d4ecee9313
Also added some tests for LED setting. Change-Id: I3fd86322afd07ae8de52d1ccbc2fae2c6d586641
3480 lines
140 KiB
C++
3480 lines
140 KiB
C++
//
|
|
// Copyright 2010 The Android Open Source Project
|
|
//
|
|
|
|
#include <ui/InputReader.h>
|
|
#include <utils/List.h>
|
|
#include <gtest/gtest.h>
|
|
#include <math.h>
|
|
|
|
namespace android {
|
|
|
|
// An arbitrary time value.
|
|
static const nsecs_t ARBITRARY_TIME = 1234;
|
|
|
|
// Arbitrary display properties.
|
|
static const int32_t DISPLAY_ID = 0;
|
|
static const int32_t DISPLAY_WIDTH = 480;
|
|
static const int32_t DISPLAY_HEIGHT = 800;
|
|
|
|
// Error tolerance for floating point assertions.
|
|
static const float EPSILON = 0.001f;
|
|
|
|
template<typename T>
|
|
static inline T min(T a, T b) {
|
|
return a < b ? a : b;
|
|
}
|
|
|
|
static inline float avg(float x, float y) {
|
|
return (x + y) / 2;
|
|
}
|
|
|
|
|
|
// --- FakeInputReaderPolicy ---
|
|
|
|
class FakeInputReaderPolicy : public InputReaderPolicyInterface {
|
|
struct DisplayInfo {
|
|
int32_t width;
|
|
int32_t height;
|
|
int32_t orientation;
|
|
};
|
|
|
|
KeyedVector<int32_t, DisplayInfo> mDisplayInfos;
|
|
bool mFilterTouchEvents;
|
|
bool mFilterJumpyTouchEvents;
|
|
KeyedVector<String8, Vector<VirtualKeyDefinition> > mVirtualKeyDefinitions;
|
|
KeyedVector<String8, InputDeviceCalibration> mInputDeviceCalibrations;
|
|
Vector<String8> mExcludedDeviceNames;
|
|
|
|
protected:
|
|
virtual ~FakeInputReaderPolicy() { }
|
|
|
|
public:
|
|
FakeInputReaderPolicy() :
|
|
mFilterTouchEvents(false), mFilterJumpyTouchEvents(false) {
|
|
}
|
|
|
|
void removeDisplayInfo(int32_t displayId) {
|
|
mDisplayInfos.removeItem(displayId);
|
|
}
|
|
|
|
void setDisplayInfo(int32_t displayId, int32_t width, int32_t height, int32_t orientation) {
|
|
removeDisplayInfo(displayId);
|
|
|
|
DisplayInfo info;
|
|
info.width = width;
|
|
info.height = height;
|
|
info.orientation = orientation;
|
|
mDisplayInfos.add(displayId, info);
|
|
}
|
|
|
|
void setFilterTouchEvents(bool enabled) {
|
|
mFilterTouchEvents = enabled;
|
|
}
|
|
|
|
void setFilterJumpyTouchEvents(bool enabled) {
|
|
mFilterJumpyTouchEvents = enabled;
|
|
}
|
|
|
|
void addInputDeviceCalibration(const String8& deviceName,
|
|
const InputDeviceCalibration& calibration) {
|
|
mInputDeviceCalibrations.add(deviceName, calibration);
|
|
}
|
|
|
|
void addInputDeviceCalibrationProperty(const String8& deviceName,
|
|
const String8& key, const String8& value) {
|
|
ssize_t index = mInputDeviceCalibrations.indexOfKey(deviceName);
|
|
if (index < 0) {
|
|
index = mInputDeviceCalibrations.add(deviceName, InputDeviceCalibration());
|
|
}
|
|
mInputDeviceCalibrations.editValueAt(index).addProperty(key, value);
|
|
}
|
|
|
|
void addVirtualKeyDefinition(const String8& deviceName,
|
|
const VirtualKeyDefinition& definition) {
|
|
if (mVirtualKeyDefinitions.indexOfKey(deviceName) < 0) {
|
|
mVirtualKeyDefinitions.add(deviceName, Vector<VirtualKeyDefinition>());
|
|
}
|
|
|
|
mVirtualKeyDefinitions.editValueFor(deviceName).push(definition);
|
|
}
|
|
|
|
void addExcludedDeviceName(const String8& deviceName) {
|
|
mExcludedDeviceNames.push(deviceName);
|
|
}
|
|
|
|
private:
|
|
virtual bool getDisplayInfo(int32_t displayId,
|
|
int32_t* width, int32_t* height, int32_t* orientation) {
|
|
ssize_t index = mDisplayInfos.indexOfKey(displayId);
|
|
if (index >= 0) {
|
|
const DisplayInfo& info = mDisplayInfos.valueAt(index);
|
|
if (width) {
|
|
*width = info.width;
|
|
}
|
|
if (height) {
|
|
*height = info.height;
|
|
}
|
|
if (orientation) {
|
|
*orientation = info.orientation;
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
virtual bool filterTouchEvents() {
|
|
return mFilterTouchEvents;
|
|
}
|
|
|
|
virtual bool filterJumpyTouchEvents() {
|
|
return mFilterJumpyTouchEvents;
|
|
}
|
|
|
|
virtual void getVirtualKeyDefinitions(const String8& deviceName,
|
|
Vector<VirtualKeyDefinition>& outVirtualKeyDefinitions) {
|
|
ssize_t index = mVirtualKeyDefinitions.indexOfKey(deviceName);
|
|
if (index >= 0) {
|
|
outVirtualKeyDefinitions.appendVector(mVirtualKeyDefinitions.valueAt(index));
|
|
}
|
|
}
|
|
|
|
virtual void getInputDeviceCalibration(const String8& deviceName,
|
|
InputDeviceCalibration& outCalibration) {
|
|
ssize_t index = mInputDeviceCalibrations.indexOfKey(deviceName);
|
|
if (index >= 0) {
|
|
outCalibration = mInputDeviceCalibrations.valueAt(index);
|
|
}
|
|
}
|
|
|
|
virtual void getExcludedDeviceNames(Vector<String8>& outExcludedDeviceNames) {
|
|
outExcludedDeviceNames.appendVector(mExcludedDeviceNames);
|
|
}
|
|
};
|
|
|
|
|
|
// --- FakeInputDispatcher ---
|
|
|
|
class FakeInputDispatcher : public InputDispatcherInterface {
|
|
public:
|
|
struct NotifyConfigurationChangedArgs {
|
|
nsecs_t eventTime;
|
|
};
|
|
|
|
struct NotifyKeyArgs {
|
|
nsecs_t eventTime;
|
|
int32_t deviceId;
|
|
int32_t source;
|
|
uint32_t policyFlags;
|
|
int32_t action;
|
|
int32_t flags;
|
|
int32_t keyCode;
|
|
int32_t scanCode;
|
|
int32_t metaState;
|
|
nsecs_t downTime;
|
|
};
|
|
|
|
struct NotifyMotionArgs {
|
|
nsecs_t eventTime;
|
|
int32_t deviceId;
|
|
int32_t source;
|
|
uint32_t policyFlags;
|
|
int32_t action;
|
|
int32_t flags;
|
|
int32_t metaState;
|
|
int32_t edgeFlags;
|
|
uint32_t pointerCount;
|
|
Vector<int32_t> pointerIds;
|
|
Vector<PointerCoords> pointerCoords;
|
|
float xPrecision;
|
|
float yPrecision;
|
|
nsecs_t downTime;
|
|
};
|
|
|
|
struct NotifySwitchArgs {
|
|
nsecs_t when;
|
|
int32_t switchCode;
|
|
int32_t switchValue;
|
|
uint32_t policyFlags;
|
|
};
|
|
|
|
private:
|
|
List<NotifyConfigurationChangedArgs> mNotifyConfigurationChangedArgs;
|
|
List<NotifyKeyArgs> mNotifyKeyArgs;
|
|
List<NotifyMotionArgs> mNotifyMotionArgs;
|
|
List<NotifySwitchArgs> mNotifySwitchArgs;
|
|
|
|
protected:
|
|
virtual ~FakeInputDispatcher() { }
|
|
|
|
public:
|
|
FakeInputDispatcher() {
|
|
}
|
|
|
|
void assertNotifyConfigurationChangedWasCalled(NotifyConfigurationChangedArgs* outArgs = NULL) {
|
|
ASSERT_FALSE(mNotifyConfigurationChangedArgs.empty())
|
|
<< "Expected notifyConfigurationChanged() to have been called.";
|
|
if (outArgs) {
|
|
*outArgs = *mNotifyConfigurationChangedArgs.begin();
|
|
}
|
|
mNotifyConfigurationChangedArgs.erase(mNotifyConfigurationChangedArgs.begin());
|
|
}
|
|
|
|
void assertNotifyKeyWasCalled(NotifyKeyArgs* outArgs = NULL) {
|
|
ASSERT_FALSE(mNotifyKeyArgs.empty())
|
|
<< "Expected notifyKey() to have been called.";
|
|
if (outArgs) {
|
|
*outArgs = *mNotifyKeyArgs.begin();
|
|
}
|
|
mNotifyKeyArgs.erase(mNotifyKeyArgs.begin());
|
|
}
|
|
|
|
void assertNotifyKeyWasNotCalled() {
|
|
ASSERT_TRUE(mNotifyKeyArgs.empty())
|
|
<< "Expected notifyKey() to not have been called.";
|
|
}
|
|
|
|
void assertNotifyMotionWasCalled(NotifyMotionArgs* outArgs = NULL) {
|
|
ASSERT_FALSE(mNotifyMotionArgs.empty())
|
|
<< "Expected notifyMotion() to have been called.";
|
|
if (outArgs) {
|
|
*outArgs = *mNotifyMotionArgs.begin();
|
|
}
|
|
mNotifyMotionArgs.erase(mNotifyMotionArgs.begin());
|
|
}
|
|
|
|
void assertNotifyMotionWasNotCalled() {
|
|
ASSERT_TRUE(mNotifyMotionArgs.empty())
|
|
<< "Expected notifyMotion() to not have been called.";
|
|
}
|
|
|
|
void assertNotifySwitchWasCalled(NotifySwitchArgs* outArgs = NULL) {
|
|
ASSERT_FALSE(mNotifySwitchArgs.empty())
|
|
<< "Expected notifySwitch() to have been called.";
|
|
if (outArgs) {
|
|
*outArgs = *mNotifySwitchArgs.begin();
|
|
}
|
|
mNotifySwitchArgs.erase(mNotifySwitchArgs.begin());
|
|
}
|
|
|
|
private:
|
|
virtual void notifyConfigurationChanged(nsecs_t eventTime) {
|
|
NotifyConfigurationChangedArgs args;
|
|
args.eventTime = eventTime;
|
|
mNotifyConfigurationChangedArgs.push_back(args);
|
|
}
|
|
|
|
virtual void notifyKey(nsecs_t eventTime, int32_t deviceId, int32_t source,
|
|
uint32_t policyFlags, int32_t action, int32_t flags, int32_t keyCode,
|
|
int32_t scanCode, int32_t metaState, nsecs_t downTime) {
|
|
NotifyKeyArgs args;
|
|
args.eventTime = eventTime;
|
|
args.deviceId = deviceId;
|
|
args.source = source;
|
|
args.policyFlags = policyFlags;
|
|
args.action = action;
|
|
args.flags = flags;
|
|
args.keyCode = keyCode;
|
|
args.scanCode = scanCode;
|
|
args.metaState = metaState;
|
|
args.downTime = downTime;
|
|
mNotifyKeyArgs.push_back(args);
|
|
}
|
|
|
|
virtual void notifyMotion(nsecs_t eventTime, int32_t deviceId, int32_t source,
|
|
uint32_t policyFlags, int32_t action, int32_t flags,
|
|
int32_t metaState, int32_t edgeFlags,
|
|
uint32_t pointerCount, const int32_t* pointerIds, const PointerCoords* pointerCoords,
|
|
float xPrecision, float yPrecision, nsecs_t downTime) {
|
|
NotifyMotionArgs args;
|
|
args.eventTime = eventTime;
|
|
args.deviceId = deviceId;
|
|
args.source = source;
|
|
args.policyFlags = policyFlags;
|
|
args.action = action;
|
|
args.flags = flags;
|
|
args.metaState = metaState;
|
|
args.edgeFlags = edgeFlags;
|
|
args.pointerCount = pointerCount;
|
|
args.pointerIds.clear();
|
|
args.pointerIds.appendArray(pointerIds, pointerCount);
|
|
args.pointerCoords.clear();
|
|
args.pointerCoords.appendArray(pointerCoords, pointerCount);
|
|
args.xPrecision = xPrecision;
|
|
args.yPrecision = yPrecision;
|
|
args.downTime = downTime;
|
|
mNotifyMotionArgs.push_back(args);
|
|
}
|
|
|
|
virtual void notifySwitch(nsecs_t when,
|
|
int32_t switchCode, int32_t switchValue, uint32_t policyFlags) {
|
|
NotifySwitchArgs args;
|
|
args.when = when;
|
|
args.switchCode = switchCode;
|
|
args.switchValue = switchValue;
|
|
args.policyFlags = policyFlags;
|
|
mNotifySwitchArgs.push_back(args);
|
|
}
|
|
|
|
virtual void dump(String8& dump) {
|
|
ADD_FAILURE() << "Should never be called by input reader.";
|
|
}
|
|
|
|
virtual void dispatchOnce() {
|
|
ADD_FAILURE() << "Should never be called by input reader.";
|
|
}
|
|
|
|
virtual int32_t injectInputEvent(const InputEvent* event,
|
|
int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis) {
|
|
ADD_FAILURE() << "Should never be called by input reader.";
|
|
return INPUT_EVENT_INJECTION_FAILED;
|
|
}
|
|
|
|
virtual void setInputWindows(const Vector<InputWindow>& inputWindows) {
|
|
ADD_FAILURE() << "Should never be called by input reader.";
|
|
}
|
|
|
|
virtual void setFocusedApplication(const InputApplication* inputApplication) {
|
|
ADD_FAILURE() << "Should never be called by input reader.";
|
|
}
|
|
|
|
virtual void setInputDispatchMode(bool enabled, bool frozen) {
|
|
ADD_FAILURE() << "Should never be called by input reader.";
|
|
}
|
|
|
|
virtual bool transferTouchFocus(const sp<InputChannel>& fromChannel,
|
|
const sp<InputChannel>& toChannel) {
|
|
ADD_FAILURE() << "Should never be called by input reader.";
|
|
return 0;
|
|
}
|
|
|
|
virtual status_t registerInputChannel(const sp<InputChannel>& inputChannel, bool monitor) {
|
|
ADD_FAILURE() << "Should never be called by input reader.";
|
|
return 0;
|
|
}
|
|
|
|
virtual status_t unregisterInputChannel(const sp<InputChannel>& inputChannel) {
|
|
ADD_FAILURE() << "Should never be called by input reader.";
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
|
|
// --- FakeEventHub ---
|
|
|
|
class FakeEventHub : public EventHubInterface {
|
|
struct KeyInfo {
|
|
int32_t keyCode;
|
|
uint32_t flags;
|
|
};
|
|
|
|
struct Device {
|
|
String8 name;
|
|
uint32_t classes;
|
|
KeyedVector<int, RawAbsoluteAxisInfo> axes;
|
|
KeyedVector<int32_t, int32_t> keyCodeStates;
|
|
KeyedVector<int32_t, int32_t> scanCodeStates;
|
|
KeyedVector<int32_t, int32_t> switchStates;
|
|
KeyedVector<int32_t, KeyInfo> keys;
|
|
KeyedVector<int32_t, bool> leds;
|
|
|
|
Device(const String8& name, uint32_t classes) :
|
|
name(name), classes(classes) {
|
|
}
|
|
};
|
|
|
|
KeyedVector<int32_t, Device*> mDevices;
|
|
Vector<String8> mExcludedDevices;
|
|
List<RawEvent> mEvents;
|
|
|
|
protected:
|
|
virtual ~FakeEventHub() {
|
|
for (size_t i = 0; i < mDevices.size(); i++) {
|
|
delete mDevices.valueAt(i);
|
|
}
|
|
}
|
|
|
|
public:
|
|
FakeEventHub() { }
|
|
|
|
void addDevice(int32_t deviceId, const String8& name, uint32_t classes) {
|
|
Device* device = new Device(name, classes);
|
|
mDevices.add(deviceId, device);
|
|
|
|
enqueueEvent(ARBITRARY_TIME, deviceId, EventHubInterface::DEVICE_ADDED, 0, 0, 0, 0);
|
|
}
|
|
|
|
void removeDevice(int32_t deviceId) {
|
|
delete mDevices.valueFor(deviceId);
|
|
mDevices.removeItem(deviceId);
|
|
|
|
enqueueEvent(ARBITRARY_TIME, deviceId, EventHubInterface::DEVICE_REMOVED, 0, 0, 0, 0);
|
|
}
|
|
|
|
void finishDeviceScan() {
|
|
enqueueEvent(ARBITRARY_TIME, 0, EventHubInterface::FINISHED_DEVICE_SCAN, 0, 0, 0, 0);
|
|
}
|
|
|
|
void addAxis(int32_t deviceId, int axis,
|
|
int32_t minValue, int32_t maxValue, int flat, int fuzz) {
|
|
Device* device = getDevice(deviceId);
|
|
|
|
RawAbsoluteAxisInfo info;
|
|
info.valid = true;
|
|
info.minValue = minValue;
|
|
info.maxValue = maxValue;
|
|
info.flat = flat;
|
|
info.fuzz = fuzz;
|
|
device->axes.add(axis, info);
|
|
}
|
|
|
|
void setKeyCodeState(int32_t deviceId, int32_t keyCode, int32_t state) {
|
|
Device* device = getDevice(deviceId);
|
|
device->keyCodeStates.replaceValueFor(keyCode, state);
|
|
}
|
|
|
|
void setScanCodeState(int32_t deviceId, int32_t scanCode, int32_t state) {
|
|
Device* device = getDevice(deviceId);
|
|
device->scanCodeStates.replaceValueFor(scanCode, state);
|
|
}
|
|
|
|
void setSwitchState(int32_t deviceId, int32_t switchCode, int32_t state) {
|
|
Device* device = getDevice(deviceId);
|
|
device->switchStates.replaceValueFor(switchCode, state);
|
|
}
|
|
|
|
void addKey(int32_t deviceId, int32_t scanCode, int32_t keyCode, uint32_t flags) {
|
|
Device* device = getDevice(deviceId);
|
|
KeyInfo info;
|
|
info.keyCode = keyCode;
|
|
info.flags = flags;
|
|
device->keys.add(scanCode, info);
|
|
}
|
|
|
|
void addLed(int32_t deviceId, int32_t led, bool initialState) {
|
|
