replicant-frameworks_native/opengl/tests/hwc/hwc_stress.cpp
Louis Huemiller 5d86b53dc1 HWC Stres Test Enhancments
+ YV12 width/height divisable by 2
  + Row width determined by getStride()
  + Misc comment and whitespace fixes
  + printf changed to testPrintI

Change-Id: I27551141bafbfb258eb1b6b7f63c5295b1f9501a
2010-12-14 10:31:57 -08:00

1263 lines
44 KiB
C++

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
/*
* Hardware Composer stress test
*
* Performs a pseudo-random (prandom) sequence of operations to the
* Hardware Composer (HWC), for a specified number of passes or for
* a specified period of time. By default the period of time is FLT_MAX,
* so that the number of passes will take precedence.
*
* The passes are grouped together, where (pass / passesPerGroup) specifies
* which group a particular pass is in. This causes every passesPerGroup
* worth of sequential passes to be within the same group. Computationally
* intensive operations are performed just once at the beginning of a group
* of passes and then used by all the passes in that group. This is done
* so as to increase both the average and peak rate of graphic operations,
* by moving computationally intensive operations to the beginning of a group.
* In particular, at the start of each group of passes a set of
* graphic buffers are created, then used by the first and remaining
* passes of that group of passes.
*
* The per-group initialization of the graphic buffers is performed
* by a function called initFrames. This function creates an array
* of smart pointers to the graphic buffers, in the form of a vector
* of vectors. The array is accessed in row major order, so each
* row is a vector of smart pointers. All the pointers of a single
* row point to graphic buffers which use the same pixel format and
* have the same dimension, although it is likely that each one is
* filled with a different color. This is done so that after doing
* the first HWC prepare then set call, subsequent set calls can
* be made with each of the layer handles changed to a different
* graphic buffer within the same row. Since the graphic buffers
* in a particular row have the same pixel format and dimension,
* additional HWC set calls can be made, without having to perform
* an HWC prepare call.
*
* This test supports the following command-line options:
*
* -v Verbose
* -s num Starting pass
* -e num Ending pass
* -p num Execute the single pass specified by num
* -n num Number of set operations to perform after each prepare operation
* -t float Maximum time in seconds to execute the test
* -d float Delay in seconds performed after each set operation
* -D float Delay in seconds performed after the last pass is executed
*
* Typically the test is executed for a large range of passes. By default
* passes 0 through 99999 (100,000 passes) are executed. Although this test
* does not validate the generated image, at times it is useful to reexecute
* a particular pass and leave the displayed image on the screen for an
* extended period of time. This can be done either by setting the -s
* and -e options to the desired pass, along with a large value for -D.
* This can also be done via the -p option, again with a large value for
* the -D options.
*
* So far this test only contains code to create graphic buffers with
* a continuous solid color. Although this test is unable to validate the
* image produced, any image that contains other than rectangles of a solid
* color are incorrect. Note that the rectangles may use a transparent
* color and have a blending operation that causes the color in overlapping
* rectangles to be mixed. In such cases the overlapping portions may have
* a different color from the rest of the rectangle.
*/
#include <algorithm>
#include <assert.h>
#include <cerrno>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <libgen.h>
#include <sched.h>
#include <sstream>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <vector>
#include <arpa/inet.h> // For ntohl() and htonl()
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <EGL/egl.h>
#include <EGL/eglext.h>
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#include <ui/FramebufferNativeWindow.h>
#include <ui/GraphicBuffer.h>
#include <ui/EGLUtils.h>
#define LOG_TAG "hwcStressTest"
#include <utils/Log.h>
#include <testUtil.h>
#include <hardware/hwcomposer.h>
using namespace std;
using namespace android;
const float maxSizeRatio = 1.3; // Graphic buffers can be upto this munch
// larger than the default screen size
const unsigned int passesPerGroup = 10; // A group of passes all use the same
// graphic buffers
// Ratios at which rare and frequent conditions should be produced
const float rareRatio = 0.1;
const float freqRatio = 0.9;
// Defaults for command-line options
const bool defaultVerbose = false;
const unsigned int defaultStartPass = 0;
const unsigned int defaultEndPass = 99999;
const unsigned int defaultPerPassNumSet = 10;
const float defaultPerSetDelay = 0.0; // Default delay after each set
// operation. Default delay of
// zero used so as to perform the
// the set operations as quickly
// as possible.
const float defaultEndDelay = 2.0; // Default delay between completion of
// final pass and restart of framework
const float defaultDuration = FLT_MAX; // A fairly long time, so that
// range of passes will have
// precedence
// Command-line option settings
static bool verbose = defaultVerbose;
static unsigned int startPass = defaultStartPass;
static unsigned int endPass = defaultEndPass;
static unsigned int numSet = defaultPerPassNumSet;
static float perSetDelay = defaultPerSetDelay;
static float endDelay = defaultEndDelay;
static float duration = defaultDuration;
// Command-line mutual exclusion detection flags.
// Corresponding flag set true once an option is used.
bool eFlag, sFlag, pFlag;
#define MAXSTR 100
#define MAXCMD 200
#define BITSPERBYTE 8 // TODO: Obtain from <values.h>, once
// it has been added
#define CMD_STOP_FRAMEWORK "stop 2>&1"
#define CMD_START_FRAMEWORK "start 2>&1"
#define NUMA(a) (sizeof(a) / sizeof(a [0]))
#define MEMCLR(addr, size) do { \
memset((addr), 0, (size)); \
} while (0)
// Represent RGB color as fraction of color components.
