceFlingerConsumer::computeExpectedPresent(const DispSync& dispSync)
{
// The HWC doesn't currently have a way to report additional latency.
// Assume that whatever we submit now will appear right after the flip.
// For a smart panel this might be 1. This is expressed in frames,
// rather than time, because we expect to have a constant frame delay
// regardless of the refresh rate.
const uint32_t hwcLatency = 0;
// Ask DispSync when the next refresh will be (CLOCK_MONOTONIC).
const nsecs_t nextRefresh = dispSync.computeNextRefresh(hwcLatency);
// The DispSync time is already adjusted for the difference between
// vsync and reported-vsync (PRESENT_TIME_OFFSET_FROM_VSYNC_NS), so
// we don't need to factor that in here. Pad a little to avoid
// weird effects if apps might be requesting times right on the edge.
nsecs_t extraPadding = 0;
if (VSYNC_EVENT_PHASE_OFFSET_NS == 0) {
extraPadding = 1000000; // 1ms (6% of 60Hz)
}
return nextRefresh + extraPadding;
}
void SurfaceFlingerConsumer::setContentsChangedListener(
const wp<ContentsChangedListener>& listener) {
setFrameAvailableListener(listener);
Mutex::Autolock lock(mMutex);
mContentsChangedListener = listener;
}
void SurfaceFlingerConsumer::onSidebandStreamChanged() {
sp<ContentsChangedListener> listener;
{ // scope for the lock
Mutex::Autolock lock(mMutex);
ALOG_ASSERT(mFrameAvailableListener.unsafe_get() == mContentsChangedListener.unsafe_get());
listener = mContentsChangedListener.promote();
}
if (listener != NULL) {
listener->onSidebandStreamChanged();
}
}
// ---------------------------------------------------------------------------
}; // namespace android