eaf2d0bfe3
Change-Id: Iedcae7164af8f7ea0e048ea7c72d0f35d16d739f
374 lines
9.3 KiB
C++
374 lines
9.3 KiB
C++
/*
|
|
* Copyright (C) 2011 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <utils/Log.h>
|
|
|
|
#include "Fusion.h"
|
|
|
|
namespace android {
|
|
|
|
// -----------------------------------------------------------------------
|
|
|
|
/*
|
|
* gyroVAR gives the measured variance of the gyro's output per
|
|
* Hz (or variance at 1 Hz). This is an "intrinsic" parameter of the gyro,
|
|
* which is independent of the sampling frequency.
|
|
*
|
|
* The variance of gyro's output at a given sampling period can be
|
|
* calculated as:
|
|
* variance(T) = gyroVAR / T
|
|
*
|
|
* The variance of the INTEGRATED OUTPUT at a given sampling period can be
|
|
* calculated as:
|
|
* variance_integrate_output(T) = gyroVAR * T
|
|
*
|
|
*/
|
|
static const float gyroVAR = 1e-7; // (rad/s)^2 / Hz
|
|
static const float biasVAR = 1e-8; // (rad/s)^2 / s (guessed)
|
|
|
|
/*
|
|
* Standard deviations of accelerometer and magnetometer
|
|
*/
|
|
static const float accSTDEV = 0.05f; // m/s^2 (measured 0.08 / CDD 0.05)
|
|
static const float magSTDEV = 0.5f; // uT (measured 0.7 / CDD 0.5)
|
|
|
|
static const float FREE_FALL_THRESHOLD = 0.981f;
|
|
|
|
// -----------------------------------------------------------------------
|
|
|
|
template <typename TYPE, size_t C, size_t R>
|
|
static mat<TYPE, R, R> scaleCovariance(
|
|
const mat<TYPE, C, R>& A,
|
|
const mat<TYPE, C, C>& P) {
|
|
// A*P*transpose(A);
|
|
mat<TYPE, R, R> APAt;
|
|
for (size_t r=0 ; r<R ; r++) {
|
|
for (size_t j=r ; j<R ; j++) {
|
|
double apat(0);
|
|
for (size_t c=0 ; c<C ; c++) {
|
|
double v(A[c][r]*P[c][c]*0.5);
|
|
for (size_t k=c+1 ; k<C ; k++)
|
|
v += A[k][r] * P[c][k];
|
|
apat += 2 * v * A[c][j];
|
|
}
|
|
APAt[j][r] = apat;
|
|
APAt[r][j] = apat;
|
|
}
|
|
}
|
|
return APAt;
|
|
}
|
|
|
|
template <typename TYPE, typename OTHER_TYPE>
|
|
static mat<TYPE, 3, 3> crossMatrix(const vec<TYPE, 3>& p, OTHER_TYPE diag) {
|
|
mat<TYPE, 3, 3> r;
|
|
r[0][0] = diag;
|
|
r[1][1] = diag;
|
|
r[2][2] = diag;
|
|
r[0][1] = p.z;
|
|
r[1][0] =-p.z;
|
|
r[0][2] =-p.y;
|
|
r[2][0] = p.y;
|
|
r[1][2] = p.x;
|
|
r[2][1] =-p.x;
|
|
return r;
|
|
}
|
|
|
|
|
|
template<typename TYPE, size_t SIZE>
|
|
class Covariance {
|
|
mat<TYPE, SIZE, SIZE> mSumXX;
|
|
vec<TYPE, SIZE> mSumX;
|
|
size_t mN;
|
|
public:
|
|
Covariance() : mSumXX(0.0f), mSumX(0.0f), mN(0) { }
|
|
void update(const vec<TYPE, SIZE>& x) {
|
|
mSumXX += x*transpose(x);
|
|
mSumX += x;
|
|
mN++;
|
|
}
|
|
mat<TYPE, SIZE, SIZE> operator()() const {
|
|
const float N = 1.0f / mN;
|
|
return mSumXX*N - (mSumX*transpose(mSumX))*(N*N);
|
|
}
|
|
void reset() {
|
|
mN = 0;
|
|
mSumXX = 0;
|
|
mSumX = 0;
|
|
}
|
|
size_t getCount() const {
|
|
return mN;
|
|
}
|
|
};
|
|
|
|
// -----------------------------------------------------------------------
|
|
|
|
Fusion::Fusion() {
|
|
Phi[0][1] = 0;
|
|
Phi[1][1] = 1;
|
|
|
|
Ba.x = 0;
|
|
Ba.y = 0;
|
