replicant-frameworks_native/services/sensorservice/Fusion.cpp
Mathias Agopian 24f9bea8eb revert parts of dc5b63e40, which made gyro drift estimation unstable
initialize the system covariance matrix with non-zero
    values for the gyro-bias part. this improves the initial
    bias estimation speed significantly.

the initial covariance matrix should be small because the drift
changes slowly. the real problem is that we're not starting with
a good estimate of the drift, which this algorithm relies on.

so with this revert, it'll take a while for the drift to be estimated
but it won't be unstable.

Change-Id: Id5584bc114a2390d507643b2451b2650c1b90721
2013-05-30 14:26:36 -07:00

482 lines
13 KiB
C++

/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdio.h>
#include <utils/Log.h>
#include "Fusion.h"
namespace android {
// -----------------------------------------------------------------------
/*
* gyroVAR gives the measured variance of the gyro's output per
* Hz (or variance at 1 Hz). This is an "intrinsic" parameter of the gyro,
* which is independent of the sampling frequency.
*
* The variance of gyro's output at a given sampling period can be
* calculated as:
* variance(T) = gyroVAR / T
*
* The variance of the INTEGRATED OUTPUT at a given sampling period can be
* calculated as:
* variance_integrate_output(T) = gyroVAR * T
*
*/
static const float gyroVAR = 1e-7; // (rad/s)^2 / Hz
static const float biasVAR = 1e-8; // (rad/s)^2 / s (guessed)
/*
* Standard deviations of accelerometer and magnetometer
*/
static const float accSTDEV = 0.05f; // m/s^2 (measured 0.08 / CDD 0.05)
static const float magSTDEV = 0.5f; // uT (measured 0.7 / CDD 0.5)
static const float SYMMETRY_TOLERANCE = 1e-10f;
/*
* Accelerometer updates will not be performed near free fall to avoid
* ill-conditioning and div by zeros.
* Threshhold: 10% of g, in m/s^2
*/
static const float FREE_FALL_THRESHOLD = 0.981f;
static const float FREE_FALL_THRESHOLD_SQ =
FREE_FALL_THRESHOLD*FREE_FALL_THRESHOLD;
/*
* The geomagnetic-field should be between 30uT and 60uT.
* Fields strengths greater than this likely indicate a local magnetic
* disturbance which we do not want to update into the fused frame.
*/
static const float MAX_VALID_MAGNETIC_FIELD = 100; // uT
static const float MAX_VALID_MAGNETIC_FIELD_SQ =
MAX_VALID_MAGNETIC_FIELD*MAX_VALID_MAGNETIC_FIELD;
/*
* Values of the field smaller than this should be ignored in fusion to avoid
* ill-conditioning. This state can happen with anomalous local magnetic
* disturbances canceling the Earth field.
*/
static const float MIN_VALID_MAGNETIC_FIELD = 10; // uT
static const float MIN_VALID_MAGNETIC_FIELD_SQ =
MIN_VALID_MAGNETIC_FIELD*MIN_VALID_MAGNETIC_FIELD;
/*
* If the cross product of two vectors has magnitude squared less than this,
* we reject it as invalid due to alignment of the vectors.
* This threshold is used to check for the case where the magnetic field sample
* is parallel to the gravity field, which can happen in certain places due
* to magnetic field disturbances.