// Each of the color components are expected in the range [0.0, 1.0]
class RGBColor {
public:
RGBColor(): _r(0.0), _g(0.0), _b(0.0) {};
RGBColor(float f): _r(f), _g(f), _b(f) {}; // Gray
RGBColor(float r, float g, float b): _r(r), _g(g), _b(b) {};
float r(void) const { return _r; }
float g(void) const { return _g; }
float b(void) const { return _b; }
private:
float _r;
float _g;
float _b;
};
// Represent YUV color as fraction of color components.
// Each of the color components are expected in the range [0.0, 1.0]
class YUVColor {
public:
YUVColor(): _y(0.0), _u(0.0), _v(0.0) {};
YUVColor(float f): _y(f), _u(0.0), _v(0.0) {}; // Gray
YUVColor(float y, float u, float v): _y(y), _u(u), _v(v) {};
float y(void) const { return _y; }
float u(void) const { return _u; }
float v(void) const { return _v; }
private:
float _y;
float _u;
float _v;
};
// File scope constants
static const struct graphicFormat {
unsigned int format;
const char *desc;
unsigned int wMod, hMod; // Width/height mod this value must equal zero
} graphicFormat[] = {
{HAL_PIXEL_FORMAT_RGBA_8888, "RGBA8888", 1, 1},
{HAL_PIXEL_FORMAT_RGBX_8888, "RGBX8888", 1, 1},
{HAL_PIXEL_FORMAT_RGB_888, "RGB888", 1, 1},
{HAL_PIXEL_FORMAT_RGB_565, "RGB565", 1, 1},
{HAL_PIXEL_FORMAT_BGRA_8888, "BGRA8888", 1, 1},
{HAL_PIXEL_FORMAT_RGBA_5551, "RGBA5551", 1, 1},
{HAL_PIXEL_FORMAT_RGBA_4444, "RGBA4444", 1, 1},
{HAL_PIXEL_FORMAT_YV12, "YV12", 2, 2},
};
const unsigned int blendingOps[] = {
HWC_BLENDING_NONE,
HWC_BLENDING_PREMULT,
HWC_BLENDING_COVERAGE,
};
const unsigned int layerFlags[] = {
HWC_SKIP_LAYER,
};
const vector<unsigned int> vecLayerFlags(layerFlags,
layerFlags + NUMA(layerFlags));
const unsigned int transformFlags[] = {
HWC_TRANSFORM_FLIP_H,
HWC_TRANSFORM_FLIP_V,
HWC_TRANSFORM_ROT_90,
// ROT_180 & ROT_270 intentionally not listed, because they
// they are formed from combinations of the flags already listed.
};
const vector<unsigned int> vecTransformFlags(transformFlags,
transformFlags + NUMA(transformFlags));
// File scope globals
static const int texUsage = GraphicBuffer::USAGE_HW_TEXTURE |
GraphicBuffer::USAGE_SW_WRITE_RARELY;
static hw_module_t const *hwcModule;
static hwc_composer_device_t *hwcDevice;
static vector <vector <sp<GraphicBuffer> > > frames;
static EGLDisplay dpy;
static EGLContext context;
static EGLSurface surface;
static EGLint width, height;
// File scope prototypes
static void execCmd(const char *cmd);
static void checkEglError(const char* op, EGLBoolean returnVal = EGL_TRUE);
static void checkGlError(const char* op);
static void printEGLConfiguration(EGLDisplay dpy, EGLConfig config);
static void printGLString(const char *name, GLenum s);
static hwc_layer_list_t *createLayerList(size_t numLayers);
static void freeLayerList(hwc_layer_list_t *list);
static void fillColor(GraphicBuffer *gBuf, RGBColor color, float trans);
static void fillColor(GraphicBuffer *gBuf, YUVColor color, float trans);
void init(void);
void initFrames(unsigned int seed);
void displayList(hwc_layer_list_t *list);
void displayListPrepareModifiable(hwc_layer_list_t *list);
void displayListHandles(hwc_layer_list_t *list);
const char *graphicFormat2str(unsigned int format);
template <class T> vector<T> vectorRandSelect(const vector<T>& vec, size_t num);
template <class T> T vectorOr(const vector<T>& vec);
/*
* Main
*
* Performs the following high-level sequence of operations:
*
* 1. Command-line parsing
*
* 2. Initialization
*
* 3. For each pass:
*
* a. If pass is first pass or in a different group from the
* previous pass, initialize the array of graphic buffers.
*
* b. Create a HWC list with room to specify a prandomly
* selected number of layers.
*
* c. Select a subset of the rows from the graphic buffer array,
* such that there is a unique row to be used for each
* of the layers in the HWC list.
*
* d. Prandomly fill in the HWC list with handles
* selected from any of the columns of the selected row.
*
* e. Pass the populated list to the HWC prepare call.
*
* f. Pass the populated list to the HWC set call.
*
* g. If additional set calls are to be made, then for each
* additional set call, select a new set of handles and
* perform the set call.