Device* device = getDevice(deviceId);
|
|
device->leds.add(led, initialState);
|
|
}
|
|
|
|
bool getLedState(int32_t deviceId, int32_t led) {
|
|
Device* device = getDevice(deviceId);
|
|
return device->leds.valueFor(led);
|
|
}
|
|
|
|
Vector<String8>& getExcludedDevices() {
|
|
return mExcludedDevices;
|
|
}
|
|
|
|
void enqueueEvent(nsecs_t when, int32_t deviceId, int32_t type,
|
|
int32_t scanCode, int32_t keyCode, int32_t value, uint32_t flags) {
|
|
RawEvent event;
|
|
event.when = when;
|
|
event.deviceId = deviceId;
|
|
event.type = type;
|
|
event.scanCode = scanCode;
|
|
event.keyCode = keyCode;
|
|
event.value = value;
|
|
event.flags = flags;
|
|
mEvents.push_back(event);
|
|
}
|
|
|
|
void assertQueueIsEmpty() {
|
|
ASSERT_EQ(size_t(0), mEvents.size())
|
|
<< "Expected the event queue to be empty (fully consumed).";
|
|
}
|
|
|
|
private:
|
|
Device* getDevice(int32_t deviceId) const {
|
|
ssize_t index = mDevices.indexOfKey(deviceId);
|
|
return index >= 0 ? mDevices.valueAt(index) : NULL;
|
|
}
|
|
|
|
virtual uint32_t getDeviceClasses(int32_t deviceId) const {
|
|
Device* device = getDevice(deviceId);
|
|
return device ? device->classes : 0;
|
|
}
|
|
|
|
virtual String8 getDeviceName(int32_t deviceId) const {
|
|
Device* device = getDevice(deviceId);
|
|
return device ? device->name : String8("unknown");
|
|
}
|
|
|
|
virtual status_t getAbsoluteAxisInfo(int32_t deviceId, int axis,
|
|
RawAbsoluteAxisInfo* outAxisInfo) const {
|
|
Device* device = getDevice(deviceId);
|
|
if (device) {
|
|
ssize_t index = device->axes.indexOfKey(axis);
|
|
if (index >= 0) {
|
|
*outAxisInfo = device->axes.valueAt(index);
|
|
return OK;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
virtual status_t scancodeToKeycode(int32_t deviceId, int scancode,
|
|
int32_t* outKeycode, uint32_t* outFlags) const {
|
|
Device* device = getDevice(deviceId);
|
|
if (device) {
|
|
ssize_t index = device->keys.indexOfKey(scancode);
|
|
if (index >= 0) {
|
|
if (outKeycode) {
|
|
*outKeycode = device->keys.valueAt(index).keyCode;
|
|
}
|
|
if (outFlags) {
|
|
*outFlags = device->keys.valueAt(index).flags;
|
|
}
|
|
return OK;
|
|
}
|
|
}
|
|
return NAME_NOT_FOUND;
|
|
}
|
|
|
|
virtual void addExcludedDevice(const char* deviceName) {
|
|
mExcludedDevices.add(String8(deviceName));
|
|
}
|
|
|
|
virtual bool getEvent(RawEvent* outEvent) {
|
|
if (mEvents.empty()) {
|
|
return false;
|
|
}
|
|
|
|
*outEvent = *mEvents.begin();
|
|
mEvents.erase(mEvents.begin());
|
|
return true;
|
|
}
|
|
|
|
virtual int32_t getScanCodeState(int32_t deviceId, int32_t scanCode) const {
|
|
Device* device = getDevice(deviceId);
|
|
if (device) {
|
|
ssize_t index = device->scanCodeStates.indexOfKey(scanCode);
|
|
if (index >= 0) {
|
|
return device->scanCodeStates.valueAt(index);
|
|
}
|
|
}
|
|
return AKEY_STATE_UNKNOWN;
|
|
}
|
|
|
|
virtual int32_t getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
|
|
Device* device = getDevice(deviceId);
|
|
if (device) {
|
|
ssize_t index = device->keyCodeStates.indexOfKey(keyCode);
|
|
if (index >= 0) {
|
|
return device->keyCodeStates.valueAt(index);
|
|
}
|
|
}
|
|
return AKEY_STATE_UNKNOWN;
|
|
}
|
|
|
|
virtual int32_t getSwitchState(int32_t deviceId, int32_t sw) const {
|
|
Device* device = getDevice(deviceId);
|
|
if (device) {
|
|
ssize_t index = device->switchStates.indexOfKey(sw);
|
|
if (index >= 0) {
|
|
return device->switchStates.valueAt(index);
|
|
}
|
|
}
|
|
return AKEY_STATE_UNKNOWN;
|
|
}
|
|
|
|
virtual bool markSupportedKeyCodes(int32_t deviceId, size_t numCodes, const int32_t* keyCodes,
|
|
uint8_t* outFlags) const {
|
|
bool result = false;
|
|
Device* device = getDevice(deviceId);
|
|
if (device) {
|
|
for (size_t i = 0; i < numCodes; i++) {
|
|
for (size_t j = 0; j < device->keys.size(); j++) {
|
|
if (keyCodes[i] == device->keys.valueAt(j).keyCode) {
|
|
outFlags[i] = 1;
|
|
result = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
virtual bool hasLed(int32_t deviceId, int32_t led) const {
|
|
Device* device = getDevice(deviceId);
|
|
return device && device->leds.indexOfKey(led) >= 0;
|
|
}
|
|
|
|
virtual void setLedState(int32_t deviceId, int32_t led, bool on) {
|
|
Device* device = getDevice(deviceId);
|
|
if (device) {
|
|
ssize_t index = device->leds.indexOfKey(led);
|
|
if (index >= 0) {
|
|
device->leds.replaceValueAt(led, on);
|
|
} else {
|
|
ADD_FAILURE()
|
|
<< "Attempted to set the state of an LED that the EventHub declared "
|
|
"was not present. led=" << led;
|
|
}
|
|
}
|
|
}
|
|
|
|
virtual void dump(String8& dump) {
|
|
}
|
|
};
|
|
|
|
|
|
// --- FakeInputReaderContext ---
|
|
|
|
class FakeInputReaderContext : public InputReaderContext {
|
|
sp<EventHubInterface> mEventHub;
|
|
sp<InputReaderPolicyInterface> mPolicy;
|
|
sp<InputDispatcherInterface> mDispatcher;
|
|
int32_t mGlobalMetaState;
|
|
bool mUpdateGlobalMetaStateWasCalled;
|
|
|
|
public:
|
|
FakeInputReaderContext(const sp<EventHubInterface>& eventHub,
|
|
const sp<InputReaderPolicyInterface>& policy,
|
|
const sp<InputDispatcherInterface>& dispatcher) :
|
|
mEventHub(eventHub), mPolicy(policy), mDispatcher(dispatcher),
|
|
mGlobalMetaState(0) {
|
|
}
|
|
|
|
virtual ~FakeInputReaderContext() { }
|
|
|
|
void assertUpdateGlobalMetaStateWasCalled() {
|
|
ASSERT_TRUE(mUpdateGlobalMetaStateWasCalled)
|
|
<< "Expected updateGlobalMetaState() to have been called.";
|
|
mUpdateGlobalMetaStateWasCalled = false;
|
|
}
|
|
|
|
void setGlobalMetaState(int32_t state) {
|
|
mGlobalMetaState = state;
|
|
}
|
|
|
|
private:
|
|
virtual void updateGlobalMetaState() {
|
|
mUpdateGlobalMetaStateWasCalled = true;
|
|
}
|
|
|
|
virtual int32_t getGlobalMetaState() {
|
|
return mGlobalMetaState;
|
|
}
|
|
|
|
virtual EventHubInterface* getEventHub() {
|
|
return mEventHub.get();
|
|
}
|
|
|
|
virtual InputReaderPolicyInterface* getPolicy() {
|
|
return mPolicy.get();
|
|
}
|
|
|
|
virtual InputDispatcherInterface* getDispatcher() {
|
|
return mDispatcher.get();
|
|
}
|
|
};
|
|
|
|
|
|
// --- FakeInputMapper ---
|
|
|
|
class FakeInputMapper : public InputMapper {
|
|
uint32_t mSources;
|
|
int32_t mKeyboardType;
|
|
int32_t mMetaState;
|
|
KeyedVector<int32_t, int32_t> mKeyCodeStates;
|
|
KeyedVector<int32_t, int32_t> mScanCodeStates;
|
|
KeyedVector<int32_t, int32_t> mSwitchStates;
|
|
Vector<int32_t> mSupportedKeyCodes;
|
|
RawEvent mLastEvent;
|
|
|
|
bool mConfigureWasCalled;
|
|
bool mResetWasCalled;
|
|
bool mProcessWasCalled;
|
|
|
|
public:
|
|
FakeInputMapper(InputDevice* device, uint32_t sources) :
|
|
InputMapper(device),
|
|
mSources(sources), mKeyboardType(AINPUT_KEYBOARD_TYPE_NONE),
|
|
mMetaState(0),
|
|
mConfigureWasCalled(false), mResetWasCalled(false), mProcessWasCalled(false) {
|
|
}
|
|
|
|
virtual ~FakeInputMapper() { }
|
|
|
|
void setKeyboardType(int32_t keyboardType) {
|
|
mKeyboardType = keyboardType;
|
|
}
|
|
|
|
void setMetaState(int32_t metaState) {
|
|
mMetaState = metaState;
|
|
}
|
|
|
|
void assertConfigureWasCalled() {
|
|
ASSERT_TRUE(mConfigureWasCalled)
|
|
<< "Expected configure() to have been called.";
|
|
mConfigureWasCalled = false;
|
|
}
|
|
|
|
void assertResetWasCalled() {
|
|
ASSERT_TRUE(mResetWasCalled)
|
|
<< "Expected reset() to have been called.";
|
|
mResetWasCalled = false;
|
|
}
|
|
|
|
void assertProcessWasCalled(RawEvent* outLastEvent = NULL) {
|
|
ASSERT_TRUE(mProcessWasCalled)
|
|
<< "Expected process() to have been called.";
|
|
if (outLastEvent) {
|
|
*outLastEvent = mLastEvent;
|
|
}
|
|
mProcessWasCalled = false;
|
|
}
|
|
|
|
void setKeyCodeState(int32_t keyCode, int32_t state) {
|
|
mKeyCodeStates.replaceValueFor(keyCode, state);
|
|
}
|
|
|
|
void setScanCodeState(int32_t scanCode, int32_t state) {
|
|
mScanCodeStates.replaceValueFor(scanCode, state);
|
|
}
|
|
|
|
void setSwitchState(int32_t switchCode, int32_t state) {
|
|
mSwitchStates.replaceValueFor(switchCode, state);
|
|
}
|
|
|
|
void addSupportedKeyCode(int32_t keyCode) {
|
|
mSupportedKeyCodes.add(keyCode);
|
|
}
|
|
|
|
private:
|
|
virtual uint32_t getSources() {
|
|
return mSources;
|
|
}
|
|
|
|
virtual void populateDeviceInfo(InputDeviceInfo* deviceInfo) {
|
|
InputMapper::populateDeviceInfo(deviceInfo);
|
|
|
|
if (mKeyboardType != AINPUT_KEYBOARD_TYPE_NONE) {
|
|
deviceInfo->setKeyboardType(mKeyboardType);
|
|
}
|
|
}
|
|
|
|
virtual void configure() {
|
|
mConfigureWasCalled = true;
|
|
}
|
|
|
|
virtual void reset() {
|
|
mResetWasCalled = true;
|
|
}
|
|
|
|
virtual void process(const RawEvent* rawEvent) {
|
|
mLastEvent = *rawEvent;
|
|
mProcessWasCalled = true;
|
|
}
|
|
|
|
virtual int32_t getKeyCodeState(uint32_t sourceMask, int32_t keyCode) {
|
|
ssize_t index = mKeyCodeStates.indexOfKey(keyCode);
|
|
return index >= 0 ? mKeyCodeStates.valueAt(index) : AKEY_STATE_UNKNOWN;
|
|
}
|
|
|
|
virtual int32_t getScanCodeState(uint32_t sourceMask, int32_t scanCode) {
|
|
ssize_t index = mScanCodeStates.indexOfKey(scanCode);
|
|
return index >= 0 ? mScanCodeStates.valueAt(index) : AKEY_STATE_UNKNOWN;
|
|
}
|
|
|
|
virtual int32_t getSwitchState(uint32_t sourceMask, int32_t switchCode) {
|
|
ssize_t index = mSwitchStates.indexOfKey(switchCode);
|
|
return index >= 0 ? mSwitchStates.valueAt(index) : AKEY_STATE_UNKNOWN;
|
|
}
|
|
|
|
virtual bool markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes,
|
|
const int32_t* keyCodes, uint8_t* outFlags) {
|
|
bool result = false;
|
|
for (size_t i = 0; i < numCodes; i++) {
|
|
for (size_t j = 0; j < mSupportedKeyCodes.size(); j++) {
|
|
if (keyCodes[i] == mSupportedKeyCodes[j]) {
|
|
outFlags[i] = 1;
|
|
result = true;
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
virtual int32_t getMetaState() {
|
|
return mMetaState;
|
|
}
|
|
};
|
|
|
|
|
|
// --- InstrumentedInputReader ---
|
|
|
|
class InstrumentedInputReader : public InputReader {
|
|
InputDevice* mNextDevice;
|
|
|
|
public:
|
|
InstrumentedInputReader(const sp<EventHubInterface>& eventHub,
|
|
const sp<InputReaderPolicyInterface>& policy,
|
|
const sp<InputDispatcherInterface>& dispatcher) :
|
|
InputReader(eventHub, policy, dispatcher) {
|
|
}
|
|
|
|
virtual ~InstrumentedInputReader() {
|
|
if (mNextDevice) {
|
|
delete mNextDevice;
|
|
}
|
|
}
|
|
|
|
void setNextDevice(InputDevice* device) {
|
|
mNextDevice = device;
|
|
}
|
|
|
|
protected:
|
|
virtual InputDevice* createDevice(int32_t deviceId, const String8& name, uint32_t classes) {
|
|
if (mNextDevice) {
|
|
InputDevice* device = mNextDevice;
|
|
mNextDevice = NULL;
|
|
return device;
|
|
}
|
|
return InputReader::createDevice(deviceId, name, classes);
|
|
}
|
|
|
|
friend class InputReaderTest;
|
|
};
|
|
|
|
|
|
// --- InputReaderTest ---
|
|
|
|
class InputReaderTest : public testing::Test {
|
|
protected:
|
|
sp<FakeInputDispatcher> mFakeDispatcher;
|
|
sp<FakeInputReaderPolicy> mFakePolicy;
|
|
sp<FakeEventHub> mFakeEventHub;
|
|
sp<InstrumentedInputReader> mReader;
|
|
|
|
virtual void SetUp() {
|
|
mFakeEventHub = new FakeEventHub();
|
|
mFakePolicy = new FakeInputReaderPolicy();
|
|
mFakeDispatcher = new FakeInputDispatcher();
|
|
|
|
mReader = new InstrumentedInputReader(mFakeEventHub, mFakePolicy, mFakeDispatcher);
|
|
}
|
|
|
|
virtual void TearDown() {
|
|
mReader.clear();
|
|
|
|
mFakeDispatcher.clear();
|
|
mFakePolicy.clear();
|
|
mFakeEventHub.clear();
|
|
}
|
|
|
|
void addDevice(int32_t deviceId, const String8& name, uint32_t classes) {
|
|
mFakeEventHub->addDevice(deviceId, name, classes);
|
|
mFakeEventHub->finishDeviceScan();
|
|
mReader->loopOnce();
|
|
mReader->loopOnce();
|
|
mFakeEventHub->assertQueueIsEmpty();
|
|
}
|
|
|
|
FakeInputMapper* addDeviceWithFakeInputMapper(int32_t deviceId,
|
|
const String8& name, uint32_t classes, uint32_t sources) {
|
|
InputDevice* device = new InputDevice(mReader.get(), deviceId, name);
|
|
FakeInputMapper* mapper = new FakeInputMapper(device, sources);
|
|
device->addMapper(mapper);
|
|
mReader->setNextDevice(device);
|
|
addDevice(deviceId, name, classes);
|
|
return mapper;
|
|
}
|
|
};
|
|
|
|
TEST_F(InputReaderTest, GetInputConfiguration_WhenNoDevices_ReturnsDefaults) {
|
|
InputConfiguration config;
|
|
mReader->getInputConfiguration(&config);
|
|
|
|
ASSERT_EQ(InputConfiguration::KEYBOARD_NOKEYS, config.keyboard);
|
|
ASSERT_EQ(InputConfiguration::NAVIGATION_NONAV, config.navigation);
|
|
ASSERT_EQ(InputConfiguration::TOUCHSCREEN_NOTOUCH, config.touchScreen);
|
|
}
|
|
|
|
TEST_F(InputReaderTest, GetInputConfiguration_WhenAlphabeticKeyboardPresent_ReturnsQwertyKeyboard) {
|
|
ASSERT_NO_FATAL_FAILURE(addDevice(0, String8("keyboard"),
|
|
INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_ALPHAKEY));
|
|
|
|
InputConfiguration config;
|
|
mReader->getInputConfiguration(&config);
|
|
|
|
ASSERT_EQ(InputConfiguration::KEYBOARD_QWERTY, config.keyboard);
|
|
ASSERT_EQ(InputConfiguration::NAVIGATION_NONAV, config.navigation);
|
|
ASSERT_EQ(InputConfiguration::TOUCHSCREEN_NOTOUCH, config.touchScreen);
|
|
}
|
|
|
|
TEST_F(InputReaderTest, GetInputConfiguration_WhenTouchScreenPresent_ReturnsFingerTouchScreen) {
|
|
ASSERT_NO_FATAL_FAILURE(addDevice(0, String8("touchscreen"),
|
|
INPUT_DEVICE_CLASS_TOUCHSCREEN));
|
|
|
|
InputConfiguration config;
|
|
mReader->getInputConfiguration(&config);
|
|
|
|
ASSERT_EQ(InputConfiguration::KEYBOARD_NOKEYS, config.keyboard);
|
|
ASSERT_EQ(InputConfiguration::NAVIGATION_NONAV, config.navigation);
|
|
ASSERT_EQ(InputConfiguration::TOUCHSCREEN_FINGER, config.touchScreen);
|
|
}
|
|
|
|
TEST_F(InputReaderTest, GetInputConfiguration_WhenTrackballPresent_ReturnsTrackballNavigation) {
|
|
ASSERT_NO_FATAL_FAILURE(addDevice(0, String8("trackball"),
|
|
INPUT_DEVICE_CLASS_TRACKBALL));
|
|
|
|
InputConfiguration config;
|
|
mReader->getInputConfiguration(&config);
|
|
|
|
ASSERT_EQ(InputConfiguration::KEYBOARD_NOKEYS, config.keyboard);
|
|
ASSERT_EQ(InputConfiguration::NAVIGATION_TRACKBALL, config.navigation);
|
|