|
Ba.z = 1;
|
|
|
|
Bm.x = 0;
|
|
Bm.y = 1;
|
|
Bm.z = 0;
|
|
|
|
init();
|
|
}
|
|
|
|
void Fusion::init() {
|
|
mInitState = 0;
|
|
mGyroRate = 0;
|
|
mCount[0] = 0;
|
|
mCount[1] = 0;
|
|
mCount[2] = 0;
|
|
mData = 0;
|
|
}
|
|
|
|
void Fusion::initFusion(const vec4_t& q, float dT)
|
|
{
|
|
// initial estimate: E{ x(t0) }
|
|
x0 = q;
|
|
x1 = 0;
|
|
|
|
// process noise covariance matrix: G.Q.Gt, with
|
|
//
|
|
// G = | -1 0 | Q = | q00 q10 |
|
|
// | 0 1 | | q01 q11 |
|
|
//
|
|
// q00 = sv^2.dt + 1/3.su^2.dt^3
|
|
// q10 = q01 = 1/2.su^2.dt^2
|
|
// q11 = su^2.dt
|
|
//
|
|
|
|
// variance of integrated output at 1/dT Hz
|
|
// (random drift)
|
|
const float q00 = gyroVAR * dT;
|
|
|
|
// variance of drift rate ramp
|
|
const float q11 = biasVAR * dT;
|
|
|
|
const float u = q11 / dT;
|
|
const float q10 = 0.5f*u*dT*dT;
|
|
const float q01 = q10;
|
|
|
|
GQGt[0][0] = q00; // rad^2
|
|
GQGt[1][0] = -q10;
|
|
GQGt[0][1] = -q01;
|
|
GQGt[1][1] = q11; // (rad/s)^2
|
|
|
|
// initial covariance: Var{ x(t0) }
|
|
// TODO: initialize P correctly
|
|
P = 0;
|
|
}
|
|
|
|
bool Fusion::hasEstimate() const {
|
|
return (mInitState == (MAG|ACC|GYRO));
|
|
}
|
|
|
|
bool Fusion::checkInitComplete(int what, const vec3_t& d, float dT) {
|
|
if (hasEstimate())
|
|
return true;
|
|
|
|
if (what == ACC) {
|
|
mData[0] += d * (1/length(d));
|
|
mCount[0]++;
|
|
mInitState |= ACC;
|
|
} else if (what == MAG) {
|
|
mData[1] += d * (1/length(d));
|
|
mCount[1]++;
|
|
mInitState |= MAG;
|
|
} else if (what == GYRO) {
|
|
mGyroRate = dT;
|
|
mData[2] += d*dT;
|
|
mCount[2]++;
|
|
if (mCount[2] == 64) {
|
|
// 64 samples is good enough to estimate the gyro drift and
|
|
// doesn't take too much time.
|
|
mInitState |= GYRO;
|
|
}
|
|
}
|
|
|
|
if (mInitState == (MAG|ACC|GYRO)) {
|
|
// Average all the values we collected so far
|
|
mData[0] *= 1.0f/mCount[0];
|
|
mData[1] *= 1.0f/mCount[1];
|
|
mData[2] *= 1.0f/mCount[2];
|
|
|
|
// calculate the MRPs from the data collection, this gives us
|
|
// a rough estimate of our initial state
|
|
mat33_t R;
|
|
vec3_t up(mData[0]);
|
|
vec3_t east(cross_product(mData[1], up));
|
|
east *= 1/length(east);
|
|
vec3_t north(cross_product(up, east));
|
|
R << east << north << up;
|
|
const vec4_t q = matrixToQuat(R);
|
|
|
|
initFusion(q, mGyroRate);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void Fusion::handleGyro(const vec3_t& w, float dT) {
|
|
if (!checkInitComplete(GYRO, w, dT))
|
|
return;
|
|
|
|
predict(w, dT);
|
|
}
|
|
|
|
status_t Fusion::handleAcc(const vec3_t& a) {
|
|
// ignore acceleration data if we're close to free-fall
|
|
if (length(a) < FREE_FALL_THRESHOLD)
|
|
return BAD_VALUE;
|
|
|
|
if (!checkInitComplete(ACC, a))
|
|
return BAD_VALUE;
|
|
|
|
const float l = 1/length(a);
|
|
update(a*l, Ba, accSTDEV*l);
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t Fusion::handleMag(const vec3_t& m) {
|
|
// the geomagnetic-field should be between 30uT and 60uT
|
|
// reject obviously wrong magnetic-fields