*/
int
main(int argc, char *argv[])
{
int rv, opt;
char *chptr;
unsigned int pass;
char cmd[MAXCMD];
struct timeval startTime, currentTime, delta;
testSetLogCatTag(LOG_TAG);
// Parse command line arguments
while ((opt = getopt(argc, argv, "vp:d:D:n:s:e:t:?h")) != -1) {
switch (opt) {
case 'd': // Delay after each set operation
perSetDelay = strtod(optarg, &chptr);
if ((*chptr != '\0') || (perSetDelay < 0.0)) {
testPrintE("Invalid command-line specified per pass delay of: "
"%s", optarg);
exit(1);
}
break;
case 'D': // End of test delay
// Delay between completion of final pass and restart
// of framework
endDelay = strtod(optarg, &chptr);
if ((*chptr != '\0') || (endDelay < 0.0)) {
testPrintE("Invalid command-line specified end of test delay "
"of: %s", optarg);
exit(2);
}
break;
case 't': // Duration
duration = strtod(optarg, &chptr);
if ((*chptr != '\0') || (duration < 0.0)) {
testPrintE("Invalid command-line specified duration of: %s",
optarg);
exit(3);
}
break;
case 'n': // Num set operations per pass
numSet = strtoul(optarg, &chptr, 10);
if (*chptr != '\0') {
testPrintE("Invalid command-line specified num set per pass "
"of: %s", optarg);
exit(4);
}
break;
case 's': // Starting Pass
sFlag = true;
if (pFlag) {
testPrintE("Invalid combination of command-line options.");
testPrintE(" The -p option is mutually exclusive from the");
testPrintE(" -s and -e options.");
exit(5);
}
startPass = strtoul(optarg, &chptr, 10);
if (*chptr != '\0') {
testPrintE("Invalid command-line specified starting pass "
"of: %s", optarg);
exit(6);
}
break;
case 'e': // Ending Pass
eFlag = true;
if (pFlag) {
testPrintE("Invalid combination of command-line options.");
testPrintE(" The -p option is mutually exclusive from the");
testPrintE(" -s and -e options.");
exit(7);
}
endPass = strtoul(optarg, &chptr, 10);
if (*chptr != '\0') {
testPrintE("Invalid command-line specified ending pass "
"of: %s", optarg);
exit(8);
}
break;
case 'p': // Run a single specified pass
pFlag = true;
if (sFlag || eFlag) {
testPrintE("Invalid combination of command-line options.");
testPrintE(" The -p option is mutually exclusive from the");
testPrintE(" -s and -e options.");
exit(9);
}
startPass = endPass = strtoul(optarg, &chptr, 10);
if (*chptr != '\0') {
testPrintE("Invalid command-line specified pass of: %s",
optarg);
exit(10);
}
break;
case 'v': // Verbose
verbose = true;
break;
case 'h': // Help
case '?':
default:
testPrintE(" %s [options]", basename(argv[0]));
testPrintE(" options:");
testPrintE(" -p Execute specified pass");
testPrintE(" -s Starting pass");
testPrintE(" -e Ending pass");
testPrintE(" -t Duration");
testPrintE(" -d Delay after each set operation");
testPrintE(" -D End of test delay");
testPrintE(" -n Num set operations per pass");
testPrintE(" -v Verbose");
exit(((optopt == 0) || (optopt == '?')) ? 0 : 11);
}
}
if (endPass < startPass) {
testPrintE("Unexpected ending pass before starting pass");
testPrintE(" startPass: %u endPass: %u", startPass, endPass);
exit(12);
}
if (argc != optind) {
testPrintE("Unexpected command-line postional argument");
testPrintE(" %s [-s start_pass] [-e end_pass] [-t duration]",
basename(argv[0]));
exit(13);
}
testPrintI("duration: %g", duration);
testPrintI("startPass: %u", startPass);
testPrintI("endPass: %u", endPass);
testPrintI("numSet: %u", numSet);
// Stop framework
rv = snprintf(cmd, sizeof(cmd), "%s", CMD_STOP_FRAMEWORK);
if (rv >= (signed) sizeof(cmd) - 1) {
testPrintE("Command too long for: %s", CMD_STOP_FRAMEWORK);
exit(14);
}
execCmd(cmd);
testDelay(1.0); // TODO - needs means to query whether asyncronous stop
// framework operation has completed. For now, just wait
// a long time.
init();
// For each pass
gettimeofday(&startTime, NULL);
for (pass = startPass; pass <= endPass; pass++) {
// Stop if duration of work has already been performed
gettimeofday(&currentTime, NULL);
delta = tvDelta(&startTime, &currentTime);
if (tv2double(&delta) > duration) { break; }
// Regenerate a new set of test frames when this pass is
// either the first pass or is in a different group then
// the previous pass. A group of passes are passes that
// all have the same quotient when their pass number is
// divided by passesPerGroup.
if ((pass == startPass)
|| ((pass / passesPerGroup) != ((pass - 1) / passesPerGroup))) {
initFrames(pass / passesPerGroup);
}
testPrintI("==== Starting pass: %u", pass);
// Cause deterministic sequence of prandom numbers to be
// generated for this pass.
srand48(pass);
hwc_layer_list_t *list;
list = createLayerList(testRandMod(frames.size()) + 1);
if (list == NULL) {
testPrintE("createLayerList failed");
exit(20);
}
// Prandomly select a subset of frames to be used by this pass.
vector <vector <sp<GraphicBuffer> > > selectedFrames;
selectedFrames = vectorRandSelect(frames, list->numHwLayers);
// Any transform tends to create a layer that the hardware
// composer is unable to support and thus has to leave for
// SurfaceFlinger. Place heavy bias on specifying no transforms.