*/
static const float MIN_VALID_CROSS_PRODUCT_MAG = 1.0e-3;
static const float MIN_VALID_CROSS_PRODUCT_MAG_SQ =
MIN_VALID_CROSS_PRODUCT_MAG*MIN_VALID_CROSS_PRODUCT_MAG;
// -----------------------------------------------------------------------
template <typename TYPE, size_t C, size_t R>
static mat<TYPE, R, R> scaleCovariance(
const mat<TYPE, C, R>& A,
const mat<TYPE, C, C>& P) {
// A*P*transpose(A);
mat<TYPE, R, R> APAt;
for (size_t r=0 ; r<R ; r++) {
for (size_t j=r ; j<R ; j++) {
double apat(0);
for (size_t c=0 ; c<C ; c++) {
double v(A[c][r]*P[c][c]*0.5);
for (size_t k=c+1 ; k<C ; k++)
v += A[k][r] * P[c][k];
apat += 2 * v * A[c][j];
}
APAt[j][r] = apat;
APAt[r][j] = apat;
}
}
return APAt;
}
template <typename TYPE, typename OTHER_TYPE>
static mat<TYPE, 3, 3> crossMatrix(const vec<TYPE, 3>& p, OTHER_TYPE diag) {
mat<TYPE, 3, 3> r;
r[0][0] = diag;
r[1][1] = diag;
r[2][2] = diag;
r[0][1] = p.z;
r[1][0] =-p.z;
r[0][2] =-p.y;
r[2][0] = p.y;
r[1][2] = p.x;
r[2][1] =-p.x;
return r;
}
template<typename TYPE, size_t SIZE>
class Covariance {
mat<TYPE, SIZE, SIZE> mSumXX;
vec<TYPE, SIZE> mSumX;
size_t mN;
public:
Covariance() : mSumXX(0.0f), mSumX(0.0f), mN(0) { }
void update(const vec<TYPE, SIZE>& x) {
mSumXX += x*transpose(x);
mSumX += x;
mN++;
}
mat<TYPE, SIZE, SIZE> operator()() const {
const float N = 1.0f / mN;
return mSumXX*N - (mSumX*transpose(mSumX))*(N*N);
}
void reset() {
mN = 0;
mSumXX = 0;
mSumX = 0;
}
size_t getCount() const {
return mN;
}
};
// -----------------------------------------------------------------------
Fusion::Fusion() {
Phi[0][1] = 0;
Phi[1][1] = 1;
Ba.x = 0;
Ba.y = 0;
Ba.z = 1;
Bm.x = 0;
Bm.y = 1;
Bm.z = 0;
x0 = 0;
x1 = 0;
init();
}
void Fusion::init() {
mInitState = 0;
mGyroRate = 0;
mCount[0] = 0;
mCount[1] = 0;
mCount[2] = 0;
mData = 0;
}
void Fusion::initFusion(const vec4_t& q, float dT)
{
// initial estimate: E{ x(t0) }
x0 = q;
x1 = 0;
// process noise covariance matrix: G.Q.Gt, with
//
// G = | -1 0 | Q = | q00 q10 |
// | 0 1 | | q01 q11 |
//
// q00 = sv^2.dt + 1/3.su^2.dt^3
// q10 = q01 = 1/2.su^2.dt^2
// q11 = su^2.dt
//
const float dT2 = dT*dT;
const float dT3 = dT2*dT;
// variance of integrated output at 1/dT Hz (random drift)
const float q00 = gyroVAR * dT + 0.33333f * biasVAR * dT3;
// variance of drift rate ramp
const float q11 = biasVAR * dT;
const float q10 = 0.5f * biasVAR * dT2;
const float q01 = q10;
GQGt[0][0] = q00; // rad^2
GQGt[1][0] = -q10;
GQGt[0][1] = -q01;
GQGt[1][1] = q11; // (rad/s)^2
// initial covariance: Var{ x(t0) }
// TODO: initialize P correctly
P = 0;
}
bool Fusion::hasEstimate() const {
return (mInitState == (MAG|ACC|GYRO));
}
bool Fusion::checkInitComplete(int what, const vec3_t& d, float dT) {
if (hasEstimate())
return true;
if (what == ACC) {
mData[0] += d * (1/length(d));
mCount[0]++;
mInitState |= ACC;
} else if (what == MAG) {
mData[1] += d * (1/length(d));
mCount[1]++;
mInitState |= MAG;
} else if (what == GYRO) {
mGyroRate = dT;
mData[2] += d*dT;
mCount[2]++;
if (mCount[2] == 64) {
// 64 samples is good enough to estimate the gyro drift and
// doesn't take too much time.