ASSERT_EQ(InputConfiguration::TOUCHSCREEN_NOTOUCH, config.touchScreen);
|
|
}
|
|
|
|
TEST_F(InputReaderTest, GetInputConfiguration_WhenDPadPresent_ReturnsDPadNavigation) {
|
|
ASSERT_NO_FATAL_FAILURE(addDevice(0, String8("dpad"),
|
|
INPUT_DEVICE_CLASS_DPAD));
|
|
|
|
InputConfiguration config;
|
|
mReader->getInputConfiguration(&config);
|
|
|
|
ASSERT_EQ(InputConfiguration::KEYBOARD_NOKEYS, config.keyboard);
|
|
ASSERT_EQ(InputConfiguration::NAVIGATION_DPAD, config.navigation);
|
|
ASSERT_EQ(InputConfiguration::TOUCHSCREEN_NOTOUCH, config.touchScreen);
|
|
}
|
|
|
|
TEST_F(InputReaderTest, GetInputDeviceInfo_WhenDeviceIdIsValid) {
|
|
ASSERT_NO_FATAL_FAILURE(addDevice(1, String8("keyboard"),
|
|
INPUT_DEVICE_CLASS_KEYBOARD));
|
|
|
|
InputDeviceInfo info;
|
|
status_t result = mReader->getInputDeviceInfo(1, &info);
|
|
|
|
ASSERT_EQ(OK, result);
|
|
ASSERT_EQ(1, info.getId());
|
|
ASSERT_STREQ("keyboard", info.getName().string());
|
|
ASSERT_EQ(AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC, info.getKeyboardType());
|
|
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, info.getSources());
|
|
ASSERT_EQ(size_t(0), info.getMotionRanges().size());
|
|
}
|
|
|
|
TEST_F(InputReaderTest, GetInputDeviceInfo_WhenDeviceIdIsInvalid) {
|
|
InputDeviceInfo info;
|
|
status_t result = mReader->getInputDeviceInfo(-1, &info);
|
|
|
|
ASSERT_EQ(NAME_NOT_FOUND, result);
|
|
}
|
|
|
|
TEST_F(InputReaderTest, GetInputDeviceInfo_WhenDeviceIdIsIgnored) {
|
|
addDevice(1, String8("ignored"), 0); // no classes so device will be ignored
|
|
|
|
InputDeviceInfo info;
|
|
status_t result = mReader->getInputDeviceInfo(1, &info);
|
|
|
|
ASSERT_EQ(NAME_NOT_FOUND, result);
|
|
}
|
|
|
|
TEST_F(InputReaderTest, GetInputDeviceIds) {
|
|
ASSERT_NO_FATAL_FAILURE(addDevice(1, String8("keyboard"),
|
|
INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_ALPHAKEY));
|
|
ASSERT_NO_FATAL_FAILURE(addDevice(2, String8("trackball"),
|
|
INPUT_DEVICE_CLASS_TRACKBALL));
|
|
|
|
Vector<int32_t> ids;
|
|
mReader->getInputDeviceIds(ids);
|
|
|
|
ASSERT_EQ(size_t(2), ids.size());
|
|
ASSERT_EQ(1, ids[0]);
|
|
ASSERT_EQ(2, ids[1]);
|
|
}
|
|
|
|
TEST_F(InputReaderTest, GetKeyCodeState_ForwardsRequestsToMappers) {
|
|
FakeInputMapper* mapper = NULL;
|
|
ASSERT_NO_FATAL_FAILURE(mapper = addDeviceWithFakeInputMapper(1, String8("fake"),
|
|
INPUT_DEVICE_CLASS_KEYBOARD, AINPUT_SOURCE_KEYBOARD));
|
|
mapper->setKeyCodeState(AKEYCODE_A, AKEY_STATE_DOWN);
|
|
|
|
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getKeyCodeState(0,
|
|
AINPUT_SOURCE_ANY, AKEYCODE_A))
|
|
<< "Should return unknown when the device id is >= 0 but unknown.";
|
|
|
|
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getKeyCodeState(1,
|
|
AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
|
|
<< "Should return unknown when the device id is valid but the sources are not supported by the device.";
|
|
|
|
ASSERT_EQ(AKEY_STATE_DOWN, mReader->getKeyCodeState(1,
|
|
AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
|
|
<< "Should return value provided by mapper when device id is valid and the device supports some of the sources.";
|
|
|
|
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getKeyCodeState(-1,
|
|
AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
|
|
<< "Should return unknown when the device id is < 0 but the sources are not supported by any device.";
|
|
|
|
ASSERT_EQ(AKEY_STATE_DOWN, mReader->getKeyCodeState(-1,
|
|
AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
|
|
<< "Should return value provided by mapper when device id is < 0 and one of the devices supports some of the sources.";
|
|
}
|
|
|
|
TEST_F(InputReaderTest, GetScanCodeState_ForwardsRequestsToMappers) {
|
|
FakeInputMapper* mapper = NULL;
|
|
ASSERT_NO_FATAL_FAILURE(mapper = addDeviceWithFakeInputMapper(1, String8("fake"),
|
|
INPUT_DEVICE_CLASS_KEYBOARD, AINPUT_SOURCE_KEYBOARD));
|
|
mapper->setScanCodeState(KEY_A, AKEY_STATE_DOWN);
|
|
|
|
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getScanCodeState(0,
|
|
AINPUT_SOURCE_ANY, KEY_A))
|
|
<< "Should return unknown when the device id is >= 0 but unknown.";
|
|
|
|
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getScanCodeState(1,
|
|
AINPUT_SOURCE_TRACKBALL, KEY_A))
|
|
<< "Should return unknown when the device id is valid but the sources are not supported by the device.";
|
|
|
|
ASSERT_EQ(AKEY_STATE_DOWN, mReader->getScanCodeState(1,
|
|
AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, KEY_A))
|
|
<< "Should return value provided by mapper when device id is valid and the device supports some of the sources.";
|
|
|
|
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getScanCodeState(-1,
|
|
AINPUT_SOURCE_TRACKBALL, KEY_A))
|
|
<< "Should return unknown when the device id is < 0 but the sources are not supported by any device.";
|
|
|
|
ASSERT_EQ(AKEY_STATE_DOWN, mReader->getScanCodeState(-1,
|
|
AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, KEY_A))
|
|
<< "Should return value provided by mapper when device id is < 0 and one of the devices supports some of the sources.";
|
|
}
|
|
|
|
TEST_F(InputReaderTest, GetSwitchState_ForwardsRequestsToMappers) {
|
|
FakeInputMapper* mapper = NULL;
|
|
ASSERT_NO_FATAL_FAILURE(mapper = addDeviceWithFakeInputMapper(1, String8("fake"),
|
|
INPUT_DEVICE_CLASS_KEYBOARD, AINPUT_SOURCE_KEYBOARD));
|
|
mapper->setSwitchState(SW_LID, AKEY_STATE_DOWN);
|
|
|
|
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getSwitchState(0,
|
|
AINPUT_SOURCE_ANY, SW_LID))
|
|
<< "Should return unknown when the device id is >= 0 but unknown.";
|
|
|
|
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getSwitchState(1,
|
|
AINPUT_SOURCE_TRACKBALL, SW_LID))
|
|
<< "Should return unknown when the device id is valid but the sources are not supported by the device.";
|
|
|
|
ASSERT_EQ(AKEY_STATE_DOWN, mReader->getSwitchState(1,
|
|
AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, SW_LID))
|
|
<< "Should return value provided by mapper when device id is valid and the device supports some of the sources.";
|
|
|
|
ASSERT_EQ(AKEY_STATE_UNKNOWN, mReader->getSwitchState(-1,
|
|
AINPUT_SOURCE_TRACKBALL, SW_LID))
|
|
<< "Should return unknown when the device id is < 0 but the sources are not supported by any device.";
|
|
|
|
ASSERT_EQ(AKEY_STATE_DOWN, mReader->getSwitchState(-1,
|
|
AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, SW_LID))
|
|
<< "Should return value provided by mapper when device id is < 0 and one of the devices supports some of the sources.";
|
|
}
|
|
|
|
TEST_F(InputReaderTest, MarkSupportedKeyCodes_ForwardsRequestsToMappers) {
|
|
FakeInputMapper* mapper = NULL;
|
|
ASSERT_NO_FATAL_FAILURE(mapper = addDeviceWithFakeInputMapper(1, String8("fake"),
|
|
INPUT_DEVICE_CLASS_KEYBOARD, AINPUT_SOURCE_KEYBOARD));
|
|
mapper->addSupportedKeyCode(AKEYCODE_A);
|
|
mapper->addSupportedKeyCode(AKEYCODE_B);
|
|
|
|
const int32_t keyCodes[4] = { AKEYCODE_A, AKEYCODE_B, AKEYCODE_1, AKEYCODE_2 };
|
|
uint8_t flags[4] = { 0, 0, 0, 1 };
|
|
|
|
ASSERT_FALSE(mReader->hasKeys(0, AINPUT_SOURCE_ANY, 4, keyCodes, flags))
|
|
<< "Should return false when device id is >= 0 but unknown.";
|
|
ASSERT_TRUE(!flags[0] && !flags[1] && !flags[2] && !flags[3]);
|
|
|
|
flags[3] = 1;
|
|
ASSERT_FALSE(mReader->hasKeys(1, AINPUT_SOURCE_TRACKBALL, 4, keyCodes, flags))
|
|
<< "Should return false when device id is valid but the sources are not supported by the device.";
|
|
ASSERT_TRUE(!flags[0] && !flags[1] && !flags[2] && !flags[3]);
|
|
|
|
flags[3] = 1;
|
|
ASSERT_TRUE(mReader->hasKeys(1, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, 4, keyCodes, flags))
|
|
<< "Should return value provided by mapper when device id is valid and the device supports some of the sources.";
|
|
ASSERT_TRUE(flags[0] && flags[1] && !flags[2] && !flags[3]);
|
|
|
|
flags[3] = 1;
|
|
ASSERT_FALSE(mReader->hasKeys(-1, AINPUT_SOURCE_TRACKBALL, 4, keyCodes, flags))
|
|
<< "Should return false when the device id is < 0 but the sources are not supported by any device.";
|
|
ASSERT_TRUE(!flags[0] && !flags[1] && !flags[2] && !flags[3]);
|
|
|
|
flags[3] = 1;
|
|
ASSERT_TRUE(mReader->hasKeys(-1, AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TRACKBALL, 4, keyCodes, flags))
|
|
<< "Should return value provided by mapper when device id is < 0 and one of the devices supports some of the sources.";
|
|
ASSERT_TRUE(flags[0] && flags[1] && !flags[2] && !flags[3]);
|
|
}
|
|
|
|
TEST_F(InputReaderTest, LoopOnce_WhenDeviceScanFinished_SendsConfigurationChanged) {
|
|
addDevice(1, String8("ignored"), INPUT_DEVICE_CLASS_KEYBOARD);
|
|
|
|
FakeInputDispatcher::NotifyConfigurationChangedArgs args;
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyConfigurationChangedWasCalled(&args));
|
|
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
|
|
}
|
|
|
|
TEST_F(InputReaderTest, LoopOnce_ForwardsRawEventsToMappers) {
|
|
FakeInputMapper* mapper = NULL;
|
|
ASSERT_NO_FATAL_FAILURE(mapper = addDeviceWithFakeInputMapper(1, String8("fake"),
|
|
INPUT_DEVICE_CLASS_KEYBOARD, AINPUT_SOURCE_KEYBOARD));
|
|
|
|
mFakeEventHub->enqueueEvent(0, 1, EV_KEY, KEY_A, AKEYCODE_A, 1, POLICY_FLAG_WAKE);
|
|
mReader->loopOnce();
|
|
ASSERT_NO_FATAL_FAILURE(mFakeEventHub->assertQueueIsEmpty());
|
|
|
|
RawEvent event;
|
|
ASSERT_NO_FATAL_FAILURE(mapper->assertProcessWasCalled(&event));
|
|
ASSERT_EQ(0, event.when);
|
|
ASSERT_EQ(1, event.deviceId);
|
|
ASSERT_EQ(EV_KEY, event.type);
|
|
ASSERT_EQ(KEY_A, event.scanCode);
|
|
ASSERT_EQ(AKEYCODE_A, event.keyCode);
|
|
ASSERT_EQ(1, event.value);
|
|
ASSERT_EQ(POLICY_FLAG_WAKE, event.flags);
|
|
}
|
|
|
|
|
|
// --- InputDeviceTest ---
|
|
|
|
class InputDeviceTest : public testing::Test {
|
|
protected:
|
|
static const char* DEVICE_NAME;
|
|
static const int32_t DEVICE_ID;
|
|
|
|
sp<FakeEventHub> mFakeEventHub;
|
|
sp<FakeInputReaderPolicy> mFakePolicy;
|
|
sp<FakeInputDispatcher> mFakeDispatcher;
|
|
FakeInputReaderContext* mFakeContext;
|
|
|
|
InputDevice* mDevice;
|
|
|
|
virtual void SetUp() {
|
|
mFakeEventHub = new FakeEventHub();
|
|
mFakePolicy = new FakeInputReaderPolicy();
|
|
mFakeDispatcher = new FakeInputDispatcher();
|
|
mFakeContext = new FakeInputReaderContext(mFakeEventHub, mFakePolicy, mFakeDispatcher);
|
|
|
|
mDevice = new InputDevice(mFakeContext, DEVICE_ID, String8(DEVICE_NAME));
|
|
}
|
|
|
|
virtual void TearDown() {
|
|
delete mDevice;
|
|
|
|
delete mFakeContext;
|
|
mFakeDispatcher.clear();
|
|
mFakePolicy.clear();
|
|
mFakeEventHub.clear();
|
|
}
|
|
};
|
|
|
|
const char* InputDeviceTest::DEVICE_NAME = "device";
|
|
const int32_t InputDeviceTest::DEVICE_ID = 1;
|
|
|
|
TEST_F(InputDeviceTest, ImmutableProperties) {
|
|
ASSERT_EQ(DEVICE_ID, mDevice->getId());
|
|
ASSERT_STREQ(DEVICE_NAME, mDevice->getName());
|
|
}
|
|
|
|
TEST_F(InputDeviceTest, WhenNoMappersAreRegistered_DeviceIsIgnored) {
|
|
// Configuration.
|
|
mDevice->configure();
|
|
|
|
// Metadata.
|
|
ASSERT_TRUE(mDevice->isIgnored());
|
|
ASSERT_EQ(AINPUT_SOURCE_UNKNOWN, mDevice->getSources());
|
|
|
|
InputDeviceInfo info;
|
|
mDevice->getDeviceInfo(&info);
|
|
ASSERT_EQ(DEVICE_ID, info.getId());
|
|
ASSERT_STREQ(DEVICE_NAME, info.getName().string());
|
|
ASSERT_EQ(AINPUT_KEYBOARD_TYPE_NONE, info.getKeyboardType());
|
|
ASSERT_EQ(AINPUT_SOURCE_UNKNOWN, info.getSources());
|
|
|
|
// State queries.
|
|
ASSERT_EQ(0, mDevice->getMetaState());
|
|
|
|
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getKeyCodeState(AINPUT_SOURCE_KEYBOARD, 0))
|
|
<< "Ignored device should return unknown key code state.";
|
|
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getScanCodeState(AINPUT_SOURCE_KEYBOARD, 0))
|
|
<< "Ignored device should return unknown scan code state.";
|
|
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getSwitchState(AINPUT_SOURCE_KEYBOARD, 0))
|
|
<< "Ignored device should return unknown switch state.";
|
|
|
|
const int32_t keyCodes[2] = { AKEYCODE_A, AKEYCODE_B };
|
|
uint8_t flags[2] = { 0, 1 };
|
|
ASSERT_FALSE(mDevice->markSupportedKeyCodes(AINPUT_SOURCE_KEYBOARD, 2, keyCodes, flags))
|
|
<< "Ignored device should never mark any key codes.";
|
|
ASSERT_EQ(0, flags[0]) << "Flag for unsupported key should be unchanged.";
|
|
ASSERT_EQ(1, flags[1]) << "Flag for unsupported key should be unchanged.";
|
|
|
|
// Reset.
|
|
mDevice->reset();
|
|
}
|
|
|
|
TEST_F(InputDeviceTest, WhenMappersAreRegistered_DeviceIsNotIgnoredAndForwardsRequestsToMappers) {
|
|
// Configuration.
|
|
InputDeviceCalibration calibration;
|
|
calibration.addProperty(String8("key"), String8("value"));
|
|
mFakePolicy->addInputDeviceCalibration(String8(DEVICE_NAME), calibration);
|
|
|
|
FakeInputMapper* mapper1 = new FakeInputMapper(mDevice, AINPUT_SOURCE_KEYBOARD);
|
|
mapper1->setKeyboardType(AINPUT_KEYBOARD_TYPE_ALPHABETIC);
|
|
mapper1->setMetaState(AMETA_ALT_ON);
|
|
mapper1->addSupportedKeyCode(AKEYCODE_A);
|
|
mapper1->addSupportedKeyCode(AKEYCODE_B);
|
|
mapper1->setKeyCodeState(AKEYCODE_A, AKEY_STATE_DOWN);
|
|
mapper1->setKeyCodeState(AKEYCODE_B, AKEY_STATE_UP);
|
|
mapper1->setScanCodeState(2, AKEY_STATE_DOWN);
|
|
mapper1->setScanCodeState(3, AKEY_STATE_UP);
|
|
mapper1->setSwitchState(4, AKEY_STATE_DOWN);
|
|
mDevice->addMapper(mapper1);
|
|
|
|
FakeInputMapper* mapper2 = new FakeInputMapper(mDevice, AINPUT_SOURCE_TOUCHSCREEN);
|
|
mapper2->setMetaState(AMETA_SHIFT_ON);
|
|
mDevice->addMapper(mapper2);
|
|
|
|
mDevice->configure();
|
|
|
|
String8 propertyValue;
|
|
ASSERT_TRUE(mDevice->getCalibration().tryGetProperty(String8("key"), propertyValue))
|
|
<< "Device should have read calibration during configuration phase.";
|
|
ASSERT_STREQ("value", propertyValue.string());
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mapper1->assertConfigureWasCalled());
|
|
ASSERT_NO_FATAL_FAILURE(mapper2->assertConfigureWasCalled());
|
|
|
|
// Metadata.