bool noTransform = testRandFract() > rareRatio;
for (unsigned int n1 = 0; n1 < list->numHwLayers; n1++) {
unsigned int idx = testRandMod(selectedFrames[n1].size());
sp<GraphicBuffer> gBuf = selectedFrames[n1][idx];
hwc_layer_t *layer = &list->hwLayers[n1];
layer->handle = gBuf->handle;
layer->blending = blendingOps[testRandMod(NUMA(blendingOps))];
layer->flags = (testRandFract() > rareRatio) ? 0
: vectorOr(vectorRandSelect(vecLayerFlags,
testRandMod(vecLayerFlags.size() + 1)));
layer->transform = (noTransform || testRandFract() > rareRatio) ? 0
: vectorOr(vectorRandSelect(vecTransformFlags,
testRandMod(vecTransformFlags.size() + 1)));
layer->sourceCrop.left = testRandMod(gBuf->getWidth());
layer->sourceCrop.top = testRandMod(gBuf->getHeight());
layer->sourceCrop.right = layer->sourceCrop.left
+ testRandMod(gBuf->getWidth() - layer->sourceCrop.left) + 1;
layer->sourceCrop.bottom = layer->sourceCrop.top
+ testRandMod(gBuf->getHeight() - layer->sourceCrop.top) + 1;
layer->displayFrame.left = testRandMod(width);
layer->displayFrame.top = testRandMod(height);
layer->displayFrame.right = layer->displayFrame.left
+ testRandMod(width - layer->displayFrame.left) + 1;
layer->displayFrame.bottom = layer->displayFrame.top
+ testRandMod(height - layer->displayFrame.top) + 1;
// Increase the frequency that a scale factor of 1.0 from
// the sourceCrop to displayFrame occurs. This is the
// most common scale factor used by applications and would
// be rarely produced by this stress test without this
// logic.
if (testRandFract() <= freqRatio) {
// Only change to scale factor to 1.0 if both the
// width and height will fit.
int sourceWidth = layer->sourceCrop.right
- layer->sourceCrop.left;
int sourceHeight = layer->sourceCrop.bottom
- layer->sourceCrop.top;
if (((layer->displayFrame.left + sourceWidth) <= width)
&& ((layer->displayFrame.top + sourceHeight) <= height)) {
layer->displayFrame.right = layer->displayFrame.left
+ sourceWidth;
layer->displayFrame.bottom = layer->displayFrame.top
+ sourceHeight;
}
}
layer->visibleRegionScreen.numRects = 1;
layer->visibleRegionScreen.rects = &layer->displayFrame;
}
// Perform prepare operation
if (verbose) { testPrintI("Prepare:"); displayList(list); }
hwcDevice->prepare(hwcDevice, list);
if (verbose) {
testPrintI("Post Prepare:");
displayListPrepareModifiable(list);
}
// Turn off the geometry changed flag
list->flags &= ~HWC_GEOMETRY_CHANGED;
// Perform the set operation(s)
if (verbose) {testPrintI("Set:"); }
for (unsigned int n1 = 0; n1 < numSet; n1++) {
if (verbose) {displayListHandles(list); }
hwcDevice->set(hwcDevice, dpy, surface, list);
// Prandomly select a new set of handles
for (unsigned int n1 = 0; n1 < list->numHwLayers; n1++) {
unsigned int idx = testRandMod(selectedFrames[n1].size());
sp<GraphicBuffer> gBuf = selectedFrames[n1][idx];
hwc_layer_t *layer = &list->hwLayers[n1];
layer->handle = (native_handle_t *) gBuf->handle;
}
testDelay(perSetDelay);
}
freeLayerList(list);
testPrintI("==== Completed pass: %u", pass);
}
testDelay(endDelay);
// Start framework
rv = snprintf(cmd, sizeof(cmd), "%s", CMD_START_FRAMEWORK);
if (rv >= (signed) sizeof(cmd) - 1) {
testPrintE("Command too long for: %s", CMD_START_FRAMEWORK);
exit(21);
}
execCmd(cmd);
testPrintI("Successfully completed %u passes", pass - startPass);
return 0;
}
/*
* Execute Command
*
* Executes the command pointed to by cmd. Output from the
* executed command is captured and sent to LogCat Info. Once
* the command has finished execution, it's exit status is captured
* and checked for an exit status of zero. Any other exit status
* causes diagnostic information to be printed and an immediate
* testcase failure.
*/
static void execCmd(const char *cmd)
{
FILE *fp;
int rv;
int status;
char str[MAXSTR];
// Display command to be executed
testPrintI("cmd: %s", cmd);
// Execute the command
fflush(stdout);
if ((fp = popen(cmd, "r")) == NULL) {
testPrintE("execCmd popen failed, errno: %i", errno);
exit(30);
}
// Obtain and display each line of output from the executed command
while (fgets(str, sizeof(str), fp) != NULL) {
if ((strlen(str) > 1) && (str[strlen(str) - 1] == '\n')) {
str[strlen(str) - 1] = '\0';
}
testPrintI(" out: %s", str);
}
// Obtain and check return status of executed command.
