replicant-frameworks_native/libs/gui/GLConsumer.cpp
Mathias Agopian 2bb716871c replace eglWaitSyncANDROID by eglWaitSyncKHR
Change-Id: I22f1b3588011c88389e249f738f1e6915cc97e72
2013-03-28 14:31:09 -07:00

963 lines
31 KiB
C++

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "GLConsumer"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
//#define LOG_NDEBUG 0
#define GL_GLEXT_PROTOTYPES
#define EGL_EGLEXT_PROTOTYPES
#include <EGL/egl.h>
#include <EGL/eglext.h>
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#include <hardware/hardware.h>
#include <gui/IGraphicBufferAlloc.h>
#include <gui/ISurfaceComposer.h>
#include <gui/SurfaceComposerClient.h>
#include <gui/GLConsumer.h>
#include <private/gui/ComposerService.h>
#include <utils/Log.h>
#include <utils/String8.h>
#include <utils/Trace.h>
namespace android {
// This compile option makes GLConsumer use the
// EGL_ANDROID_native_fence_sync extension to create Android native fences to
// signal when all GLES reads for a given buffer have completed. It is not
// compatible with using the EGL_KHR_fence_sync extension for the same
// purpose.
#ifdef USE_NATIVE_FENCE_SYNC
#ifdef USE_FENCE_SYNC
#error "USE_NATIVE_FENCE_SYNC and USE_FENCE_SYNC are incompatible"
#endif
const bool GLConsumer::sUseNativeFenceSync = true;
#else
const bool GLConsumer::sUseNativeFenceSync = false;
#endif
// This compile option makes GLConsumer use the EGL_KHR_wait_sync
// extension to insert server-side waits into the GLES command stream. This
// feature requires the EGL_ANDROID_native_fence_sync and
// EGL_KHR_wait_sync extensions.
#ifdef USE_WAIT_SYNC
static const bool useWaitSync = true;
#else
static const bool useWaitSync = false;
#endif
// Macros for including the GLConsumer name in log messages
#define ST_LOGV(x, ...) ALOGV("[%s] "x, mName.string(), ##__VA_ARGS__)
#define ST_LOGD(x, ...) ALOGD("[%s] "x, mName.string(), ##__VA_ARGS__)
#define ST_LOGI(x, ...) ALOGI("[%s] "x, mName.string(), ##__VA_ARGS__)
#define ST_LOGW(x, ...) ALOGW("[%s] "x, mName.string(), ##__VA_ARGS__)
#define ST_LOGE(x, ...) ALOGE("[%s] "x, mName.string(), ##__VA_ARGS__)
// Transform matrices
static float mtxIdentity[16] = {
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1,
};
static float mtxFlipH[16] = {
-1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
1, 0, 0, 1,
};
static float mtxFlipV[16] = {
1, 0, 0, 0,
0, -1, 0, 0,
0, 0, 1, 0,
0, 1, 0, 1,
};
static float mtxRot90[16] = {
0, 1, 0, 0,
-1, 0, 0, 0,
0, 0, 1, 0,
1, 0, 0, 1,
};
static float mtxRot180[16] = {
-1, 0, 0, 0,
0, -1, 0, 0,
0, 0, 1, 0,
1, 1, 0, 1,
};
static float mtxRot270[16] = {
0, -1, 0, 0,
1, 0, 0, 0,
0, 0, 1, 0,
0, 1, 0, 1,
};
static void mtxMul(float out[16], const float a[16], const float b[16]);
GLConsumer::GLConsumer(GLuint tex, bool allowSynchronousMode,
GLenum texTarget, bool useFenceSync, const sp<BufferQueue> &bufferQueue) :
ConsumerBase(bufferQueue == 0 ? new BufferQueue(allowSynchronousMode) : bufferQueue),
mCurrentTransform(0),
mCurrentFence(Fence::NO_FENCE),
mCurrentTimestamp(0),
mFilteringEnabled(true),
mTexName(tex),
#ifdef USE_FENCE_SYNC
mUseFenceSync(useFenceSync),
#else
mUseFenceSync(false),
#endif
mTexTarget(texTarget),
mEglDisplay(EGL_NO_DISPLAY),
mEglContext(EGL_NO_CONTEXT),
mCurrentTexture(BufferQueue::INVALID_BUFFER_SLOT),
mAttached(true)
{
ST_LOGV("GLConsumer");
memcpy(mCurrentTransformMatrix, mtxIdentity,
sizeof(mCurrentTransformMatrix));
mBufferQueue->setConsumerUsageBits(DEFAULT_USAGE_FLAGS);
}
status_t GLConsumer::setDefaultMaxBufferCount(int bufferCount) {
Mutex::Autolock lock(mMutex);
return mBufferQueue->setDefaultMaxBufferCount(bufferCount);
}
status_t GLConsumer::setDefaultBufferSize(uint32_t w, uint32_t h)
{
Mutex::Autolock lock(mMutex);
mDefaultWidth = w;
mDefaultHeight = h;
return mBufferQueue->setDefaultBufferSize(w, h);
}
status_t GLConsumer::updateTexImage() {
ATRACE_CALL();
ST_LOGV("updateTexImage");
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
ST_LOGE("updateTexImage: GLConsumer is abandoned!");
return NO_INIT;
}
// Make sure the EGL state is the same as in previous calls.