|
|
ASSERT_FALSE(mDevice->isIgnored());
|
|
ASSERT_EQ(uint32_t(AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TOUCHSCREEN), mDevice->getSources());
|
|
|
|
InputDeviceInfo info;
|
|
mDevice->getDeviceInfo(&info);
|
|
ASSERT_EQ(DEVICE_ID, info.getId());
|
|
ASSERT_STREQ(DEVICE_NAME, info.getName().string());
|
|
ASSERT_EQ(AINPUT_KEYBOARD_TYPE_ALPHABETIC, info.getKeyboardType());
|
|
ASSERT_EQ(uint32_t(AINPUT_SOURCE_KEYBOARD | AINPUT_SOURCE_TOUCHSCREEN), info.getSources());
|
|
|
|
// State queries.
|
|
ASSERT_EQ(AMETA_ALT_ON | AMETA_SHIFT_ON, mDevice->getMetaState())
|
|
<< "Should query mappers and combine meta states.";
|
|
|
|
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getKeyCodeState(AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
|
|
<< "Should return unknown key code state when source not supported.";
|
|
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getScanCodeState(AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
|
|
<< "Should return unknown scan code state when source not supported.";
|
|
ASSERT_EQ(AKEY_STATE_UNKNOWN, mDevice->getSwitchState(AINPUT_SOURCE_TRACKBALL, AKEYCODE_A))
|
|
<< "Should return unknown switch state when source not supported.";
|
|
|
|
ASSERT_EQ(AKEY_STATE_DOWN, mDevice->getKeyCodeState(AINPUT_SOURCE_KEYBOARD, AKEYCODE_A))
|
|
<< "Should query mapper when source is supported.";
|
|
ASSERT_EQ(AKEY_STATE_UP, mDevice->getScanCodeState(AINPUT_SOURCE_KEYBOARD, 3))
|
|
<< "Should query mapper when source is supported.";
|
|
ASSERT_EQ(AKEY_STATE_DOWN, mDevice->getSwitchState(AINPUT_SOURCE_KEYBOARD, 4))
|
|
<< "Should query mapper when source is supported.";
|
|
|
|
const int32_t keyCodes[4] = { AKEYCODE_A, AKEYCODE_B, AKEYCODE_1, AKEYCODE_2 };
|
|
uint8_t flags[4] = { 0, 0, 0, 1 };
|
|
ASSERT_FALSE(mDevice->markSupportedKeyCodes(AINPUT_SOURCE_TRACKBALL, 4, keyCodes, flags))
|
|
<< "Should do nothing when source is unsupported.";
|
|
ASSERT_EQ(0, flags[0]) << "Flag should be unchanged when source is unsupported.";
|
|
ASSERT_EQ(0, flags[1]) << "Flag should be unchanged when source is unsupported.";
|
|
ASSERT_EQ(0, flags[2]) << "Flag should be unchanged when source is unsupported.";
|
|
ASSERT_EQ(1, flags[3]) << "Flag should be unchanged when source is unsupported.";
|
|
|
|
ASSERT_TRUE(mDevice->markSupportedKeyCodes(AINPUT_SOURCE_KEYBOARD, 4, keyCodes, flags))
|
|
<< "Should query mapper when source is supported.";
|
|
ASSERT_EQ(1, flags[0]) << "Flag for supported key should be set.";
|
|
ASSERT_EQ(1, flags[1]) << "Flag for supported key should be set.";
|
|
ASSERT_EQ(0, flags[2]) << "Flag for unsupported key should be unchanged.";
|
|
ASSERT_EQ(1, flags[3]) << "Flag for unsupported key should be unchanged.";
|
|
|
|
// Event handling.
|
|
RawEvent event;
|
|
mDevice->process(&event);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mapper1->assertProcessWasCalled());
|
|
ASSERT_NO_FATAL_FAILURE(mapper2->assertProcessWasCalled());
|
|
|
|
// Reset.
|
|
mDevice->reset();
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mapper1->assertResetWasCalled());
|
|
ASSERT_NO_FATAL_FAILURE(mapper2->assertResetWasCalled());
|
|
}
|
|
|
|
|
|
// --- InputMapperTest ---
|
|
|
|
class InputMapperTest : public testing::Test {
|
|
protected:
|
|
static const char* DEVICE_NAME;
|
|
static const int32_t DEVICE_ID;
|
|
|
|
sp<FakeEventHub> mFakeEventHub;
|
|
sp<FakeInputReaderPolicy> mFakePolicy;
|
|
sp<FakeInputDispatcher> mFakeDispatcher;
|
|
FakeInputReaderContext* mFakeContext;
|
|
InputDevice* mDevice;
|
|
|
|
virtual void SetUp() {
|
|
mFakeEventHub = new FakeEventHub();
|
|
mFakePolicy = new FakeInputReaderPolicy();
|
|
mFakeDispatcher = new FakeInputDispatcher();
|
|
mFakeContext = new FakeInputReaderContext(mFakeEventHub, mFakePolicy, mFakeDispatcher);
|
|
mDevice = new InputDevice(mFakeContext, DEVICE_ID, String8(DEVICE_NAME));
|
|
|
|
mFakeEventHub->addDevice(DEVICE_ID, String8(DEVICE_NAME), 0);
|
|
}
|
|
|
|
virtual void TearDown() {
|
|
delete mDevice;
|
|
delete mFakeContext;
|
|
mFakeDispatcher.clear();
|
|
mFakePolicy.clear();
|
|
mFakeEventHub.clear();
|
|
}
|
|
|
|
void prepareCalibration(const char* key, const char* value) {
|
|
mFakePolicy->addInputDeviceCalibrationProperty(String8(DEVICE_NAME),
|
|
String8(key), String8(value));
|
|
}
|
|
|
|
void addMapperAndConfigure(InputMapper* mapper) {
|
|
mDevice->addMapper(mapper);
|
|
mDevice->configure();
|
|
}
|
|
|
|
static void process(InputMapper* mapper, nsecs_t when, int32_t deviceId, int32_t type,
|
|
int32_t scanCode, int32_t keyCode, int32_t value, uint32_t flags) {
|
|
RawEvent event;
|
|
event.when = when;
|
|
event.deviceId = deviceId;
|
|
event.type = type;
|
|
event.scanCode = scanCode;
|
|
event.keyCode = keyCode;
|
|
event.value = value;
|
|
event.flags = flags;
|
|
mapper->process(&event);
|
|
}
|
|
|
|
static void assertMotionRange(const InputDeviceInfo& info,
|
|
int32_t rangeType, float min, float max, float flat, float fuzz) {
|
|
const InputDeviceInfo::MotionRange* range = info.getMotionRange(rangeType);
|
|
ASSERT_TRUE(range != NULL) << "Range: " << rangeType;
|
|
ASSERT_NEAR(min, range->min, EPSILON) << "Range: " << rangeType;
|
|
ASSERT_NEAR(max, range->max, EPSILON) << "Range: " << rangeType;
|
|
ASSERT_NEAR(flat, range->flat, EPSILON) << "Range: " << rangeType;
|
|
ASSERT_NEAR(fuzz, range->fuzz, EPSILON) << "Range: " << rangeType;
|
|
}
|
|
|
|
static void assertPointerCoords(const PointerCoords& coords,
|
|
float x, float y, float pressure, float size,
|
|
float touchMajor, float touchMinor, float toolMajor, float toolMinor,
|
|
float orientation) {
|
|
ASSERT_NEAR(x, coords.x, 1);
|
|
ASSERT_NEAR(y, coords.y, 1);
|
|
ASSERT_NEAR(pressure, coords.pressure, EPSILON);
|
|
ASSERT_NEAR(size, coords.size, EPSILON);
|
|
ASSERT_NEAR(touchMajor, coords.touchMajor, 1);
|
|
ASSERT_NEAR(touchMinor, coords.touchMinor, 1);
|
|
ASSERT_NEAR(toolMajor, coords.toolMajor, 1);
|
|
ASSERT_NEAR(toolMinor, coords.toolMinor, 1);
|
|
ASSERT_NEAR(orientation, coords.orientation, EPSILON);
|
|
}
|
|
};
|
|
|
|
const char* InputMapperTest::DEVICE_NAME = "device";
|
|
const int32_t InputMapperTest::DEVICE_ID = 1;
|
|
|
|
|
|
// --- SwitchInputMapperTest ---
|
|
|
|
class SwitchInputMapperTest : public InputMapperTest {
|
|
protected:
|
|
};
|
|
|
|
TEST_F(SwitchInputMapperTest, GetSources) {
|
|
SwitchInputMapper* mapper = new SwitchInputMapper(mDevice);
|
|
addMapperAndConfigure(mapper);
|
|
|
|
ASSERT_EQ(uint32_t(0), mapper->getSources());
|
|
}
|
|
|
|
TEST_F(SwitchInputMapperTest, GetSwitchState) {
|
|
SwitchInputMapper* mapper = new SwitchInputMapper(mDevice);
|
|
addMapperAndConfigure(mapper);
|
|
|
|
mFakeEventHub->setSwitchState(DEVICE_ID, SW_LID, 1);
|
|
ASSERT_EQ(1, mapper->getSwitchState(AINPUT_SOURCE_ANY, SW_LID));
|
|
|
|
mFakeEventHub->setSwitchState(DEVICE_ID, SW_LID, 0);
|
|
ASSERT_EQ(0, mapper->getSwitchState(AINPUT_SOURCE_ANY, SW_LID));
|
|
}
|
|
|
|
TEST_F(SwitchInputMapperTest, Process) {
|
|
SwitchInputMapper* mapper = new SwitchInputMapper(mDevice);
|
|
addMapperAndConfigure(mapper);
|
|
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SW, SW_LID, 0, 1, 0);
|
|
|
|
FakeInputDispatcher::NotifySwitchArgs args;
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifySwitchWasCalled(&args));
|
|
ASSERT_EQ(ARBITRARY_TIME, args.when);
|
|
ASSERT_EQ(SW_LID, args.switchCode);
|
|
ASSERT_EQ(1, args.switchValue);
|
|
ASSERT_EQ(uint32_t(0), args.policyFlags);
|
|
}
|
|
|
|
|
|
// --- KeyboardInputMapperTest ---
|
|
|
|
class KeyboardInputMapperTest : public InputMapperTest {
|
|
protected:
|
|
void testDPadKeyRotation(KeyboardInputMapper* mapper,
|
|
int32_t originalScanCode, int32_t originalKeyCode, int32_t rotatedKeyCode);
|
|
};
|
|
|
|
void KeyboardInputMapperTest::testDPadKeyRotation(KeyboardInputMapper* mapper,
|
|
int32_t originalScanCode, int32_t originalKeyCode, int32_t rotatedKeyCode) {
|
|
FakeInputDispatcher::NotifyKeyArgs args;
|
|
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, originalScanCode, originalKeyCode, 1, 0);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
|
|
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
|
|
ASSERT_EQ(originalScanCode, args.scanCode);
|
|
ASSERT_EQ(rotatedKeyCode, args.keyCode);
|
|
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, originalScanCode, originalKeyCode, 0, 0);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
|
|
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
|
|
ASSERT_EQ(originalScanCode, args.scanCode);
|
|
ASSERT_EQ(rotatedKeyCode, args.keyCode);
|
|
}
|
|
|
|
|
|
TEST_F(KeyboardInputMapperTest, GetSources) {
|
|
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice, -1,
|
|
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
|
|
addMapperAndConfigure(mapper);
|
|
|
|
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, mapper->getSources());
|
|
}
|
|
|
|
TEST_F(KeyboardInputMapperTest, Process_SimpleKeyPress) {
|
|
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice, -1,
|
|
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
|
|
addMapperAndConfigure(mapper);
|
|
|
|
// Key down.
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID,
|
|
EV_KEY, KEY_HOME, AKEYCODE_HOME, 1, POLICY_FLAG_WAKE);
|
|
FakeInputDispatcher::NotifyKeyArgs args;
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
|
|
ASSERT_EQ(DEVICE_ID, args.deviceId);
|
|
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
|
|
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
|
|
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
|
|
ASSERT_EQ(AKEYCODE_HOME, args.keyCode);
|
|
ASSERT_EQ(KEY_HOME, args.scanCode);
|
|
ASSERT_EQ(AMETA_NONE, args.metaState);
|
|
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags);
|
|
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
|
|
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
|
|
|
|
// Key up.
|
|
process(mapper, ARBITRARY_TIME + 1, DEVICE_ID,
|
|
EV_KEY, KEY_HOME, AKEYCODE_HOME, 0, POLICY_FLAG_WAKE);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
|
|
ASSERT_EQ(DEVICE_ID, args.deviceId);
|
|
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
|
|
ASSERT_EQ(ARBITRARY_TIME + 1, args.eventTime);
|
|
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
|
|
ASSERT_EQ(AKEYCODE_HOME, args.keyCode);
|
|
ASSERT_EQ(KEY_HOME, args.scanCode);
|
|
ASSERT_EQ(AMETA_NONE, args.metaState);
|
|
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags);
|
|
ASSERT_EQ(POLICY_FLAG_WAKE, args.policyFlags);
|
|
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
|
|
}
|
|
|
|
TEST_F(KeyboardInputMapperTest, Reset_WhenKeysAreNotDown_DoesNotSynthesizeKeyUp) {
|
|
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice, -1,
|
|
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
|
|
addMapperAndConfigure(mapper);
|
|
|
|
// Key down.
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID,
|
|
EV_KEY, KEY_HOME, AKEYCODE_HOME, 1, POLICY_FLAG_WAKE);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled());
|
|
|
|
// Key up.
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID,
|
|
EV_KEY, KEY_HOME, AKEYCODE_HOME, 0, POLICY_FLAG_WAKE);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled());
|
|
|
|
// Reset. Since no keys still down, should not synthesize any key ups.
|
|
mapper->reset();
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasNotCalled());
|
|
}
|
|
|
|
TEST_F(KeyboardInputMapperTest, Reset_WhenKeysAreDown_SynthesizesKeyUps) {
|
|
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice, -1,
|
|
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
|
|
addMapperAndConfigure(mapper);
|
|
|
|
// Metakey down.
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID,
|
|
EV_KEY, KEY_LEFTSHIFT, AKEYCODE_SHIFT_LEFT, 1, 0);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled());
|
|
|
|
// Key down.
|
|
process(mapper, ARBITRARY_TIME + 1, DEVICE_ID,
|
|
EV_KEY, KEY_A, AKEYCODE_A, 1, 0);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled());
|
|
|
|
// Reset. Since two keys are still down, should synthesize two key ups in reverse order.
|
|
mapper->reset();
|
|
|
|
FakeInputDispatcher::NotifyKeyArgs args;
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
|
|
ASSERT_EQ(DEVICE_ID, args.deviceId);
|
|
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
|
|
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
|
|
ASSERT_EQ(AKEYCODE_A, args.keyCode);
|
|
ASSERT_EQ(KEY_A, args.scanCode);
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
|
|
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags);
|
|
ASSERT_EQ(uint32_t(0), args.policyFlags);
|
|
ASSERT_EQ(ARBITRARY_TIME + 1, args.downTime);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
|
|
ASSERT_EQ(DEVICE_ID, args.deviceId);
|
|
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
|
|
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
|
|
ASSERT_EQ(AKEYCODE_SHIFT_LEFT, args.keyCode);
|
|
ASSERT_EQ(KEY_LEFTSHIFT, args.scanCode);
|
|
ASSERT_EQ(AMETA_NONE, args.metaState);
|
|
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM, args.flags);
|
|
ASSERT_EQ(uint32_t(0), args.policyFlags);
|
|
ASSERT_EQ(ARBITRARY_TIME + 1, args.downTime);
|
|
|
|
// And that's it.
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasNotCalled());
|
|
}
|
|
|
|
TEST_F(KeyboardInputMapperTest, Process_ShouldUpdateMetaState) {
|
|
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice, -1,
|
|
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
|
|
addMapperAndConfigure(mapper);
|
|
|
|
// Initial metastate.
|
|
ASSERT_EQ(AMETA_NONE, mapper->getMetaState());
|
|
|
|
// Metakey down.
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID,
|
|
EV_KEY, KEY_LEFTSHIFT, AKEYCODE_SHIFT_LEFT, 1, 0);
|
|
FakeInputDispatcher::NotifyKeyArgs args;
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, mapper->getMetaState());
|
|
ASSERT_NO_FATAL_FAILURE(mFakeContext->assertUpdateGlobalMetaStateWasCalled());
|
|
|
|
// Key down.
|
|
process(mapper, ARBITRARY_TIME + 1, DEVICE_ID,
|
|
EV_KEY, KEY_A, AKEYCODE_A, 1, 0);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, mapper->getMetaState());
|
|
|
|
// Key up.
|
|
process(mapper, ARBITRARY_TIME + 2, DEVICE_ID,
|
|
EV_KEY, KEY_A, AKEYCODE_A, 0, 0);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, mapper->getMetaState());
|
|
|
|
// Metakey up.
|
|
process(mapper, ARBITRARY_TIME + 3, DEVICE_ID,
|
|
EV_KEY, KEY_LEFTSHIFT, AKEYCODE_SHIFT_LEFT, 0, 0);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
|
|
ASSERT_EQ(AMETA_NONE, args.metaState);
|
|
ASSERT_EQ(AMETA_NONE, mapper->getMetaState());
|
|
ASSERT_NO_FATAL_FAILURE(mFakeContext->assertUpdateGlobalMetaStateWasCalled());
|
|
}
|
|
|
|
TEST_F(KeyboardInputMapperTest, Process_WhenNotAttachedToDisplay_ShouldNotRotateDPad) {
|
|
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice, -1,
|
|
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
|
|
addMapperAndConfigure(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
|
|
KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_UP));
|
|
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
|
|
KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_RIGHT));
|
|
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
|
|
KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_DOWN));
|
|
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
|
|
KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_LEFT));
|
|
}
|
|
|
|
TEST_F(KeyboardInputMapperTest, Process_WhenAttachedToDisplay_ShouldRotateDPad) {
|
|
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice, DISPLAY_ID,
|
|
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
|
|
addMapperAndConfigure(mapper);
|
|
|
|
mFakePolicy->setDisplayInfo(DISPLAY_ID,
|
|
DISPLAY_WIDTH, DISPLAY_HEIGHT,
|
|
InputReaderPolicyInterface::ROTATION_0);
|
|
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
|
|
KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_UP));
|
|
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
|
|
KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_RIGHT));
|
|
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
|
|
KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_DOWN));
|
|
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
|
|
KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_LEFT));
|
|
|
|
mFakePolicy->setDisplayInfo(DISPLAY_ID,
|
|
DISPLAY_WIDTH, DISPLAY_HEIGHT,
|
|
InputReaderPolicyInterface::ROTATION_90);
|
|
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
|
|
KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT));
|
|
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
|
|
KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP));
|
|
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
|
|
KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT));
|
|
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
|
|
KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN));
|
|
|
|
mFakePolicy->setDisplayInfo(DISPLAY_ID,
|
|
DISPLAY_WIDTH, DISPLAY_HEIGHT,
|
|
InputReaderPolicyInterface::ROTATION_180);
|
|
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
|
|
KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_DOWN));
|
|
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
|
|
KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_LEFT));
|
|
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
|
|
KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_UP));
|
|
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
|
|
KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_RIGHT));
|
|
|
|
mFakePolicy->setDisplayInfo(DISPLAY_ID,
|
|
DISPLAY_WIDTH, DISPLAY_HEIGHT,
|
|
InputReaderPolicyInterface::ROTATION_270);
|
|
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
|
|
KEY_UP, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_RIGHT));
|
|
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
|
|
KEY_RIGHT, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_DOWN));
|
|
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
|
|
KEY_DOWN, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_LEFT));
|
|
ASSERT_NO_FATAL_FAILURE(testDPadKeyRotation(mapper,
|
|
KEY_LEFT, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_UP));
|
|
|
|
// Special case: if orientation changes while key is down, we still emit the same keycode
|
|
// in the key up as we did in the key down.