// Fail on non-zero exit status
status = pclose(fp);
if (!(WIFEXITED(status) && (WEXITSTATUS(status) == 0))) {
testPrintE("Unexpected command failure");
testPrintE(" status: %#x", status);
if (WIFEXITED(status)) {
testPrintE("WEXITSTATUS: %i", WEXITSTATUS(status));
}
if (WIFSIGNALED(status)) {
testPrintE("WTERMSIG: %i", WTERMSIG(status));
}
exit(31);
}
}
static void checkEglError(const char* op, EGLBoolean returnVal) {
if (returnVal != EGL_TRUE) {
testPrintE("%s() returned %d", op, returnVal);
}
for (EGLint error = eglGetError(); error != EGL_SUCCESS; error
= eglGetError()) {
testPrintE("after %s() eglError %s (0x%x)",
op, EGLUtils::strerror(error), error);
}
}
static void checkGlError(const char* op) {
for (GLint error = glGetError(); error; error
= glGetError()) {
testPrintE("after %s() glError (0x%x)", op, error);
}
}
static void printEGLConfiguration(EGLDisplay dpy, EGLConfig config) {
#define X(VAL) {VAL, #VAL}
struct {EGLint attribute; const char* name;} names[] = {
X(EGL_BUFFER_SIZE),
X(EGL_ALPHA_SIZE),
X(EGL_BLUE_SIZE),
X(EGL_GREEN_SIZE),
X(EGL_RED_SIZE),
X(EGL_DEPTH_SIZE),
X(EGL_STENCIL_SIZE),
X(EGL_CONFIG_CAVEAT),
X(EGL_CONFIG_ID),
X(EGL_LEVEL),
X(EGL_MAX_PBUFFER_HEIGHT),
X(EGL_MAX_PBUFFER_PIXELS),
X(EGL_MAX_PBUFFER_WIDTH),
X(EGL_NATIVE_RENDERABLE),
X(EGL_NATIVE_VISUAL_ID),
X(EGL_NATIVE_VISUAL_TYPE),
X(EGL_SAMPLES),
X(EGL_SAMPLE_BUFFERS),
X(EGL_SURFACE_TYPE),
X(EGL_TRANSPARENT_TYPE),
X(EGL_TRANSPARENT_RED_VALUE),
X(EGL_TRANSPARENT_GREEN_VALUE),
X(EGL_TRANSPARENT_BLUE_VALUE),
X(EGL_BIND_TO_TEXTURE_RGB),
X(EGL_BIND_TO_TEXTURE_RGBA),
X(EGL_MIN_SWAP_INTERVAL),
X(EGL_MAX_SWAP_INTERVAL),
X(EGL_LUMINANCE_SIZE),
X(EGL_ALPHA_MASK_SIZE),
X(EGL_COLOR_BUFFER_TYPE),
X(EGL_RENDERABLE_TYPE),
X(EGL_CONFORMANT),
};
#undef X
for (size_t j = 0; j < sizeof(names) / sizeof(names[0]); j++) {
EGLint value = -1;
EGLint returnVal = eglGetConfigAttrib(dpy, config, names[j].attribute, &value);
EGLint error = eglGetError();
if (returnVal && error == EGL_SUCCESS) {
testPrintI(" %s: %d (%#x)", names[j].name, value, value);
}
}
testPrintI("");
}
static void printGLString(const char *name, GLenum s)
{
const char *v = (const char *) glGetString(s);
if (v == NULL) {
testPrintI("GL %s unknown", name);
} else {
testPrintI("GL %s = %s", name, v);
}
}
/*
* createLayerList
* dynamically creates layer list with numLayers worth
* of hwLayers entries.
*/
static hwc_layer_list_t *createLayerList(size_t numLayers)
{
hwc_layer_list_t *list;
size_t size = sizeof(hwc_layer_list) + numLayers * sizeof(hwc_layer_t);
if ((list = (hwc_layer_list_t *) calloc(1, size)) == NULL) {
return NULL;
}
list->flags = HWC_GEOMETRY_CHANGED;
list->numHwLayers = numLayers;
return list;
}
/*
* freeLayerList
* Frees memory previous allocated via createLayerList().
*/
static void freeLayerList(hwc_layer_list_t *list)
{
free(list);
}
static void fillColor(GraphicBuffer *gBuf, RGBColor color, float trans)
{
unsigned char* buf = NULL;
status_t err;
uint32_t pixel;
// RGB 2 YUV conversion ratios
const struct rgb2yuvRatios {
int format;
float weightRed;
float weightBlu;
float weightGrn;
} rgb2yuvRatios[] = {
{ HAL_PIXEL_FORMAT_YV12, 0.299, 0.114, 0.587 },
};
const struct rgbAttrib {
int format;
bool hostByteOrder;
size_t bytes;
size_t rOffset;
size_t rSize;
size_t gOffset;
size_t gSize;
size_t bOffset;
size_t bSize;
size_t aOffset;
size_t aSize;
} rgbAttributes[] = {
{HAL_PIXEL_FORMAT_RGBA_8888, false, 4, 0, 8, 8, 8, 16, 8, 24, 8},
{HAL_PIXEL_FORMAT_RGBX_8888, false, 4, 0, 8, 8, 8, 16, 8, 0, 0},
{HAL_PIXEL_FORMAT_RGB_888, false, 3, 0, 8, 8, 8, 16, 8, 0, 0},
{HAL_PIXEL_FORMAT_RGB_565, true, 2, 0, 5, 5, 6, 11, 5, 0, 0},
{HAL_PIXEL_FORMAT_BGRA_8888, false, 4, 16, 8, 8, 8, 0, 8, 24, 8},
{HAL_PIXEL_FORMAT_RGBA_5551, true , 2, 0, 5, 5, 5, 10, 5, 15, 1},
{HAL_PIXEL_FORMAT_RGBA_4444, false, 2, 12, 4, 0, 4, 4, 4, 8, 4},
};
// If YUV format, convert color and pass work to YUV color fill
for (unsigned int n1 = 0; n1 < NUMA(rgb2yuvRatios); n1++) {
if (gBuf->getPixelFormat() == rgb2yuvRatios[n1].format) {
float wr = rgb2yuvRatios[n1].weightRed;
float wb = rgb2yuvRatios[n1].weightBlu;
float wg = rgb2yuvRatios[n1].weightGrn;
float y = wr * color.r() + wb * color.b() + wg * color.g();
float u = 0.5 * ((color.b() - y) / (1 - wb)) + 0.5;
float v = 0.5 * ((color.r() - y) / (1 - wr)) + 0.5;
YUVColor yuvColor(y, u, v);
fillColor(gBuf, yuvColor, trans);
return;
}
}
const struct rgbAttrib *attrib;
for (attrib = rgbAttributes; attrib < rgbAttributes + NUMA(rgbAttributes);
attrib++) {
if (attrib->format == gBuf->getPixelFormat()) { break; }
}
if (attrib >= rgbAttributes + NUMA(rgbAttributes)) {