mInitState |= GYRO;
}
}
if (mInitState == (MAG|ACC|GYRO)) {
// Average all the values we collected so far
mData[0] *= 1.0f/mCount[0];
mData[1] *= 1.0f/mCount[1];
mData[2] *= 1.0f/mCount[2];
// calculate the MRPs from the data collection, this gives us
// a rough estimate of our initial state
mat33_t R;
vec3_t up(mData[0]);
vec3_t east(cross_product(mData[1], up));
east *= 1/length(east);
vec3_t north(cross_product(up, east));
R << east << north << up;
const vec4_t q = matrixToQuat(R);
initFusion(q, mGyroRate);
}
return false;
}
void Fusion::handleGyro(const vec3_t& w, float dT) {
if (!checkInitComplete(GYRO, w, dT))
return;
predict(w, dT);
}
status_t Fusion::handleAcc(const vec3_t& a) {
// ignore acceleration data if we're close to free-fall
if (length_squared(a) < FREE_FALL_THRESHOLD_SQ) {
return BAD_VALUE;
}
if (!checkInitComplete(ACC, a))
return BAD_VALUE;
const float l = 1/length(a);
update(a*l, Ba, accSTDEV*l);
return NO_ERROR;
}
status_t Fusion::handleMag(const vec3_t& m) {
// the geomagnetic-field should be between 30uT and 60uT
// reject if too large to avoid spurious magnetic sources
const float magFieldSq = length_squared(m);
if (magFieldSq > MAX_VALID_MAGNETIC_FIELD_SQ) {
return BAD_VALUE;
} else if (magFieldSq < MIN_VALID_MAGNETIC_FIELD_SQ) {
// Also reject if too small since we will get ill-defined (zero mag)
// cross-products below
return BAD_VALUE;
}
if (!checkInitComplete(MAG, m))
return BAD_VALUE;
// Orthogonalize the magnetic field to the gravity field, mapping it into
// tangent to Earth.
const vec3_t up( getRotationMatrix() * Ba );
const vec3_t east( cross_product(m, up) );
// If the m and up vectors align, the cross product magnitude will
// approach 0.
// Reject this case as well to avoid div by zero problems and
// ill-conditioning below.
if (length_squared(east) < MIN_VALID_CROSS_PRODUCT_MAG_SQ) {
return BAD_VALUE;
}
// If we have created an orthogonal magnetic field successfully,
// then pass it in as the update.
vec3_t north( cross_product(up, east) );
const float l = 1 / length(north);
north *= l;
update(north, Bm, magSTDEV*l);
return NO_ERROR;
}
void Fusion::checkState() {
// P needs to stay positive semidefinite or the fusion diverges. When we
// detect divergence, we reset the fusion.
// TODO(braun): Instead, find the reason for the divergence and fix it.