|
|
FakeInputDispatcher::NotifyKeyArgs args;
|
|
|
|
mFakePolicy->setDisplayInfo(DISPLAY_ID,
|
|
DISPLAY_WIDTH, DISPLAY_HEIGHT,
|
|
InputReaderPolicyInterface::ROTATION_270);
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, KEY_UP, AKEYCODE_DPAD_UP, 1, 0);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
|
|
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
|
|
ASSERT_EQ(KEY_UP, args.scanCode);
|
|
ASSERT_EQ(AKEYCODE_DPAD_RIGHT, args.keyCode);
|
|
|
|
mFakePolicy->setDisplayInfo(DISPLAY_ID,
|
|
DISPLAY_WIDTH, DISPLAY_HEIGHT,
|
|
InputReaderPolicyInterface::ROTATION_180);
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, KEY_UP, AKEYCODE_DPAD_UP, 0, 0);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
|
|
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
|
|
ASSERT_EQ(KEY_UP, args.scanCode);
|
|
ASSERT_EQ(AKEYCODE_DPAD_RIGHT, args.keyCode);
|
|
}
|
|
|
|
TEST_F(KeyboardInputMapperTest, GetKeyCodeState) {
|
|
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice, -1,
|
|
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
|
|
addMapperAndConfigure(mapper);
|
|
|
|
mFakeEventHub->setKeyCodeState(DEVICE_ID, AKEYCODE_A, 1);
|
|
ASSERT_EQ(1, mapper->getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_A));
|
|
|
|
mFakeEventHub->setKeyCodeState(DEVICE_ID, AKEYCODE_A, 0);
|
|
ASSERT_EQ(0, mapper->getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_A));
|
|
}
|
|
|
|
TEST_F(KeyboardInputMapperTest, GetScanCodeState) {
|
|
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice, -1,
|
|
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
|
|
addMapperAndConfigure(mapper);
|
|
|
|
mFakeEventHub->setScanCodeState(DEVICE_ID, KEY_A, 1);
|
|
ASSERT_EQ(1, mapper->getScanCodeState(AINPUT_SOURCE_ANY, KEY_A));
|
|
|
|
mFakeEventHub->setScanCodeState(DEVICE_ID, KEY_A, 0);
|
|
ASSERT_EQ(0, mapper->getScanCodeState(AINPUT_SOURCE_ANY, KEY_A));
|
|
}
|
|
|
|
TEST_F(KeyboardInputMapperTest, MarkSupportedKeyCodes) {
|
|
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice, -1,
|
|
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
|
|
addMapperAndConfigure(mapper);
|
|
|
|
mFakeEventHub->addKey(DEVICE_ID, KEY_A, AKEYCODE_A, 0);
|
|
|
|
const int32_t keyCodes[2] = { AKEYCODE_A, AKEYCODE_B };
|
|
uint8_t flags[2] = { 0, 0 };
|
|
ASSERT_TRUE(mapper->markSupportedKeyCodes(AINPUT_SOURCE_ANY, 1, keyCodes, flags));
|
|
ASSERT_TRUE(flags[0]);
|
|
ASSERT_FALSE(flags[1]);
|
|
}
|
|
|
|
TEST_F(KeyboardInputMapperTest, Process_LockedKeysShouldToggleMetaStateAndLeds) {
|
|
mFakeEventHub->addLed(DEVICE_ID, LED_CAPSL, true /*initially on*/);
|
|
mFakeEventHub->addLed(DEVICE_ID, LED_NUML, false /*initially off*/);
|
|
mFakeEventHub->addLed(DEVICE_ID, LED_SCROLLL, false /*initially off*/);
|
|
|
|
KeyboardInputMapper* mapper = new KeyboardInputMapper(mDevice, -1,
|
|
AINPUT_SOURCE_KEYBOARD, AINPUT_KEYBOARD_TYPE_ALPHABETIC);
|
|
addMapperAndConfigure(mapper);
|
|
|
|
// Initialization should have turned all of the lights off.
|
|
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_CAPSL));
|
|
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_NUML));
|
|
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_SCROLLL));
|
|
|
|
// Toggle caps lock on.
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID,
|
|
EV_KEY, KEY_CAPSLOCK, AKEYCODE_CAPS_LOCK, 1, 0);
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID,
|
|
EV_KEY, KEY_CAPSLOCK, AKEYCODE_CAPS_LOCK, 0, 0);
|
|
ASSERT_TRUE(mFakeEventHub->getLedState(DEVICE_ID, LED_CAPSL));
|
|
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_NUML));
|
|
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_SCROLLL));
|
|
ASSERT_EQ(AMETA_CAPS_LOCK_ON, mapper->getMetaState());
|
|
|
|
// Toggle num lock on.
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID,
|
|
EV_KEY, KEY_NUMLOCK, AKEYCODE_NUM_LOCK, 1, 0);
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID,
|
|
EV_KEY, KEY_NUMLOCK, AKEYCODE_NUM_LOCK, 0, 0);
|
|
ASSERT_TRUE(mFakeEventHub->getLedState(DEVICE_ID, LED_CAPSL));
|
|
ASSERT_TRUE(mFakeEventHub->getLedState(DEVICE_ID, LED_NUML));
|
|
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_SCROLLL));
|
|
ASSERT_EQ(AMETA_CAPS_LOCK_ON | AMETA_NUM_LOCK_ON, mapper->getMetaState());
|
|
|
|
// Toggle caps lock off.
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID,
|
|
EV_KEY, KEY_CAPSLOCK, AKEYCODE_CAPS_LOCK, 1, 0);
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID,
|
|
EV_KEY, KEY_CAPSLOCK, AKEYCODE_CAPS_LOCK, 1, 0);
|
|
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_CAPSL));
|
|
ASSERT_TRUE(mFakeEventHub->getLedState(DEVICE_ID, LED_NUML));
|
|
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_SCROLLL));
|
|
ASSERT_EQ(AMETA_NUM_LOCK_ON, mapper->getMetaState());
|
|
|
|
// Toggle scroll lock on.
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID,
|
|
EV_KEY, KEY_SCROLLLOCK, AKEYCODE_SCROLL_LOCK, 1, 0);
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID,
|
|
EV_KEY, KEY_SCROLLLOCK, AKEYCODE_SCROLL_LOCK, 0, 0);
|
|
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_CAPSL));
|
|
ASSERT_TRUE(mFakeEventHub->getLedState(DEVICE_ID, LED_NUML));
|
|
ASSERT_TRUE(mFakeEventHub->getLedState(DEVICE_ID, LED_SCROLLL));
|
|
ASSERT_EQ(AMETA_NUM_LOCK_ON | AMETA_SCROLL_LOCK_ON, mapper->getMetaState());
|
|
|
|
// Toggle num lock off.
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID,
|
|
EV_KEY, KEY_NUMLOCK, AKEYCODE_NUM_LOCK, 1, 0);
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID,
|
|
EV_KEY, KEY_NUMLOCK, AKEYCODE_NUM_LOCK, 0, 0);
|
|
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_CAPSL));
|
|
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_NUML));
|
|
ASSERT_TRUE(mFakeEventHub->getLedState(DEVICE_ID, LED_SCROLLL));
|
|
ASSERT_EQ(AMETA_SCROLL_LOCK_ON, mapper->getMetaState());
|
|
|
|
// Toggle scroll lock off.
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID,
|
|
EV_KEY, KEY_SCROLLLOCK, AKEYCODE_SCROLL_LOCK, 1, 0);
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID,
|
|
EV_KEY, KEY_SCROLLLOCK, AKEYCODE_SCROLL_LOCK, 0, 0);
|
|
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_CAPSL));
|
|
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_NUML));
|
|
ASSERT_FALSE(mFakeEventHub->getLedState(DEVICE_ID, LED_SCROLLL));
|
|
ASSERT_EQ(AMETA_NONE, mapper->getMetaState());
|
|
}
|
|
|
|
|
|
// --- TrackballInputMapperTest ---
|
|
|
|
class TrackballInputMapperTest : public InputMapperTest {
|
|
protected:
|
|
static const int32_t TRACKBALL_MOVEMENT_THRESHOLD;
|
|
|
|
void testMotionRotation(TrackballInputMapper* mapper,
|
|
int32_t originalX, int32_t originalY, int32_t rotatedX, int32_t rotatedY);
|
|
};
|
|
|
|
const int32_t TrackballInputMapperTest::TRACKBALL_MOVEMENT_THRESHOLD = 6;
|
|
|
|
void TrackballInputMapperTest::testMotionRotation(TrackballInputMapper* mapper,
|
|
int32_t originalX, int32_t originalY, int32_t rotatedX, int32_t rotatedY) {
|
|
FakeInputDispatcher::NotifyMotionArgs args;
|
|
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_X, 0, originalX, 0);
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_Y, 0, originalY, 0);
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0, 0, 0);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
|
|
float(rotatedX) / TRACKBALL_MOVEMENT_THRESHOLD,
|
|
float(rotatedY) / TRACKBALL_MOVEMENT_THRESHOLD,
|
|
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
|
|
}
|
|
|
|
TEST_F(TrackballInputMapperTest, GetSources) {
|
|
TrackballInputMapper* mapper = new TrackballInputMapper(mDevice, -1);
|
|
addMapperAndConfigure(mapper);
|
|
|
|
ASSERT_EQ(AINPUT_SOURCE_TRACKBALL, mapper->getSources());
|
|
}
|
|
|
|
TEST_F(TrackballInputMapperTest, PopulateDeviceInfo) {
|
|
TrackballInputMapper* mapper = new TrackballInputMapper(mDevice, -1);
|
|
addMapperAndConfigure(mapper);
|
|
|
|
InputDeviceInfo info;
|
|
mapper->populateDeviceInfo(&info);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(assertMotionRange(info, AINPUT_MOTION_RANGE_X,
|
|
-1.0f, 1.0f, 0.0f, 1.0f / TRACKBALL_MOVEMENT_THRESHOLD));
|
|
ASSERT_NO_FATAL_FAILURE(assertMotionRange(info, AINPUT_MOTION_RANGE_Y,
|
|
-1.0f, 1.0f, 0.0f, 1.0f / TRACKBALL_MOVEMENT_THRESHOLD));
|
|
}
|
|
|
|
TEST_F(TrackballInputMapperTest, Process_ShouldSetAllFieldsAndIncludeGlobalMetaState) {
|
|
TrackballInputMapper* mapper = new TrackballInputMapper(mDevice, -1);
|
|
addMapperAndConfigure(mapper);
|
|
|
|
mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
|
|
|
|
FakeInputDispatcher::NotifyMotionArgs args;
|
|
|
|
// Button press.
|
|
// Mostly testing non x/y behavior here so we don't need to check again elsewhere.
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MOUSE, 0, 1, 0);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
|
|
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
|
|
ASSERT_EQ(DEVICE_ID, args.deviceId);
|
|
ASSERT_EQ(AINPUT_SOURCE_TRACKBALL, args.source);
|
|
ASSERT_EQ(uint32_t(0), args.policyFlags);
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action);
|
|
ASSERT_EQ(0, args.flags);
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
|
|
ASSERT_EQ(0, args.edgeFlags);
|
|
ASSERT_EQ(uint32_t(1), args.pointerCount);
|
|
ASSERT_EQ(0, args.pointerIds[0]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
|
|
0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
|
|
ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.xPrecision);
|
|
ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.yPrecision);
|
|
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
|
|
|
|
// Button release. Should have same down time.
|
|
process(mapper, ARBITRARY_TIME + 1, DEVICE_ID, EV_KEY, BTN_MOUSE, 0, 0, 0);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
|
|
ASSERT_EQ(ARBITRARY_TIME + 1, args.eventTime);
|
|
ASSERT_EQ(DEVICE_ID, args.deviceId);
|
|
ASSERT_EQ(AINPUT_SOURCE_TRACKBALL, args.source);
|
|
ASSERT_EQ(uint32_t(0), args.policyFlags);
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action);
|
|
ASSERT_EQ(0, args.flags);
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
|
|
ASSERT_EQ(0, args.edgeFlags);
|
|
ASSERT_EQ(uint32_t(1), args.pointerCount);
|
|
ASSERT_EQ(0, args.pointerIds[0]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
|
|
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
|
|
ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.xPrecision);
|
|
ASSERT_EQ(TRACKBALL_MOVEMENT_THRESHOLD, args.yPrecision);
|
|
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
|
|
}
|
|
|
|
TEST_F(TrackballInputMapperTest, Process_ShouldHandleIndependentXYUpdates) {
|
|
TrackballInputMapper* mapper = new TrackballInputMapper(mDevice, -1);
|
|
addMapperAndConfigure(mapper);
|
|
|
|
FakeInputDispatcher::NotifyMotionArgs args;
|
|
|
|
// Motion in X but not Y.
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_X, 0, 1, 0);
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0, 0, 0);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
|
|
1.0f / TRACKBALL_MOVEMENT_THRESHOLD, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
|
|
|
|
// Motion in Y but not X.
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_Y, 0, -2, 0);
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0, 0, 0);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
|
|
ASSERT_NEAR(0.0f, args.pointerCoords[0].x, EPSILON);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
|
|
0.0f, -2.0f / TRACKBALL_MOVEMENT_THRESHOLD, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
|
|
}
|
|
|
|
TEST_F(TrackballInputMapperTest, Process_ShouldHandleIndependentButtonUpdates) {
|
|
TrackballInputMapper* mapper = new TrackballInputMapper(mDevice, -1);
|
|
addMapperAndConfigure(mapper);
|
|
|
|
FakeInputDispatcher::NotifyMotionArgs args;
|
|
|
|
// Button press without following sync.
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MOUSE, 0, 1, 0);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
|
|
0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
|
|
|
|
// Button release without following sync.
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MOUSE, 0, 0, 0);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
|
|
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
|
|
}
|
|
|
|
TEST_F(TrackballInputMapperTest, Process_ShouldHandleCombinedXYAndButtonUpdates) {
|
|
TrackballInputMapper* mapper = new TrackballInputMapper(mDevice, -1);
|
|
addMapperAndConfigure(mapper);
|
|
|
|
FakeInputDispatcher::NotifyMotionArgs args;
|
|
|
|
// Combined X, Y and Button.
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_X, 0, 1, 0);
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_Y, 0, -2, 0);
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MOUSE, 0, 1, 0);
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0, 0, 0);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
|
|
1.0f / TRACKBALL_MOVEMENT_THRESHOLD, -2.0f / TRACKBALL_MOVEMENT_THRESHOLD,
|
|
1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
|
|
|
|
// Move X, Y a bit while pressed.
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_X, 0, 2, 0);
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_REL, REL_Y, 0, 1, 0);
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0, 0, 0);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, args.action);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
|
|
2.0f / TRACKBALL_MOVEMENT_THRESHOLD, 1.0f / TRACKBALL_MOVEMENT_THRESHOLD,
|
|
1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
|
|
|
|
// Release Button.
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MOUSE, 0, 0, 0);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
|
|
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
|
|
}
|
|
|
|
TEST_F(TrackballInputMapperTest, Reset_WhenButtonIsNotDown_ShouldNotSynthesizeButtonUp) {
|
|
TrackballInputMapper* mapper = new TrackballInputMapper(mDevice, -1);
|
|
addMapperAndConfigure(mapper);
|
|
|
|
FakeInputDispatcher::NotifyMotionArgs args;
|
|
|
|
// Button press.
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MOUSE, 0, 1, 0);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
|
|
|
|
// Button release.
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MOUSE, 0, 0, 0);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
|
|
|
|
// Reset. Should not synthesize button up since button is not pressed.
|
|
mapper->reset();
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasNotCalled());
|
|
}
|
|
|
|
TEST_F(TrackballInputMapperTest, Reset_WhenButtonIsDown_ShouldSynthesizeButtonUp) {
|
|
TrackballInputMapper* mapper = new TrackballInputMapper(mDevice, -1);
|
|
addMapperAndConfigure(mapper);
|
|
|
|
FakeInputDispatcher::NotifyMotionArgs args;
|
|
|
|
// Button press.