testPrintE("fillColor rgb unsupported format of: %u",
gBuf->getPixelFormat());
exit(50);
}
pixel = htonl((uint32_t) (((1 << attrib->rSize) - 1) * color.r())
<< ((sizeof(pixel) * BITSPERBYTE)
- (attrib->rOffset + attrib->rSize)));
pixel |= htonl((uint32_t) (((1 << attrib->gSize) - 1) * color.g())
<< ((sizeof(pixel) * BITSPERBYTE)
- (attrib->gOffset + attrib->gSize)));
pixel |= htonl((uint32_t) (((1 << attrib->bSize) - 1) * color.b())
<< ((sizeof(pixel) * BITSPERBYTE)
- (attrib->bOffset + attrib->bSize)));
if (attrib->aSize) {
pixel |= htonl((uint32_t) (((1 << attrib->aSize) - 1) * trans)
<< ((sizeof(pixel) * BITSPERBYTE)
- (attrib->aOffset + attrib->aSize)));
}
if (attrib->hostByteOrder) {
pixel = ntohl(pixel);
pixel >>= sizeof(pixel) * BITSPERBYTE - attrib->bytes * BITSPERBYTE;
}
err = gBuf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&buf));
if (err != 0) {
testPrintE("fillColor rgb lock failed: %d", err);
exit(51);
}
for (unsigned int row = 0; row < gBuf->getHeight(); row++) {
for (unsigned int col = 0; col < gBuf->getWidth(); col++) {
memmove(buf, &pixel, attrib->bytes);
buf += attrib->bytes;
}
for (unsigned int pad = 0;
pad < (gBuf->getStride() - gBuf->getWidth()) * attrib->bytes;
pad++) {
*buf++ = testRandMod(256);
}
}
err = gBuf->unlock();
if (err != 0) {
testPrintE("fillColor rgb unlock failed: %d", err);
exit(52);
}
}
static void fillColor(GraphicBuffer *gBuf, YUVColor color, float trans)
{
unsigned char* buf = NULL;
status_t err;
unsigned int width = gBuf->getWidth();
unsigned int height = gBuf->getHeight();
const struct yuvAttrib {
int format;
bool planar;
unsigned int uSubSampX;
unsigned int uSubSampY;
unsigned int vSubSampX;
unsigned int vSubSampY;
} yuvAttributes[] = {
{ HAL_PIXEL_FORMAT_YV12, true, 2, 2, 2, 2},
};
const struct yuvAttrib *attrib;
for (attrib = yuvAttributes; attrib < yuvAttributes + NUMA(yuvAttributes);
attrib++) {
if (attrib->format == gBuf->getPixelFormat()) { break; }
}
if (attrib >= yuvAttributes + NUMA(yuvAttributes)) {
testPrintE("fillColor yuv unsupported format of: %u",
gBuf->getPixelFormat());
exit(60);
}
assert(attrib->planar == true); // So far, only know how to handle planar
err = gBuf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&buf));
if (err != 0) {
testPrintE("fillColor lock failed: %d", err);
exit(61);
}
// Fill in Y component
for (unsigned int row = 0; row < height; row++) {
for (unsigned int col = 0; col < width; col++) {
*buf++ = 255 * color.y();
}
for (unsigned int pad = 0; pad < gBuf->getStride() - gBuf->getWidth();
pad++) {
*buf++ = testRandMod(256);
}
}
// Fill in U component
for (unsigned int row = 0; row < height; row += attrib->uSubSampY) {
for (unsigned int col = 0; col < width; col += attrib->uSubSampX) {
*buf++ = 255 * color.u();
}
for (unsigned int pad = 0; pad < gBuf->getStride() - gBuf->getWidth();
pad += attrib->uSubSampX) {
*buf++ = testRandMod(256);
}
}
// Fill in V component
for (unsigned int row = 0; row < height; row += attrib->vSubSampY) {
for (unsigned int col = 0; col < width; col += attrib->vSubSampX) {
*buf++ = 255 * color.v();
}
for (unsigned int pad = 0; pad < gBuf->getStride() - gBuf->getWidth();
pad += attrib->vSubSampX) {
*buf++ = testRandMod(256);
}
}
err = gBuf->unlock();
if (err != 0) {
testPrintE("fillColor unlock failed: %d", err);
exit(62);
}
}
void init(void)
{
int rv;
EGLBoolean returnValue;
EGLConfig myConfig = {0};
EGLint contextAttribs[] = { EGL_CONTEXT_CLIENT_VERSION, 2, EGL_NONE };
EGLint sConfigAttribs[] = {
EGL_SURFACE_TYPE, EGL_WINDOW_BIT,
EGL_RENDERABLE_TYPE, EGL_OPENGL_ES2_BIT,
EGL_NONE };
EGLint majorVersion, minorVersion;
checkEglError("<init>");
dpy = eglGetDisplay(EGL_DEFAULT_DISPLAY);
checkEglError("eglGetDisplay");
if (dpy == EGL_NO_DISPLAY) {
testPrintE("eglGetDisplay returned EGL_NO_DISPLAY");
exit(70);
}
returnValue = eglInitialize(dpy, &majorVersion, &minorVersion);
checkEglError("eglInitialize", returnValue);
testPrintI("EGL version %d.%d", majorVersion, minorVersion);
if (returnValue != EGL_TRUE) {
testPrintE("eglInitialize failed");
exit(71);
}
EGLNativeWindowType window = android_createDisplaySurface();
if (window == NULL) {
testPrintE("android_createDisplaySurface failed");
exit(72);
}
returnValue = EGLUtils::selectConfigForNativeWindow(dpy,
sConfigAttribs, window, &myConfig);
if (returnValue) {
testPrintE("EGLUtils::selectConfigForNativeWindow() returned %d",
returnValue);
exit(73);
}
checkEglError("EGLUtils::selectConfigForNativeWindow");
testPrintI("Chose this configuration:");
printEGLConfiguration(dpy, myConfig);
surface = eglCreateWindowSurface(dpy, myConfig, window, NULL);