|
|
if (length(m) > 100)
|
|
return BAD_VALUE;
|
|
|
|
if (!checkInitComplete(MAG, m))
|
|
return BAD_VALUE;
|
|
|
|
const vec3_t up( getRotationMatrix() * Ba );
|
|
const vec3_t east( cross_product(m, up) );
|
|
vec3_t north( cross_product(up, east) );
|
|
|
|
const float l = 1 / length(north);
|
|
north *= l;
|
|
|
|
update(north, Bm, magSTDEV*l);
|
|
return NO_ERROR;
|
|
}
|
|
|
|
bool Fusion::checkState(const vec3_t& v) {
|
|
if (isnanf(length(v))) {
|
|
LOGW("9-axis fusion diverged. reseting state.");
|
|
P = 0;
|
|
x1 = 0;
|
|
mInitState = 0;
|
|
mCount[0] = 0;
|
|
mCount[1] = 0;
|
|
mCount[2] = 0;
|
|
mData = 0;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
vec4_t Fusion::getAttitude() const {
|
|
return x0;
|
|
}
|
|
|
|
vec3_t Fusion::getBias() const {
|
|
return x1;
|
|
}
|
|
|
|
mat33_t Fusion::getRotationMatrix() const {
|
|
return quatToMatrix(x0);
|
|
}
|
|
|
|
mat34_t Fusion::getF(const vec4_t& q) {
|
|
mat34_t F;
|
|
F[0].x = q.w; F[1].x =-q.z; F[2].x = q.y;
|
|
F[0].y = q.z; F[1].y = q.w; F[2].y =-q.x;
|
|
F[0].z =-q.y; F[1].z = q.x; F[2].z = q.w;
|
|
F[0].w =-q.x; F[1].w =-q.y; F[2].w =-q.z;
|
|
return F;
|
|
}
|
|
|
|
void Fusion::predict(const vec3_t& w, float dT) {
|
|
const vec4_t q = x0;
|
|
const vec3_t b = x1;
|
|
const vec3_t we = w - b;
|
|
const vec4_t dq = getF(q)*((0.5f*dT)*we);
|
|
x0 = normalize_quat(q + dq);
|
|
|
|
// P(k+1) = F*P(k)*Ft + G*Q*Gt
|
|
|
|
// Phi = | Phi00 Phi10 |
|
|
// | 0 1 |
|
|
const mat33_t I33(1);
|
|
const mat33_t I33dT(dT);
|
|
const mat33_t wx(crossMatrix(we, 0));
|
|
const mat33_t wx2(wx*wx);
|
|
const float lwedT = length(we)*dT;
|
|
const float ilwe = 1/length(we);
|
|
const float k0 = (1-cosf(lwedT))*(ilwe*ilwe);
|
|
const float k1 = sinf(lwedT);
|
|
|
|
Phi[0][0] = I33 - wx*(k1*ilwe) + wx2*k0;
|
|
Phi[1][0] = wx*k0 - I33dT - wx2*(ilwe*ilwe*ilwe)*(lwedT-k1);
|
|
|
|
P = Phi*P*transpose(Phi) + GQGt;
|
|
}
|
|
|
|
void Fusion::update(const vec3_t& z, const vec3_t& Bi, float sigma) {
|
|
vec4_t q(x0);
|
|
// measured vector in body space: h(p) = A(p)*Bi
|
|
const mat33_t A(quatToMatrix(q));
|
|
const vec3_t Bb(A*Bi);
|
|
|
|
// Sensitivity matrix H = dh(p)/dp
|
|
// H = [ L 0 ]
|
|
const mat33_t L(crossMatrix(Bb, 0));
|
|
|
|
// gain...
|
|
// K = P*Ht / [H*P*Ht + R]
|
|
vec<mat33_t, 2> K;
|
|
const mat33_t R(sigma*sigma);
|
|
const mat33_t S(scaleCovariance(L, P[0][0]) + R);
|
|
const mat33_t Si(invert(S));
|
|
const mat33_t LtSi(transpose(L)*Si);
|
|
K[0] = P[0][0] * LtSi;
|
|
K[1] = transpose(P[1][0])*LtSi;
|
|
|
|
// update...
|
|
// P -= K*H*P;
|
|
const mat33_t K0L(K[0] * L);
|
|
const mat33_t K1L(K[1] * L);
|
|
P[0][0] -= K0L*P[0][0];
|
|
P[1][1] -= K1L*P[1][0];
|
|
P[1][0] -= K0L*P[1][0];
|
|
P[0][1] = transpose(P[1][0]);
|
|
|
|
const vec3_t e(z - Bb);
|
|
const vec3_t dq(K[0]*e);
|
|
const vec3_t db(K[1]*e);
|
|
|
|
q += getF(q)*(0.5f*dq);
|
|
x0 = normalize_quat(q);
|
|
x1 += db;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------
|
|
|
|
}; // namespace android
|
|
|