if (!isPositiveSemidefinite(P[0][0], SYMMETRY_TOLERANCE) ||
!isPositiveSemidefinite(P[1][1], SYMMETRY_TOLERANCE)) {
ALOGW("Sensor fusion diverged; resetting state.");
P = 0;
}
}
vec4_t Fusion::getAttitude() const {
return x0;
}
vec3_t Fusion::getBias() const {
return x1;
}
mat33_t Fusion::getRotationMatrix() const {
return quatToMatrix(x0);
}
mat34_t Fusion::getF(const vec4_t& q) {
mat34_t F;
// This is used to compute the derivative of q
// F = | [q.xyz]x |
// | -q.xyz |
F[0].x = q.w; F[1].x =-q.z; F[2].x = q.y;
F[0].y = q.z; F[1].y = q.w; F[2].y =-q.x;
F[0].z =-q.y; F[1].z = q.x; F[2].z = q.w;
F[0].w =-q.x; F[1].w =-q.y; F[2].w =-q.z;
return F;
}
void Fusion::predict(const vec3_t& w, float dT) {
const vec4_t q = x0;
const vec3_t b = x1;
const vec3_t we = w - b;
// q(k+1) = O(we)*q(k)
// --------------------
//
// O(w) = | cos(0.5*||w||*dT)*I33 - [psi]x psi |
// | -psi' cos(0.5*||w||*dT) |
//
// psi = sin(0.5*||w||*dT)*w / ||w||
//
//
// P(k+1) = Phi(k)*P(k)*Phi(k)' + G*Q(k)*G'
// ----------------------------------------
//
// G = | -I33 0 |
// | 0 I33 |
//
// Phi = | Phi00 Phi10 |
// | 0 1 |
//
// Phi00 = I33
// - [w]x * sin(||w||*dt)/||w||
// + [w]x^2 * (1-cos(||w||*dT))/||w||^2
//
// Phi10 = [w]x * (1 - cos(||w||*dt))/||w||^2
// - [w]x^2 * (||w||*dT - sin(||w||*dt))/||w||^3
// - I33*dT
const mat33_t I33(1);
const mat33_t I33dT(dT);
const mat33_t wx(crossMatrix(we, 0));
const mat33_t wx2(wx*wx);
const float lwedT = length(we)*dT;
const float hlwedT = 0.5f*lwedT;
const float ilwe = 1/length(we);
const float k0 = (1-cosf(lwedT))*(ilwe*ilwe);
const float k1 = sinf(lwedT);
const float k2 = cosf(hlwedT);
const vec3_t psi(sinf(hlwedT)*ilwe*we);
const mat33_t O33(crossMatrix(-psi, k2));
mat44_t O;
O[0].xyz = O33[0]; O[0].w = -psi.x;
O[1].xyz = O33[1]; O[1].w = -psi.y;
O[2].xyz = O33[2]; O[2].w = -psi.z;
O[3].xyz = psi; O[3].w = k2;
Phi[0][0] = I33 - wx*(k1*ilwe) + wx2*k0;
Phi[1][0] = wx*k0 - I33dT - wx2*(ilwe*ilwe*ilwe)*(lwedT-k1);
x0 = O*q;
if (x0.w < 0)
x0 = -x0;
P = Phi*P*transpose(Phi) + GQGt;
checkState();
}
void Fusion::update(const vec3_t& z, const vec3_t& Bi, float sigma) {
vec4_t q(x0);
// measured vector in body space: h(p) = A(p)*Bi
const mat33_t A(quatToMatrix(q));
const vec3_t Bb(A*Bi);
// Sensitivity matrix H = dh(p)/dp
// H = [ L 0 ]
const mat33_t L(crossMatrix(Bb, 0));
// gain...
// K = P*Ht / [H*P*Ht + R]
vec<mat33_t, 2> K;
const mat33_t R(sigma*sigma);
const mat33_t S(scaleCovariance(L, P[0][0]) + R);
const mat33_t Si(invert(S));
const mat33_t LtSi(transpose(L)*Si);
K[0] = P[0][0] * LtSi;
K[1] = transpose(P[1][0])*LtSi;
// update...
// P = (I-K*H) * P
// P -= K*H*P
// | K0 | * | L 0 | * P = | K0*L 0 | * | P00 P10 | = | K0*L*P00 K0*L*P10 |
// | K1 | | K1*L 0 | | P01 P11 | | K1*L*P00 K1*L*P10 |
// Note: the Joseph form is numerically more stable and given by:
// P = (I-KH) * P * (I-KH)' + K*R*R'
const mat33_t K0L(K[0] * L);
const mat33_t K1L(K[1] * L);
P[0][0] -= K0L*P[0][0];
P[1][1] -= K1L*P[1][0];
P[1][0] -= K0L*P[1][0];
P[0][1] = transpose(P[1][0]);
const vec3_t e(z - Bb);
const vec3_t dq(K[0]*e);
const vec3_t db(K[1]*e);
q += getF(q)*(0.5f*dq);
x0 = normalize_quat(q);
x1 += db;
checkState();
}
// -----------------------------------------------------------------------
}; // namespace android