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_MOUSE, 0, 1, 0);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
|
|
|
|
// Reset. Should synthesize button up.
|
|
mapper->reset();
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, args.action);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
|
|
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f));
|
|
}
|
|
|
|
TEST_F(TrackballInputMapperTest, Process_WhenNotAttachedToDisplay_ShouldNotRotateMotions) {
|
|
TrackballInputMapper* mapper = new TrackballInputMapper(mDevice, -1);
|
|
addMapperAndConfigure(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, 0, 1));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, 1, 1));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, 1, 0));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, 1, -1));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, 0, -1));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, -1, -1));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, -1, 0));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, -1, 1));
|
|
}
|
|
|
|
TEST_F(TrackballInputMapperTest, Process_WhenAttachedToDisplay_ShouldRotateMotions) {
|
|
TrackballInputMapper* mapper = new TrackballInputMapper(mDevice, DISPLAY_ID);
|
|
addMapperAndConfigure(mapper);
|
|
|
|
mFakePolicy->setDisplayInfo(DISPLAY_ID,
|
|
DISPLAY_WIDTH, DISPLAY_HEIGHT,
|
|
InputReaderPolicyInterface::ROTATION_0);
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, 0, 1));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, 1, 1));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, 1, 0));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, 1, -1));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, 0, -1));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, -1, -1));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, -1, 0));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, -1, 1));
|
|
|
|
mFakePolicy->setDisplayInfo(DISPLAY_ID,
|
|
DISPLAY_WIDTH, DISPLAY_HEIGHT,
|
|
InputReaderPolicyInterface::ROTATION_90);
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, 1, 0));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, 1, -1));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, 0, -1));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, -1, -1));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, -1, 0));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, -1, 1));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, 0, 1));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, 1, 1));
|
|
|
|
mFakePolicy->setDisplayInfo(DISPLAY_ID,
|
|
DISPLAY_WIDTH, DISPLAY_HEIGHT,
|
|
InputReaderPolicyInterface::ROTATION_180);
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, 0, -1));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, -1, -1));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, -1, 0));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, -1, 1));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, 0, 1));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, 1, 1));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, 1, 0));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, 1, -1));
|
|
|
|
mFakePolicy->setDisplayInfo(DISPLAY_ID,
|
|
DISPLAY_WIDTH, DISPLAY_HEIGHT,
|
|
InputReaderPolicyInterface::ROTATION_270);
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, 1, -1, 0));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 1, -1, 1));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, 0, 0, 1));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 1, -1, 1, 1));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, 0, -1, 1, 0));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, -1, 1, -1));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 0, 0, -1));
|
|
ASSERT_NO_FATAL_FAILURE(testMotionRotation(mapper, -1, 1, -1, -1));
|
|
}
|
|
|
|
|
|
// --- TouchInputMapperTest ---
|
|
|
|
class TouchInputMapperTest : public InputMapperTest {
|
|
protected:
|
|
static const int32_t RAW_X_MIN;
|
|
static const int32_t RAW_X_MAX;
|
|
static const int32_t RAW_Y_MIN;
|
|
static const int32_t RAW_Y_MAX;
|
|
static const int32_t RAW_TOUCH_MIN;
|
|
static const int32_t RAW_TOUCH_MAX;
|
|
static const int32_t RAW_TOOL_MIN;
|
|
static const int32_t RAW_TOOL_MAX;
|
|
static const int32_t RAW_PRESSURE_MIN;
|
|
static const int32_t RAW_PRESSURE_MAX;
|
|
static const int32_t RAW_ORIENTATION_MIN;
|
|
static const int32_t RAW_ORIENTATION_MAX;
|
|
static const int32_t RAW_ID_MIN;
|
|
static const int32_t RAW_ID_MAX;
|
|
static const float X_PRECISION;
|
|
static const float Y_PRECISION;
|
|
|
|
static const VirtualKeyDefinition VIRTUAL_KEYS[2];
|
|
|
|
enum Axes {
|
|
POSITION = 1 << 0,
|
|
TOUCH = 1 << 1,
|
|
TOOL = 1 << 2,
|
|
PRESSURE = 1 << 3,
|
|
ORIENTATION = 1 << 4,
|
|
MINOR = 1 << 5,
|
|
ID = 1 << 6,
|
|
};
|
|
|
|
void prepareDisplay(int32_t orientation);
|
|
void prepareVirtualKeys();
|
|
int32_t toRawX(float displayX);
|
|
int32_t toRawY(float displayY);
|
|
float toDisplayX(int32_t rawX);
|
|
float toDisplayY(int32_t rawY);
|
|
};
|
|
|
|
const int32_t TouchInputMapperTest::RAW_X_MIN = 25;
|
|
const int32_t TouchInputMapperTest::RAW_X_MAX = 1020;
|
|
const int32_t TouchInputMapperTest::RAW_Y_MIN = 30;
|
|
const int32_t TouchInputMapperTest::RAW_Y_MAX = 1010;
|
|
const int32_t TouchInputMapperTest::RAW_TOUCH_MIN = 0;
|
|
const int32_t TouchInputMapperTest::RAW_TOUCH_MAX = 31;
|
|
const int32_t TouchInputMapperTest::RAW_TOOL_MIN = 0;
|
|
const int32_t TouchInputMapperTest::RAW_TOOL_MAX = 15;
|
|
const int32_t TouchInputMapperTest::RAW_PRESSURE_MIN = RAW_TOUCH_MIN;
|
|
const int32_t TouchInputMapperTest::RAW_PRESSURE_MAX = RAW_TOUCH_MAX;
|
|
const int32_t TouchInputMapperTest::RAW_ORIENTATION_MIN = -7;
|
|
const int32_t TouchInputMapperTest::RAW_ORIENTATION_MAX = 7;
|
|
const int32_t TouchInputMapperTest::RAW_ID_MIN = 0;
|
|
const int32_t TouchInputMapperTest::RAW_ID_MAX = 9;
|
|
const float TouchInputMapperTest::X_PRECISION = float(RAW_X_MAX - RAW_X_MIN) / DISPLAY_WIDTH;
|
|
const float TouchInputMapperTest::Y_PRECISION = float(RAW_Y_MAX - RAW_Y_MIN) / DISPLAY_HEIGHT;
|
|
|
|
const VirtualKeyDefinition TouchInputMapperTest::VIRTUAL_KEYS[2] = {
|
|
{ KEY_HOME, 60, DISPLAY_HEIGHT + 15, 20, 20 },
|
|
{ KEY_MENU, DISPLAY_HEIGHT - 60, DISPLAY_WIDTH + 15, 20, 20 },
|
|
};
|
|
|
|
void TouchInputMapperTest::prepareDisplay(int32_t orientation) {
|
|
mFakePolicy->setDisplayInfo(DISPLAY_ID, DISPLAY_WIDTH, DISPLAY_HEIGHT, orientation);
|
|
}
|
|
|
|
void TouchInputMapperTest::prepareVirtualKeys() {
|
|
mFakePolicy->addVirtualKeyDefinition(String8(DEVICE_NAME), VIRTUAL_KEYS[0]);
|
|
mFakePolicy->addVirtualKeyDefinition(String8(DEVICE_NAME), VIRTUAL_KEYS[1]);
|
|
mFakeEventHub->addKey(DEVICE_ID, KEY_HOME, AKEYCODE_HOME, POLICY_FLAG_WAKE);
|
|
mFakeEventHub->addKey(DEVICE_ID, KEY_MENU, AKEYCODE_MENU, POLICY_FLAG_WAKE);
|
|
}
|
|
|
|
int32_t TouchInputMapperTest::toRawX(float displayX) {
|
|
return int32_t(displayX * (RAW_X_MAX - RAW_X_MIN) / DISPLAY_WIDTH + RAW_X_MIN);
|
|
}
|
|
|
|
int32_t TouchInputMapperTest::toRawY(float displayY) {
|
|
return int32_t(displayY * (RAW_Y_MAX - RAW_Y_MIN) / DISPLAY_HEIGHT + RAW_Y_MIN);
|
|
}
|
|
|
|
float TouchInputMapperTest::toDisplayX(int32_t rawX) {
|
|
return float(rawX - RAW_X_MIN) * DISPLAY_WIDTH / (RAW_X_MAX - RAW_X_MIN);
|
|
}
|
|
|
|
float TouchInputMapperTest::toDisplayY(int32_t rawY) {
|
|
return float(rawY - RAW_Y_MIN) * DISPLAY_HEIGHT / (RAW_Y_MAX - RAW_Y_MIN);
|
|
}
|
|
|
|
|
|
// --- SingleTouchInputMapperTest ---
|
|
|
|
class SingleTouchInputMapperTest : public TouchInputMapperTest {
|
|
protected:
|
|
void prepareAxes(int axes);
|
|
|
|
void processDown(SingleTouchInputMapper* mapper, int32_t x, int32_t y);
|
|
void processMove(SingleTouchInputMapper* mapper, int32_t x, int32_t y);
|
|
void processUp(SingleTouchInputMapper* mappery);
|
|
void processPressure(SingleTouchInputMapper* mapper, int32_t pressure);
|
|
void processToolMajor(SingleTouchInputMapper* mapper, int32_t toolMajor);
|
|
void processSync(SingleTouchInputMapper* mapper);
|
|
};
|
|
|
|
void SingleTouchInputMapperTest::prepareAxes(int axes) {
|
|
if (axes & POSITION) {
|
|
mFakeEventHub->addAxis(DEVICE_ID, ABS_X, RAW_X_MIN, RAW_X_MAX, 0, 0);
|
|
mFakeEventHub->addAxis(DEVICE_ID, ABS_Y, RAW_Y_MIN, RAW_Y_MAX, 0, 0);
|
|
}
|
|
if (axes & PRESSURE) {
|
|
mFakeEventHub->addAxis(DEVICE_ID, ABS_PRESSURE, RAW_PRESSURE_MIN, RAW_PRESSURE_MAX, 0, 0);
|
|
}
|
|
if (axes & TOOL) {
|
|
mFakeEventHub->addAxis(DEVICE_ID, ABS_TOOL_WIDTH, RAW_TOOL_MIN, RAW_TOOL_MAX, 0, 0);
|
|
}
|
|
}
|
|
|
|
void SingleTouchInputMapperTest::processDown(SingleTouchInputMapper* mapper, int32_t x, int32_t y) {
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_TOUCH, 0, 1, 0);
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_X, 0, x, 0);
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_Y, 0, y, 0);
|
|
}
|
|
|
|
void SingleTouchInputMapperTest::processMove(SingleTouchInputMapper* mapper, int32_t x, int32_t y) {
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_X, 0, x, 0);
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_Y, 0, y, 0);
|
|
}
|
|
|
|
void SingleTouchInputMapperTest::processUp(SingleTouchInputMapper* mapper) {
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_KEY, BTN_TOUCH, 0, 0, 0);
|
|
}
|
|
|
|
void SingleTouchInputMapperTest::processPressure(
|
|
SingleTouchInputMapper* mapper, int32_t pressure) {
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_PRESSURE, 0, pressure, 0);
|
|
}
|
|
|
|
void SingleTouchInputMapperTest::processToolMajor(
|
|
SingleTouchInputMapper* mapper, int32_t toolMajor) {
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_TOOL_WIDTH, 0, toolMajor, 0);
|
|
}
|
|
|
|
void SingleTouchInputMapperTest::processSync(SingleTouchInputMapper* mapper) {
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0, 0, 0);
|
|
}
|
|
|
|
|
|
TEST_F(SingleTouchInputMapperTest, GetSources_WhenNotAttachedToADisplay_ReturnsTouchPad) {
|
|
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice, -1);
|
|
prepareAxes(POSITION);
|
|
addMapperAndConfigure(mapper);
|
|
|
|
ASSERT_EQ(AINPUT_SOURCE_TOUCHPAD, mapper->getSources());
|
|
}
|
|
|
|
TEST_F(SingleTouchInputMapperTest, GetSources_WhenAttachedToADisplay_ReturnsTouchScreen) {
|
|
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice, DISPLAY_ID);
|
|
prepareAxes(POSITION);
|
|
addMapperAndConfigure(mapper);
|
|
|
|
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, mapper->getSources());
|
|
}
|
|
|
|
TEST_F(SingleTouchInputMapperTest, GetKeyCodeState) {
|
|
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice, DISPLAY_ID);
|
|
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
|
|
prepareAxes(POSITION);
|
|
prepareVirtualKeys();
|
|
addMapperAndConfigure(mapper);
|
|
|
|
// Unknown key.
|
|
ASSERT_EQ(AKEY_STATE_UNKNOWN, mapper->getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_A));
|
|
|
|
// Virtual key is down.
|
|
int32_t x = toRawX(VIRTUAL_KEYS[0].centerX);
|
|
int32_t y = toRawY(VIRTUAL_KEYS[0].centerY);
|
|
processDown(mapper, x, y);
|
|
processSync(mapper);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled());
|
|
|
|
ASSERT_EQ(AKEY_STATE_VIRTUAL, mapper->getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_HOME));
|
|
|
|
// Virtual key is up.
|
|
processUp(mapper);
|
|
processSync(mapper);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled());
|
|
|
|
ASSERT_EQ(AKEY_STATE_UP, mapper->getKeyCodeState(AINPUT_SOURCE_ANY, AKEYCODE_HOME));
|
|
}
|
|
|
|
TEST_F(SingleTouchInputMapperTest, GetScanCodeState) {
|
|
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice, DISPLAY_ID);
|
|
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
|
|
prepareAxes(POSITION);
|
|
prepareVirtualKeys();
|
|
addMapperAndConfigure(mapper);
|
|
|
|
// Unknown key.
|
|
ASSERT_EQ(AKEY_STATE_UNKNOWN, mapper->getScanCodeState(AINPUT_SOURCE_ANY, KEY_A));
|
|
|
|
// Virtual key is down.
|
|
int32_t x = toRawX(VIRTUAL_KEYS[0].centerX);
|
|
int32_t y = toRawY(VIRTUAL_KEYS[0].centerY);
|
|
processDown(mapper, x, y);
|
|
processSync(mapper);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled());
|
|
|
|
ASSERT_EQ(AKEY_STATE_VIRTUAL, mapper->getScanCodeState(AINPUT_SOURCE_ANY, KEY_HOME));
|
|
|
|
// Virtual key is up.
|
|
processUp(mapper);
|
|
processSync(mapper);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled());
|
|
|
|
ASSERT_EQ(AKEY_STATE_UP, mapper->getScanCodeState(AINPUT_SOURCE_ANY, KEY_HOME));
|
|
}
|
|
|
|
TEST_F(SingleTouchInputMapperTest, MarkSupportedKeyCodes) {
|
|
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice, DISPLAY_ID);
|
|
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
|
|
prepareAxes(POSITION);
|
|
prepareVirtualKeys();
|
|
addMapperAndConfigure(mapper);
|
|
|
|
const int32_t keys[2] = { AKEYCODE_HOME, AKEYCODE_A };
|
|
uint8_t flags[2] = { 0, 0 };
|
|
ASSERT_TRUE(mapper->markSupportedKeyCodes(AINPUT_SOURCE_ANY, 2, keys, flags));
|
|
ASSERT_TRUE(flags[0]);
|
|
ASSERT_FALSE(flags[1]);
|
|
}
|
|
|
|
TEST_F(SingleTouchInputMapperTest, Reset_WhenVirtualKeysAreDown_SendsUp) {
|
|
// Note: Ideally we should send cancels but the implementation is more straightforward
|
|
// with up and this will only happen if a device is forcibly removed.
|
|
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice, DISPLAY_ID);
|
|
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
|
|
prepareAxes(POSITION);
|
|
prepareVirtualKeys();
|
|
addMapperAndConfigure(mapper);
|
|
|
|
mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
|
|
|
|
// Press virtual key.
|
|
int32_t x = toRawX(VIRTUAL_KEYS[0].centerX);
|
|
int32_t y = toRawY(VIRTUAL_KEYS[0].centerY);
|
|
processDown(mapper, x, y);
|
|
processSync(mapper);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled());
|
|
|
|
// Reset. Since key is down, synthesize key up.
|
|
mapper->reset();
|
|
|
|
FakeInputDispatcher::NotifyKeyArgs args;
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
|
|
//ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
|
|
ASSERT_EQ(DEVICE_ID, args.deviceId);
|
|
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
|
|
ASSERT_EQ(POLICY_FLAG_VIRTUAL, args.policyFlags);
|
|
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
|
|
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY, args.flags);
|
|
ASSERT_EQ(AKEYCODE_HOME, args.keyCode);
|
|
ASSERT_EQ(KEY_HOME, args.scanCode);
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
|
|
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
|
|
}
|
|
|
|
TEST_F(SingleTouchInputMapperTest, Reset_WhenNothingIsPressed_NothingMuchHappens) {
|
|
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice, DISPLAY_ID);
|
|
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
|
|
prepareAxes(POSITION);
|
|
prepareVirtualKeys();
|
|
addMapperAndConfigure(mapper);
|
|
|
|
// Press virtual key.
|
|
int32_t x = toRawX(VIRTUAL_KEYS[0].centerX);
|
|
int32_t y = toRawY(VIRTUAL_KEYS[0].centerY);
|
|
processDown(mapper, x, y);
|
|
processSync(mapper);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled());
|
|
|
|
// Release virtual key.
|
|
processUp(mapper);
|
|
processSync(mapper);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled());
|
|
|
|
// Reset. Since no key is down, nothing happens.
|
|
mapper->reset();
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasNotCalled());
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasNotCalled());
|
|
}
|
|
|
|
TEST_F(SingleTouchInputMapperTest, Process_WhenVirtualKeyIsPressedAndReleasedNormally_SendsKeyDownAndKeyUp) {
|
|
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice, DISPLAY_ID);
|
|
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
|
|
prepareAxes(POSITION);
|
|
prepareVirtualKeys();
|
|
addMapperAndConfigure(mapper);
|
|
|
|
mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
|
|
|
|
FakeInputDispatcher::NotifyKeyArgs args;
|
|
|
|
// Press virtual key.
|
|
int32_t x = toRawX(VIRTUAL_KEYS[0].centerX);
|
|
int32_t y = toRawY(VIRTUAL_KEYS[0].centerY);
|
|
processDown(mapper, x, y);
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
|
|
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
|
|
ASSERT_EQ(DEVICE_ID, args.deviceId);
|
|
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
|
|
ASSERT_EQ(POLICY_FLAG_VIRTUAL, args.policyFlags);
|
|
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, args.action);
|
|
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY, args.flags);
|
|
ASSERT_EQ(AKEYCODE_HOME, args.keyCode);
|
|
ASSERT_EQ(KEY_HOME, args.scanCode);
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
|
|
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
|
|
|
|
// Release virtual key.
|
|
processUp(mapper);
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&args));
|
|
ASSERT_EQ(ARBITRARY_TIME, args.eventTime);
|
|
ASSERT_EQ(DEVICE_ID, args.deviceId);
|
|
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, args.source);
|
|
ASSERT_EQ(POLICY_FLAG_VIRTUAL, args.policyFlags);
|
|
ASSERT_EQ(AKEY_EVENT_ACTION_UP, args.action);
|
|
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY, args.flags);
|
|
ASSERT_EQ(AKEYCODE_HOME, args.keyCode);
|
|
ASSERT_EQ(KEY_HOME, args.scanCode);
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, args.metaState);
|
|
ASSERT_EQ(ARBITRARY_TIME, args.downTime);
|
|
|
|
// Should not have sent any motions.