checkEglError("eglCreateWindowSurface");
if (surface == EGL_NO_SURFACE) {
testPrintE("gelCreateWindowSurface failed.");
exit(74);
}
context = eglCreateContext(dpy, myConfig, EGL_NO_CONTEXT, contextAttribs);
checkEglError("eglCreateContext");
if (context == EGL_NO_CONTEXT) {
testPrintE("eglCreateContext failed");
exit(75);
}
returnValue = eglMakeCurrent(dpy, surface, surface, context);
checkEglError("eglMakeCurrent", returnValue);
if (returnValue != EGL_TRUE) {
testPrintE("eglMakeCurrent failed");
exit(76);
}
eglQuerySurface(dpy, surface, EGL_WIDTH, &width);
checkEglError("eglQuerySurface");
eglQuerySurface(dpy, surface, EGL_HEIGHT, &height);
checkEglError("eglQuerySurface");
testPrintI("Window dimensions: %d x %d", width, height);
printGLString("Version", GL_VERSION);
printGLString("Vendor", GL_VENDOR);
printGLString("Renderer", GL_RENDERER);
printGLString("Extensions", GL_EXTENSIONS);
if ((rv = hw_get_module(HWC_HARDWARE_MODULE_ID, &hwcModule)) != 0) {
testPrintE("hw_get_module failed, rv: %i", rv);
errno = -rv;
perror(NULL);
exit(77);
}
if ((rv = hwc_open(hwcModule, &hwcDevice)) != 0) {
testPrintE("hwc_open failed, rv: %i", rv);
errno = -rv;
perror(NULL);
exit(78);
}
testPrintI("");
}
/*
* Initialize Frames
*
* Creates an array of graphic buffers, within the global variable
* named frames. The graphic buffers are contained within a vector of
* vectors. All the graphic buffers in a particular row are of the same
* format and dimension. Each graphic buffer is uniformly filled with a
* prandomly selected color. It is likely that each buffer, even
* in the same row, will be filled with a unique color.
*/
void initFrames(unsigned int seed)
{
int rv;
const size_t maxRows = 5;
const size_t minCols = 2; // Need at least double buffering
const size_t maxCols = 4; // One more than triple buffering
if (verbose) { testPrintI("initFrames seed: %u", seed); }
srand48(seed);
size_t rows = testRandMod(maxRows) + 1;
frames.clear();
frames.resize(rows);
for (unsigned int row = 0; row < rows; row++) {
// All frames within a row have to have the same format and
// dimensions. Width and height need to be >= 1.
unsigned int formatIdx = testRandMod(NUMA(graphicFormat));
const struct graphicFormat *formatPtr = &graphicFormat[formatIdx];
int format = formatPtr->format;
// Pick width and height, which must be >= 1 and the size
// mod the wMod/hMod value must be equal to 0.
size_t w = (width * maxSizeRatio) * testRandFract();
size_t h = (height * maxSizeRatio) * testRandFract();
w = max(1u, w);
h = max(1u, h);
if (verbose) {
testPrintI(" frame %u width: %u height: %u format: %u %s",
row, w, h, format, graphicFormat2str(format));
}
if ((w % formatPtr->wMod) != 0) {
w += formatPtr->wMod - (w % formatPtr->wMod);
}
if ((h % formatPtr->hMod) != 0) {
h += formatPtr->hMod - (h % formatPtr->hMod);
}
size_t cols = testRandMod((maxCols + 1) - minCols) + minCols;
frames[row].resize(cols);
for (unsigned int col = 0; col < cols; col++) {
RGBColor color(testRandFract(), testRandFract(), testRandFract());
float transp = testRandFract();
frames[row][col] = new GraphicBuffer(w, h, format, texUsage);
if ((rv = frames[row][col]->initCheck()) != NO_ERROR) {
testPrintE("GraphicBuffer initCheck failed, rv: %i", rv);
testPrintE(" frame %u width: %u height: %u format: %u %s",
row, w, h, format, graphicFormat2str(format));
exit(80);
}
fillColor(frames[row][col].get(), color, transp);
if (verbose) {
testPrintI(" buf: %p handle: %p color: <%f, %f, %f> "
"transp: %f",
frames[row][col].get(), frames[row][col]->handle,
color.r(), color.g(), color.b(), transp);
}
}
}
}
void displayList(hwc_layer_list_t *list)
{
testPrintI(" flags: %#x%s", list->flags,
(list->flags & HWC_GEOMETRY_CHANGED) ? " GEOMETRY_CHANGED" : "");
testPrintI(" numHwLayers: %u", list->numHwLayers);
for (unsigned int layer = 0; layer < list->numHwLayers; layer++) {
testPrintI(" layer %u compositionType: %#x%s%s", layer,
list->hwLayers[layer].compositionType,
(list->hwLayers[layer].compositionType == HWC_FRAMEBUFFER)
? " FRAMEBUFFER" : "",
(list->hwLayers[layer].compositionType == HWC_OVERLAY)
? " OVERLAY" : "");
testPrintI(" hints: %#x",
list->hwLayers[layer].hints,
(list->hwLayers[layer].hints & HWC_HINT_TRIPLE_BUFFER)
? " TRIPLE_BUFFER" : "",
(list->hwLayers[layer].hints & HWC_HINT_CLEAR_FB)
? " CLEAR_FB" : "");
testPrintI(" flags: %#x%s",
list->hwLayers[layer].flags,
(list->hwLayers[layer].flags & HWC_SKIP_LAYER)
? " SKIP_LAYER" : "");
testPrintI(" handle: %p",
list->hwLayers[layer].handle);
// Intentionally skipped display of ROT_180 & ROT_270,
// which are formed from combinations of the other flags.