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasNotCalled());
|
|
}
|
|
|
|
TEST_F(SingleTouchInputMapperTest, Process_WhenVirtualKeyIsPressedAndMovedOutOfBounds_SendsKeyDownAndKeyCancel) {
|
|
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice, DISPLAY_ID);
|
|
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
|
|
prepareAxes(POSITION);
|
|
prepareVirtualKeys();
|
|
addMapperAndConfigure(mapper);
|
|
|
|
mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
|
|
|
|
FakeInputDispatcher::NotifyKeyArgs keyArgs;
|
|
|
|
// Press virtual key.
|
|
int32_t x = toRawX(VIRTUAL_KEYS[0].centerX);
|
|
int32_t y = toRawY(VIRTUAL_KEYS[0].centerY);
|
|
processDown(mapper, x, y);
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&keyArgs));
|
|
ASSERT_EQ(ARBITRARY_TIME, keyArgs.eventTime);
|
|
ASSERT_EQ(DEVICE_ID, keyArgs.deviceId);
|
|
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, keyArgs.source);
|
|
ASSERT_EQ(POLICY_FLAG_VIRTUAL, keyArgs.policyFlags);
|
|
ASSERT_EQ(AKEY_EVENT_ACTION_DOWN, keyArgs.action);
|
|
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY, keyArgs.flags);
|
|
ASSERT_EQ(AKEYCODE_HOME, keyArgs.keyCode);
|
|
ASSERT_EQ(KEY_HOME, keyArgs.scanCode);
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, keyArgs.metaState);
|
|
ASSERT_EQ(ARBITRARY_TIME, keyArgs.downTime);
|
|
|
|
// Move out of bounds. This should generate a cancel and a pointer down since we moved
|
|
// into the display area.
|
|
y -= 100;
|
|
processMove(mapper, x, y);
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasCalled(&keyArgs));
|
|
ASSERT_EQ(ARBITRARY_TIME, keyArgs.eventTime);
|
|
ASSERT_EQ(DEVICE_ID, keyArgs.deviceId);
|
|
ASSERT_EQ(AINPUT_SOURCE_KEYBOARD, keyArgs.source);
|
|
ASSERT_EQ(POLICY_FLAG_VIRTUAL, keyArgs.policyFlags);
|
|
ASSERT_EQ(AKEY_EVENT_ACTION_UP, keyArgs.action);
|
|
ASSERT_EQ(AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY
|
|
| AKEY_EVENT_FLAG_CANCELED, keyArgs.flags);
|
|
ASSERT_EQ(AKEYCODE_HOME, keyArgs.keyCode);
|
|
ASSERT_EQ(KEY_HOME, keyArgs.scanCode);
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, keyArgs.metaState);
|
|
ASSERT_EQ(ARBITRARY_TIME, keyArgs.downTime);
|
|
|
|
FakeInputDispatcher::NotifyMotionArgs motionArgs;
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
|
|
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
|
|
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
|
|
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
|
|
ASSERT_EQ(0, motionArgs.flags);
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
|
|
ASSERT_EQ(0, motionArgs.edgeFlags);
|
|
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
|
|
ASSERT_EQ(0, motionArgs.pointerIds[0]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
|
|
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0));
|
|
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
|
|
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
|
|
|
|
// Keep moving out of bounds. Should generate a pointer move.
|
|
y -= 50;
|
|
processMove(mapper, x, y);
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
|
|
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
|
|
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
|
|
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
|
|
ASSERT_EQ(0, motionArgs.flags);
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
|
|
ASSERT_EQ(0, motionArgs.edgeFlags);
|
|
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
|
|
ASSERT_EQ(0, motionArgs.pointerIds[0]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
|
|
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0));
|
|
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
|
|
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
|
|
|
|
// Release out of bounds. Should generate a pointer up.
|
|
processUp(mapper);
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
|
|
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
|
|
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
|
|
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
|
|
ASSERT_EQ(0, motionArgs.flags);
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
|
|
ASSERT_EQ(0, motionArgs.edgeFlags);
|
|
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
|
|
ASSERT_EQ(0, motionArgs.pointerIds[0]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
|
|
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0));
|
|
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
|
|
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
|
|
|
|
// Should not have sent any more keys or motions.
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasNotCalled());
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasNotCalled());
|
|
}
|
|
|
|
TEST_F(SingleTouchInputMapperTest, Process_WhenTouchStartsOutsideDisplayAndMovesIn_SendsDownAsTouchEntersDisplay) {
|
|
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice, DISPLAY_ID);
|
|
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
|
|
prepareAxes(POSITION);
|
|
prepareVirtualKeys();
|
|
addMapperAndConfigure(mapper);
|
|
|
|
mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
|
|
|
|
FakeInputDispatcher::NotifyMotionArgs motionArgs;
|
|
|
|
// Initially go down out of bounds.
|
|
int32_t x = -10;
|
|
int32_t y = -10;
|
|
processDown(mapper, x, y);
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasNotCalled());
|
|
|
|
// Move into the display area. Should generate a pointer down.
|
|
x = 50;
|
|
y = 75;
|
|
processMove(mapper, x, y);
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
|
|
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
|
|
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
|
|
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
|
|
ASSERT_EQ(0, motionArgs.flags);
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
|
|
ASSERT_EQ(0, motionArgs.edgeFlags);
|
|
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
|
|
ASSERT_EQ(0, motionArgs.pointerIds[0]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
|
|
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0));
|
|
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
|
|
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
|
|
|
|
// Release. Should generate a pointer up.
|
|
processUp(mapper);
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
|
|
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
|
|
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
|
|
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
|
|
ASSERT_EQ(0, motionArgs.flags);
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
|
|
ASSERT_EQ(0, motionArgs.edgeFlags);
|
|
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
|
|
ASSERT_EQ(0, motionArgs.pointerIds[0]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
|
|
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0));
|
|
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
|
|
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
|
|
|
|
// Should not have sent any more keys or motions.
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasNotCalled());
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasNotCalled());
|
|
}
|
|
|
|
TEST_F(SingleTouchInputMapperTest, Process_NormalSingleTouchGesture) {
|
|
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice, DISPLAY_ID);
|
|
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
|
|
prepareAxes(POSITION);
|
|
prepareVirtualKeys();
|
|
addMapperAndConfigure(mapper);
|
|
|
|
mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
|
|
|
|
FakeInputDispatcher::NotifyMotionArgs motionArgs;
|
|
|
|
// Down.
|
|
int32_t x = 100;
|
|
int32_t y = 125;
|
|
processDown(mapper, x, y);
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
|
|
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
|
|
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
|
|
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
|
|
ASSERT_EQ(0, motionArgs.flags);
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
|
|
ASSERT_EQ(0, motionArgs.edgeFlags);
|
|
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
|
|
ASSERT_EQ(0, motionArgs.pointerIds[0]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
|
|
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0));
|
|
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
|
|
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
|
|
|
|
// Move.
|
|
x += 50;
|
|
y += 75;
|
|
processMove(mapper, x, y);
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
|
|
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
|
|
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
|
|
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
|
|
ASSERT_EQ(0, motionArgs.flags);
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
|
|
ASSERT_EQ(0, motionArgs.edgeFlags);
|
|
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
|
|
ASSERT_EQ(0, motionArgs.pointerIds[0]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
|
|
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0));
|
|
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
|
|
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
|
|
|
|
// Up.
|
|
processUp(mapper);
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
|
|
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
|
|
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
|
|
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
|
|
ASSERT_EQ(0, motionArgs.flags);
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
|
|
ASSERT_EQ(0, motionArgs.edgeFlags);
|
|
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
|
|
ASSERT_EQ(0, motionArgs.pointerIds[0]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
|
|
toDisplayX(x), toDisplayY(y), 1, 0, 0, 0, 0, 0, 0));
|
|
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
|
|
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
|
|
|
|
// Should not have sent any more keys or motions.
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasNotCalled());
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasNotCalled());
|
|
}
|
|
|
|
TEST_F(SingleTouchInputMapperTest, Process_Rotation) {
|
|
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice, DISPLAY_ID);
|
|
prepareAxes(POSITION);
|
|
addMapperAndConfigure(mapper);
|
|
|
|
FakeInputDispatcher::NotifyMotionArgs args;
|
|
|
|
// Rotation 0.
|
|
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
|
|
processDown(mapper, toRawX(50), toRawY(75));
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
|
|
ASSERT_NEAR(50, args.pointerCoords[0].x, 1);
|
|
ASSERT_NEAR(75, args.pointerCoords[0].y, 1);
|
|
|
|
processUp(mapper);
|
|
processSync(mapper);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled());
|
|
|
|
// Rotation 90.
|
|
prepareDisplay(InputReaderPolicyInterface::ROTATION_90);
|
|
processDown(mapper, toRawX(50), toRawY(75));
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
|
|
ASSERT_NEAR(75, args.pointerCoords[0].x, 1);
|
|
ASSERT_NEAR(DISPLAY_WIDTH - 50, args.pointerCoords[0].y, 1);
|
|
|
|
processUp(mapper);
|
|
processSync(mapper);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled());
|
|
|
|
// Rotation 180.
|
|
prepareDisplay(InputReaderPolicyInterface::ROTATION_180);
|
|
processDown(mapper, toRawX(50), toRawY(75));
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
|
|
ASSERT_NEAR(DISPLAY_WIDTH - 50, args.pointerCoords[0].x, 1);
|
|
ASSERT_NEAR(DISPLAY_HEIGHT - 75, args.pointerCoords[0].y, 1);
|
|
|
|
processUp(mapper);
|
|
processSync(mapper);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled());
|
|
|
|
// Rotation 270.
|
|
prepareDisplay(InputReaderPolicyInterface::ROTATION_270);
|
|
processDown(mapper, toRawX(50), toRawY(75));
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
|
|
ASSERT_NEAR(DISPLAY_HEIGHT - 75, args.pointerCoords[0].x, 1);
|
|
ASSERT_NEAR(50, args.pointerCoords[0].y, 1);
|
|
|
|
processUp(mapper);
|
|
processSync(mapper);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled());
|
|
}
|
|
|
|
TEST_F(SingleTouchInputMapperTest, Process_AllAxes_DefaultCalibration) {
|
|
SingleTouchInputMapper* mapper = new SingleTouchInputMapper(mDevice, DISPLAY_ID);
|
|
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
|
|
prepareAxes(POSITION | PRESSURE | TOOL);
|
|
addMapperAndConfigure(mapper);
|
|
|
|
// These calculations are based on the input device calibration documentation.
|
|
int32_t rawX = 100;
|
|
int32_t rawY = 200;
|
|
int32_t rawPressure = 10;
|
|
int32_t rawToolMajor = 12;
|
|
|
|
float x = toDisplayX(rawX);
|
|
float y = toDisplayY(rawY);
|
|
float pressure = float(rawPressure) / RAW_PRESSURE_MAX;
|
|
float size = float(rawToolMajor) / RAW_TOOL_MAX;
|
|
float tool = min(DISPLAY_WIDTH, DISPLAY_HEIGHT) * size;
|
|
float touch = min(tool * pressure, tool);
|
|
|
|
processDown(mapper, rawX, rawY);
|
|
processPressure(mapper, rawPressure);
|
|
processToolMajor(mapper, rawToolMajor);
|
|
processSync(mapper);
|
|
|
|
FakeInputDispatcher::NotifyMotionArgs args;
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
|
|
x, y, pressure, size, touch, touch, tool, tool, 0));
|
|
}
|
|
|
|
|
|
// --- MultiTouchInputMapperTest ---
|
|
|
|
class MultiTouchInputMapperTest : public TouchInputMapperTest {
|
|
protected:
|
|
void prepareAxes(int axes);
|
|
|
|
void processPosition(MultiTouchInputMapper* mapper, int32_t x, int32_t y);
|
|
void processTouchMajor(MultiTouchInputMapper* mapper, int32_t touchMajor);
|
|
void processTouchMinor(MultiTouchInputMapper* mapper, int32_t touchMinor);
|
|
void processToolMajor(MultiTouchInputMapper* mapper, int32_t toolMajor);
|
|
void processToolMinor(MultiTouchInputMapper* mapper, int32_t toolMinor);
|
|
void processOrientation(MultiTouchInputMapper* mapper, int32_t orientation);
|
|
void processPressure(MultiTouchInputMapper* mapper, int32_t pressure);
|
|
void processId(MultiTouchInputMapper* mapper, int32_t id);
|
|
void processMTSync(MultiTouchInputMapper* mapper);
|
|
void processSync(MultiTouchInputMapper* mapper);
|
|
};
|
|
|
|
void MultiTouchInputMapperTest::prepareAxes(int axes) {
|
|
if (axes & POSITION) {
|
|
mFakeEventHub->addAxis(DEVICE_ID, ABS_MT_POSITION_X, RAW_X_MIN, RAW_X_MAX, 0, 0);
|
|
mFakeEventHub->addAxis(DEVICE_ID, ABS_MT_POSITION_Y, RAW_Y_MIN, RAW_Y_MAX, 0, 0);
|
|
}
|
|
if (axes & TOUCH) {
|
|
mFakeEventHub->addAxis(DEVICE_ID, ABS_MT_TOUCH_MAJOR, RAW_TOUCH_MIN, RAW_TOUCH_MAX, 0, 0);
|
|
if (axes & MINOR) {
|
|
mFakeEventHub->addAxis(DEVICE_ID, ABS_MT_TOUCH_MINOR,
|
|
RAW_TOUCH_MIN, RAW_TOUCH_MAX, 0, 0);
|
|
}
|
|
}
|
|
if (axes & TOOL) {
|
|
mFakeEventHub->addAxis(DEVICE_ID, ABS_MT_WIDTH_MAJOR, RAW_TOOL_MIN, RAW_TOOL_MAX, 0, 0);
|
|
if (axes & MINOR) {
|
|
mFakeEventHub->addAxis(DEVICE_ID, ABS_MT_WIDTH_MINOR,
|
|
RAW_TOOL_MAX, RAW_TOOL_MAX, 0, 0);
|
|
}
|
|
}
|
|
if (axes & ORIENTATION) {
|
|
mFakeEventHub->addAxis(DEVICE_ID, ABS_MT_ORIENTATION,
|
|
RAW_ORIENTATION_MIN, RAW_ORIENTATION_MAX, 0, 0);
|
|
}
|
|
if (axes & PRESSURE) {
|
|
mFakeEventHub->addAxis(DEVICE_ID, ABS_MT_PRESSURE,
|
|
RAW_PRESSURE_MIN, RAW_PRESSURE_MAX, 0, 0);
|
|
}
|
|
if (axes & ID) {
|
|
mFakeEventHub->addAxis(DEVICE_ID, ABS_MT_TRACKING_ID,
|
|
RAW_ID_MIN, RAW_ID_MAX, 0, 0);
|
|
}
|
|
}
|
|
|
|
void MultiTouchInputMapperTest::processPosition(
|
|
MultiTouchInputMapper* mapper, int32_t x, int32_t y) {
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_POSITION_X, 0, x, 0);
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_POSITION_Y, 0, y, 0);
|
|
}
|
|
|
|
void MultiTouchInputMapperTest::processTouchMajor(
|
|
MultiTouchInputMapper* mapper, int32_t touchMajor) {
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_TOUCH_MAJOR, 0, touchMajor, 0);
|
|
}
|
|
|
|
void MultiTouchInputMapperTest::processTouchMinor(
|
|
MultiTouchInputMapper* mapper, int32_t touchMinor) {
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_TOUCH_MINOR, 0, touchMinor, 0);
|
|
}
|
|
|
|
void MultiTouchInputMapperTest::processToolMajor(
|
|
MultiTouchInputMapper* mapper, int32_t toolMajor) {
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_WIDTH_MAJOR, 0, toolMajor, 0);
|
|
}
|
|
|
|
void MultiTouchInputMapperTest::processToolMinor(
|
|
MultiTouchInputMapper* mapper, int32_t toolMinor) {
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_WIDTH_MINOR, 0, toolMinor, 0);
|
|
}
|
|
|
|
void MultiTouchInputMapperTest::processOrientation(
|
|
MultiTouchInputMapper* mapper, int32_t orientation) {
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_ORIENTATION, 0, orientation, 0);
|
|
}
|
|
|
|
void MultiTouchInputMapperTest::processPressure(
|
|
MultiTouchInputMapper* mapper, int32_t pressure) {
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_PRESSURE, 0, pressure, 0);
|
|
}
|
|
|
|
void MultiTouchInputMapperTest::processId(
|
|
MultiTouchInputMapper* mapper, int32_t id) {
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_ABS, ABS_MT_TRACKING_ID, 0, id, 0);
|
|
}
|
|
|
|
void MultiTouchInputMapperTest::processMTSync(MultiTouchInputMapper* mapper) {
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_MT_REPORT, 0, 0, 0);
|
|
}
|
|
|
|
void MultiTouchInputMapperTest::processSync(MultiTouchInputMapper* mapper) {
|
|
process(mapper, ARBITRARY_TIME, DEVICE_ID, EV_SYN, SYN_REPORT, 0, 0, 0);
|
|
}
|
|
|
|
|
|
TEST_F(MultiTouchInputMapperTest, Process_NormalMultiTouchGesture_WithoutTrackingIds) {
|
|
MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice, DISPLAY_ID);
|
|
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
|
|
prepareAxes(POSITION);
|
|
prepareVirtualKeys();
|
|
addMapperAndConfigure(mapper);
|
|
|
|
mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
|
|
|
|
FakeInputDispatcher::NotifyMotionArgs motionArgs;
|
|
|
|
// Two fingers down at once.
|
|
int32_t x1 = 100, y1 = 125, x2 = 300, y2 = 500;
|
|
processPosition(mapper, x1, y1);
|
|
processMTSync(mapper);
|
|
processPosition(mapper, x2, y2);
|
|
processMTSync(mapper);
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
|
|
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
|
|
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
|
|
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
|
|
ASSERT_EQ(0, motionArgs.flags);
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
|
|
ASSERT_EQ(0, motionArgs.edgeFlags);
|
|
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
|
|
ASSERT_EQ(0, motionArgs.pointerIds[0]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
|
|
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0));
|
|
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
|
|
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
|
|
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
|
|
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
|
|
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
|
|
motionArgs.action);
|
|
ASSERT_EQ(0, motionArgs.flags);
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
|
|
ASSERT_EQ(0, motionArgs.edgeFlags);
|
|
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
|
|
ASSERT_EQ(0, motionArgs.pointerIds[0]);
|
|
ASSERT_EQ(1, motionArgs.pointerIds[1]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
|
|
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0));
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
|
|
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0));
|
|
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
|
|
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
|
|
|
|
// Move.
|
|
x1 += 10; y1 += 15; x2 += 5; y2 -= 10;
|
|
processPosition(mapper, x1, y1);
|
|
processMTSync(mapper);
|
|
processPosition(mapper, x2, y2);
|
|
processMTSync(mapper);
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
|
|
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
|
|
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
|
|
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
|
|
ASSERT_EQ(0, motionArgs.flags);
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
|
|
ASSERT_EQ(0, motionArgs.edgeFlags);
|
|
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
|
|
ASSERT_EQ(0, motionArgs.pointerIds[0]);
|
|
ASSERT_EQ(1, motionArgs.pointerIds[1]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
|
|
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0));
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
|
|
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0));
|
|
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
|
|
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
|
|
|
|
// First finger up.