testPrintI(" transform: %#x%s%s%s",
list->hwLayers[layer].transform,
(list->hwLayers[layer].transform & HWC_TRANSFORM_FLIP_H)
? " FLIP_H" : "",
(list->hwLayers[layer].transform & HWC_TRANSFORM_FLIP_V)
? " FLIP_V" : "",
(list->hwLayers[layer].transform & HWC_TRANSFORM_ROT_90)
? " ROT_90" : "");
testPrintI(" blending: %#x",
list->hwLayers[layer].blending,
(list->hwLayers[layer].blending == HWC_BLENDING_NONE)
? " NONE" : "",
(list->hwLayers[layer].blending == HWC_BLENDING_PREMULT)
? " PREMULT" : "",
(list->hwLayers[layer].blending == HWC_BLENDING_COVERAGE)
? " COVERAGE" : "");
testPrintI(" sourceCrop: [%i, %i, %i, %i]",
list->hwLayers[layer].sourceCrop.left,
list->hwLayers[layer].sourceCrop.top,
list->hwLayers[layer].sourceCrop.right,
list->hwLayers[layer].sourceCrop.bottom);
testPrintI(" displayFrame: [%i, %i, %i, %i]",
list->hwLayers[layer].displayFrame.left,
list->hwLayers[layer].displayFrame.top,
list->hwLayers[layer].displayFrame.right,
list->hwLayers[layer].displayFrame.bottom);
testPrintI(" scaleFactor: [%f %f]",
(float) (list->hwLayers[layer].displayFrame.right
- list->hwLayers[layer].displayFrame.left)
/ (float) (list->hwLayers[layer].sourceCrop.right
- list->hwLayers[layer].sourceCrop.left),
(float) (list->hwLayers[layer].displayFrame.bottom
- list->hwLayers[layer].displayFrame.top)
/ (float) (list->hwLayers[layer].sourceCrop.bottom
- list->hwLayers[layer].sourceCrop.top));
}
}
/*
* Display List Prepare Modifiable
*
* Displays the portions of a list that are meant to be modified by
* a prepare call.
*/
void displayListPrepareModifiable(hwc_layer_list_t *list)
{
for (unsigned int layer = 0; layer < list->numHwLayers; layer++) {
testPrintI(" layer %u compositionType: %#x%s%s", layer,
list->hwLayers[layer].compositionType,
(list->hwLayers[layer].compositionType == HWC_FRAMEBUFFER)
? " FRAMEBUFFER" : "",
(list->hwLayers[layer].compositionType == HWC_OVERLAY)
? " OVERLAY" : "");
testPrintI(" hints: %#x%s%s",
list->hwLayers[layer].hints,
(list->hwLayers[layer].hints & HWC_HINT_TRIPLE_BUFFER)
? " TRIPLE_BUFFER" : "",
(list->hwLayers[layer].hints & HWC_HINT_CLEAR_FB)
? " CLEAR_FB" : "");
}
}
/*
* Display List Handles
*
* Displays the handles of all the graphic buffers in the list.
*/
void displayListHandles(hwc_layer_list_t *list)
{
const unsigned int maxLayersPerLine = 6;
ostringstream str(" layers:");
for (unsigned int layer = 0; layer < list->numHwLayers; layer++) {
str << ' ' << list->hwLayers[layer].handle;
if (((layer % maxLayersPerLine) == (maxLayersPerLine - 1))
&& (layer != list->numHwLayers - 1)) {
testPrintI("%s", str.str().c_str());
str.str(" ");
}
}
testPrintI("%s", str.str().c_str());
}
const char *graphicFormat2str(unsigned int format)
{
const static char *unknown = "unknown";
for (unsigned int n1 = 0; n1 < NUMA(graphicFormat); n1++) {
if (format == graphicFormat[n1].format) {
return graphicFormat[n1].desc;
}
}
return unknown;
}
/*
* Vector Random Select
*
* Prandomly selects and returns num elements from vec.
*/
template <class T>
vector<T> vectorRandSelect(const vector<T>& vec, size_t num)
{
vector<T> rv = vec;
while (rv.size() > num) {
rv.erase(rv.begin() + testRandMod(rv.size()));
}
return rv;
}
/*
* Vector Or
*
* Or's togethen the values of each element of vec and returns the result.
*/
template <class T>
T vectorOr(const vector<T>& vec)
{
T rv = 0;
for (size_t n1 = 0; n1 < vec.size(); n1++) {
rv |= vec[n1];
}
return rv;
}