|
|
x2 += 15; y2 -= 20;
|
|
processPosition(mapper, x2, y2);
|
|
processMTSync(mapper);
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
|
|
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
|
|
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
|
|
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_UP | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
|
|
motionArgs.action);
|
|
ASSERT_EQ(0, motionArgs.flags);
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
|
|
ASSERT_EQ(0, motionArgs.edgeFlags);
|
|
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
|
|
ASSERT_EQ(0, motionArgs.pointerIds[0]);
|
|
ASSERT_EQ(1, motionArgs.pointerIds[1]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
|
|
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0));
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
|
|
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0));
|
|
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
|
|
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
|
|
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
|
|
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
|
|
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
|
|
ASSERT_EQ(0, motionArgs.flags);
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
|
|
ASSERT_EQ(0, motionArgs.edgeFlags);
|
|
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
|
|
ASSERT_EQ(1, motionArgs.pointerIds[0]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
|
|
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0));
|
|
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
|
|
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
|
|
|
|
// Move.
|
|
x2 += 20; y2 -= 25;
|
|
processPosition(mapper, x2, y2);
|
|
processMTSync(mapper);
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
|
|
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
|
|
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
|
|
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
|
|
ASSERT_EQ(0, motionArgs.flags);
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
|
|
ASSERT_EQ(0, motionArgs.edgeFlags);
|
|
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
|
|
ASSERT_EQ(1, motionArgs.pointerIds[0]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
|
|
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0));
|
|
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
|
|
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
|
|
|
|
// New finger down.
|
|
int32_t x3 = 700, y3 = 300;
|
|
processPosition(mapper, x2, y2);
|
|
processMTSync(mapper);
|
|
processPosition(mapper, x3, y3);
|
|
processMTSync(mapper);
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
|
|
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
|
|
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
|
|
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
|
|
motionArgs.action);
|
|
ASSERT_EQ(0, motionArgs.flags);
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
|
|
ASSERT_EQ(0, motionArgs.edgeFlags);
|
|
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
|
|
ASSERT_EQ(0, motionArgs.pointerIds[0]);
|
|
ASSERT_EQ(1, motionArgs.pointerIds[1]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
|
|
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0));
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
|
|
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0));
|
|
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
|
|
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
|
|
|
|
// Second finger up.
|
|
x3 += 30; y3 -= 20;
|
|
processPosition(mapper, x3, y3);
|
|
processMTSync(mapper);
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
|
|
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
|
|
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
|
|
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_UP | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
|
|
motionArgs.action);
|
|
ASSERT_EQ(0, motionArgs.flags);
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
|
|
ASSERT_EQ(0, motionArgs.edgeFlags);
|
|
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
|
|
ASSERT_EQ(0, motionArgs.pointerIds[0]);
|
|
ASSERT_EQ(1, motionArgs.pointerIds[1]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
|
|
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0));
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
|
|
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0));
|
|
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
|
|
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
|
|
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
|
|
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
|
|
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
|
|
ASSERT_EQ(0, motionArgs.flags);
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
|
|
ASSERT_EQ(0, motionArgs.edgeFlags);
|
|
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
|
|
ASSERT_EQ(0, motionArgs.pointerIds[0]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
|
|
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0));
|
|
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
|
|
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
|
|
|
|
// Last finger up.
|
|
processMTSync(mapper);
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.eventTime);
|
|
ASSERT_EQ(DEVICE_ID, motionArgs.deviceId);
|
|
ASSERT_EQ(AINPUT_SOURCE_TOUCHSCREEN, motionArgs.source);
|
|
ASSERT_EQ(uint32_t(0), motionArgs.policyFlags);
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
|
|
ASSERT_EQ(0, motionArgs.flags);
|
|
ASSERT_EQ(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON, motionArgs.metaState);
|
|
ASSERT_EQ(0, motionArgs.edgeFlags);
|
|
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
|
|
ASSERT_EQ(0, motionArgs.pointerIds[0]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
|
|
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0));
|
|
ASSERT_NEAR(X_PRECISION, motionArgs.xPrecision, EPSILON);
|
|
ASSERT_NEAR(Y_PRECISION, motionArgs.yPrecision, EPSILON);
|
|
ASSERT_EQ(ARBITRARY_TIME, motionArgs.downTime);
|
|
|
|
// Should not have sent any more keys or motions.
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasNotCalled());
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasNotCalled());
|
|
}
|
|
|
|
TEST_F(MultiTouchInputMapperTest, Process_NormalMultiTouchGesture_WithTrackingIds) {
|
|
MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice, DISPLAY_ID);
|
|
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
|
|
prepareAxes(POSITION | ID);
|
|
prepareVirtualKeys();
|
|
addMapperAndConfigure(mapper);
|
|
|
|
mFakeContext->setGlobalMetaState(AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_ON);
|
|
|
|
FakeInputDispatcher::NotifyMotionArgs motionArgs;
|
|
|
|
// Two fingers down at once.
|
|
int32_t x1 = 100, y1 = 125, x2 = 300, y2 = 500;
|
|
processPosition(mapper, x1, y1);
|
|
processId(mapper, 1);
|
|
processMTSync(mapper);
|
|
processPosition(mapper, x2, y2);
|
|
processId(mapper, 2);
|
|
processMTSync(mapper);
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, motionArgs.action);
|
|
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
|
|
ASSERT_EQ(1, motionArgs.pointerIds[0]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
|
|
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0));
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
|
|
motionArgs.action);
|
|
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
|
|
ASSERT_EQ(1, motionArgs.pointerIds[0]);
|
|
ASSERT_EQ(2, motionArgs.pointerIds[1]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
|
|
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0));
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
|
|
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0));
|
|
|
|
// Move.
|
|
x1 += 10; y1 += 15; x2 += 5; y2 -= 10;
|
|
processPosition(mapper, x1, y1);
|
|
processId(mapper, 1);
|
|
processMTSync(mapper);
|
|
processPosition(mapper, x2, y2);
|
|
processId(mapper, 2);
|
|
processMTSync(mapper);
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
|
|
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
|
|
ASSERT_EQ(1, motionArgs.pointerIds[0]);
|
|
ASSERT_EQ(2, motionArgs.pointerIds[1]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
|
|
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0));
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
|
|
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0));
|
|
|
|
// First finger up.
|
|
x2 += 15; y2 -= 20;
|
|
processPosition(mapper, x2, y2);
|
|
processId(mapper, 2);
|
|
processMTSync(mapper);
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_UP | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
|
|
motionArgs.action);
|
|
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
|
|
ASSERT_EQ(1, motionArgs.pointerIds[0]);
|
|
ASSERT_EQ(2, motionArgs.pointerIds[1]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
|
|
toDisplayX(x1), toDisplayY(y1), 1, 0, 0, 0, 0, 0, 0));
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
|
|
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0));
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
|
|
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
|
|
ASSERT_EQ(2, motionArgs.pointerIds[0]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
|
|
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0));
|
|
|
|
// Move.
|
|
x2 += 20; y2 -= 25;
|
|
processPosition(mapper, x2, y2);
|
|
processId(mapper, 2);
|
|
processMTSync(mapper);
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
|
|
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
|
|
ASSERT_EQ(2, motionArgs.pointerIds[0]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
|
|
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0));
|
|
|
|
// New finger down.
|
|
int32_t x3 = 700, y3 = 300;
|
|
processPosition(mapper, x2, y2);
|
|
processId(mapper, 2);
|
|
processMTSync(mapper);
|
|
processPosition(mapper, x3, y3);
|
|
processId(mapper, 3);
|
|
processMTSync(mapper);
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
|
|
motionArgs.action);
|
|
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
|
|
ASSERT_EQ(2, motionArgs.pointerIds[0]);
|
|
ASSERT_EQ(3, motionArgs.pointerIds[1]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
|
|
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0));
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
|
|
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0));
|
|
|
|
// Second finger up.
|
|
x3 += 30; y3 -= 20;
|
|
processPosition(mapper, x3, y3);
|
|
processId(mapper, 3);
|
|
processMTSync(mapper);
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_UP | (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
|
|
motionArgs.action);
|
|
ASSERT_EQ(size_t(2), motionArgs.pointerCount);
|
|
ASSERT_EQ(2, motionArgs.pointerIds[0]);
|
|
ASSERT_EQ(3, motionArgs.pointerIds[1]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
|
|
toDisplayX(x2), toDisplayY(y2), 1, 0, 0, 0, 0, 0, 0));
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[1],
|
|
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0));
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_MOVE, motionArgs.action);
|
|
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
|
|
ASSERT_EQ(3, motionArgs.pointerIds[0]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
|
|
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0));
|
|
|
|
// Last finger up.
|
|
processMTSync(mapper);
|
|
processSync(mapper);
|
|
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&motionArgs));
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_UP, motionArgs.action);
|
|
ASSERT_EQ(size_t(1), motionArgs.pointerCount);
|
|
ASSERT_EQ(3, motionArgs.pointerIds[0]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(motionArgs.pointerCoords[0],
|
|
toDisplayX(x3), toDisplayY(y3), 1, 0, 0, 0, 0, 0, 0));
|
|
|
|
// Should not have sent any more keys or motions.
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyKeyWasNotCalled());
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasNotCalled());
|
|
}
|
|
|
|
TEST_F(MultiTouchInputMapperTest, Process_AllAxes_WithDefaultCalibration) {
|
|
MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice, DISPLAY_ID);
|
|
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
|
|
prepareAxes(POSITION | TOUCH | TOOL | PRESSURE | ORIENTATION | ID | MINOR);
|
|
addMapperAndConfigure(mapper);
|
|
|
|
// These calculations are based on the input device calibration documentation.
|
|
int32_t rawX = 100;
|
|
int32_t rawY = 200;
|
|
int32_t rawTouchMajor = 7;
|
|
int32_t rawTouchMinor = 6;
|
|
int32_t rawToolMajor = 9;
|
|
int32_t rawToolMinor = 8;
|
|
int32_t rawPressure = 11;
|
|
int32_t rawOrientation = 3;
|
|
int32_t id = 5;
|
|
|
|
float x = toDisplayX(rawX);
|
|
float y = toDisplayY(rawY);
|
|
float pressure = float(rawPressure) / RAW_PRESSURE_MAX;
|
|
float size = avg(rawToolMajor, rawToolMinor) / RAW_TOOL_MAX;
|
|
float toolMajor = float(min(DISPLAY_WIDTH, DISPLAY_HEIGHT)) * rawToolMajor / RAW_TOOL_MAX;
|
|
float toolMinor = float(min(DISPLAY_WIDTH, DISPLAY_HEIGHT)) * rawToolMinor / RAW_TOOL_MAX;
|
|
float touchMajor = min(toolMajor * pressure, toolMajor);
|
|
float touchMinor = min(toolMinor * pressure, toolMinor);
|
|
float orientation = float(rawOrientation) / RAW_ORIENTATION_MAX * M_PI_2;
|
|
|
|
processPosition(mapper, rawX, rawY);
|
|
processTouchMajor(mapper, rawTouchMajor);
|
|
processTouchMinor(mapper, rawTouchMinor);
|
|
processToolMajor(mapper, rawToolMajor);
|
|
processToolMinor(mapper, rawToolMinor);
|
|
processPressure(mapper, rawPressure);
|
|
processOrientation(mapper, rawOrientation);
|
|
processId(mapper, id);
|
|
processMTSync(mapper);
|
|
processSync(mapper);
|
|
|
|
FakeInputDispatcher::NotifyMotionArgs args;
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
|
|
ASSERT_EQ(id, args.pointerIds[0]);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
|
|
x, y, pressure, size, touchMajor, touchMinor, toolMajor, toolMinor, orientation));
|
|
}
|
|
|
|
TEST_F(MultiTouchInputMapperTest, Process_TouchAndToolAxes_GeometricCalibration) {
|
|
MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice, DISPLAY_ID);
|
|
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
|
|
prepareAxes(POSITION | TOUCH | TOOL | MINOR);
|
|
prepareCalibration("touch.touchSize.calibration", "geometric");
|
|
prepareCalibration("touch.toolSize.calibration", "geometric");
|
|
addMapperAndConfigure(mapper);
|
|
|
|
// These calculations are based on the input device calibration documentation.
|
|
int32_t rawX = 100;
|
|
int32_t rawY = 200;
|
|
int32_t rawTouchMajor = 140;
|
|
int32_t rawTouchMinor = 120;
|
|
int32_t rawToolMajor = 180;
|
|
int32_t rawToolMinor = 160;
|
|
|
|
float x = toDisplayX(rawX);
|
|
float y = toDisplayY(rawY);
|
|
float pressure = float(rawTouchMajor) / RAW_TOUCH_MAX;
|
|
float size = avg(rawToolMajor, rawToolMinor) / RAW_TOOL_MAX;
|
|
float scale = avg(float(DISPLAY_WIDTH) / (RAW_X_MAX - RAW_X_MIN),
|
|
float(DISPLAY_HEIGHT) / (RAW_Y_MAX - RAW_Y_MIN));
|
|
float toolMajor = float(rawToolMajor) * scale;
|
|
float toolMinor = float(rawToolMinor) * scale;
|
|
float touchMajor = min(float(rawTouchMajor) * scale, toolMajor);
|
|
float touchMinor = min(float(rawTouchMinor) * scale, toolMinor);
|
|
|
|
processPosition(mapper, rawX, rawY);
|
|
processTouchMajor(mapper, rawTouchMajor);
|
|
processTouchMinor(mapper, rawTouchMinor);
|
|
processToolMajor(mapper, rawToolMajor);
|
|
processToolMinor(mapper, rawToolMinor);
|
|
processMTSync(mapper);
|
|
processSync(mapper);
|
|
|
|
FakeInputDispatcher::NotifyMotionArgs args;
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
|
|
x, y, pressure, size, touchMajor, touchMinor, toolMajor, toolMinor, 0));
|
|
}
|
|
|
|
TEST_F(MultiTouchInputMapperTest, Process_TouchToolPressureSizeAxes_SummedLinearCalibration) {
|
|
MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice, DISPLAY_ID);
|
|
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
|
|
prepareAxes(POSITION | TOUCH | TOOL);
|
|
prepareCalibration("touch.touchSize.calibration", "pressure");
|
|
prepareCalibration("touch.toolSize.calibration", "linear");
|
|
prepareCalibration("touch.toolSize.linearScale", "10");
|
|
prepareCalibration("touch.toolSize.linearBias", "160");
|
|
prepareCalibration("touch.toolSize.isSummed", "1");
|
|
prepareCalibration("touch.pressure.calibration", "amplitude");
|
|
prepareCalibration("touch.pressure.source", "touch");
|
|
prepareCalibration("touch.pressure.scale", "0.01");
|
|
addMapperAndConfigure(mapper);
|
|
|
|
// These calculations are based on the input device calibration documentation.
|
|
// Note: We only provide a single common touch/tool value because the device is assumed
|
|
// not to emit separate values for each pointer (isSummed = 1).
|
|
int32_t rawX = 100;
|
|
int32_t rawY = 200;
|
|
int32_t rawX2 = 150;
|
|
int32_t rawY2 = 250;
|
|
int32_t rawTouchMajor = 60;
|
|
int32_t rawToolMajor = 5;
|
|
|
|
float x = toDisplayX(rawX);
|
|
float y = toDisplayY(rawY);
|
|
float x2 = toDisplayX(rawX2);
|
|
float y2 = toDisplayY(rawY2);
|
|
float pressure = float(rawTouchMajor) * 0.01f;
|
|
float size = float(rawToolMajor) / RAW_TOOL_MAX;
|
|
float tool = (float(rawToolMajor) * 10.0f + 160.0f) / 2;
|
|
float touch = min(tool * pressure, tool);
|
|
|
|
processPosition(mapper, rawX, rawY);
|
|
processTouchMajor(mapper, rawTouchMajor);
|
|
processToolMajor(mapper, rawToolMajor);
|
|
processMTSync(mapper);
|
|
processPosition(mapper, rawX2, rawY2);
|
|
processTouchMajor(mapper, rawTouchMajor);
|
|
processToolMajor(mapper, rawToolMajor);
|
|
processMTSync(mapper);
|
|
processSync(mapper);
|
|
|
|
FakeInputDispatcher::NotifyMotionArgs args;
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_DOWN, args.action);
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
|
|
ASSERT_EQ(AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT),
|
|
args.action);
|
|
ASSERT_EQ(size_t(2), args.pointerCount);
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
|
|
x, y, pressure, size, touch, touch, tool, tool, 0));
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[1],
|
|
x2, y2, pressure, size, touch, touch, tool, tool, 0));
|
|
}
|
|
|
|
TEST_F(MultiTouchInputMapperTest, Process_TouchToolPressureSizeAxes_AreaCalibration) {
|
|
MultiTouchInputMapper* mapper = new MultiTouchInputMapper(mDevice, DISPLAY_ID);
|
|
prepareDisplay(InputReaderPolicyInterface::ROTATION_0);
|
|
prepareAxes(POSITION | TOUCH | TOOL);
|
|
prepareCalibration("touch.touchSize.calibration", "pressure");
|
|
prepareCalibration("touch.toolSize.calibration", "area");
|
|
prepareCalibration("touch.toolSize.areaScale", "22");
|
|
prepareCalibration("touch.toolSize.areaBias", "1");
|
|
prepareCalibration("touch.toolSize.linearScale", "9.2");
|
|
prepareCalibration("touch.toolSize.linearBias", "3");
|
|
prepareCalibration("touch.pressure.calibration", "amplitude");
|
|
prepareCalibration("touch.pressure.source", "touch");
|
|
prepareCalibration("touch.pressure.scale", "0.01");
|
|
addMapperAndConfigure(mapper);
|
|
|
|
// These calculations are based on the input device calibration documentation.
|
|
int32_t rawX = 100;
|
|
int32_t rawY = 200;
|
|
int32_t rawTouchMajor = 60;
|
|
int32_t rawToolMajor = 5;
|
|
|
|
float x = toDisplayX(rawX);
|
|
float y = toDisplayY(rawY);
|
|
float pressure = float(rawTouchMajor) * 0.01f;
|
|
float size = float(rawToolMajor) / RAW_TOOL_MAX;
|
|
float tool = sqrtf(float(rawToolMajor) * 22.0f + 1.0f) * 9.2f + 3.0f;
|
|
float touch = min(tool * pressure, tool);
|
|
|
|
processPosition(mapper, rawX, rawY);
|
|
processTouchMajor(mapper, rawTouchMajor);
|
|
processToolMajor(mapper, rawToolMajor);
|
|
processMTSync(mapper);
|
|
processSync(mapper);
|
|
|
|
FakeInputDispatcher::NotifyMotionArgs args;
|
|
ASSERT_NO_FATAL_FAILURE(mFakeDispatcher->assertNotifyMotionWasCalled(&args));
|
|
ASSERT_NO_FATAL_FAILURE(assertPointerCoords(args.pointerCoords[0],
|
|
x, y, pressure, size, touch, touch, tool, tool, 0));
|
|
}
|
|
|
|
} // namespace android
|