status_t err = checkAndUpdateEglStateLocked();
if (err != NO_ERROR) {
return err;
}
BufferQueue::BufferItem item;
// Acquire the next buffer.
// In asynchronous mode the list is guaranteed to be one buffer
// deep, while in synchronous mode we use the oldest buffer.
err = acquireBufferLocked(&item);
if (err != NO_ERROR) {
if (err == BufferQueue::NO_BUFFER_AVAILABLE) {
// We always bind the texture even if we don't update its contents.
ST_LOGV("updateTexImage: no buffers were available");
glBindTexture(mTexTarget, mTexName);
err = NO_ERROR;
} else {
ST_LOGE("updateTexImage: acquire failed: %s (%d)",
strerror(-err), err);
}
return err;
}
// Release the previous buffer.
err = releaseAndUpdateLocked(item);
if (err != NO_ERROR) {
// We always bind the texture.
glBindTexture(mTexTarget, mTexName);
return err;
}
// Bind the new buffer to the GL texture, and wait until it's ready.
return bindTextureImageLocked();
}
status_t GLConsumer::acquireBufferLocked(BufferQueue::BufferItem *item) {
status_t err = ConsumerBase::acquireBufferLocked(item);
if (err != NO_ERROR) {
return err;
}
int slot = item->mBuf;
if (item->mGraphicBuffer != NULL) {
// This buffer has not been acquired before, so we must assume
// that any EGLImage in mEglSlots is stale.
if (mEglSlots[slot].mEglImage != EGL_NO_IMAGE_KHR) {
if (!eglDestroyImageKHR(mEglDisplay, mEglSlots[slot].mEglImage)) {
ST_LOGW("acquireBufferLocked: eglDestroyImageKHR failed for slot=%d",
slot);
// keep going
}
mEglSlots[slot].mEglImage = EGL_NO_IMAGE_KHR;
}
}
return NO_ERROR;
}
status_t GLConsumer::releaseBufferLocked(int buf, EGLDisplay display,
EGLSyncKHR eglFence) {
status_t err = ConsumerBase::releaseBufferLocked(buf, display, eglFence);
mEglSlots[buf].mEglFence = EGL_NO_SYNC_KHR;
return err;
}
status_t GLConsumer::releaseAndUpdateLocked(const BufferQueue::BufferItem& item)
{
status_t err = NO_ERROR;
if (!mAttached) {
ST_LOGE("releaseAndUpdate: GLConsumer is not attached to an OpenGL "
"ES context");
return INVALID_OPERATION;
}
// Confirm state.
err = checkAndUpdateEglStateLocked();
if (err != NO_ERROR) {
return err;
}
int buf = item.mBuf;
// If the mEglSlot entry is empty, create an EGLImage for the gralloc
// buffer currently in the slot in ConsumerBase.
//
// We may have to do this even when item.mGraphicBuffer == NULL (which
// means the buffer was previously acquired), if we destroyed the
// EGLImage when detaching from a context but the buffer has not been
// re-allocated.
if (mEglSlots[buf].mEglImage == EGL_NO_IMAGE_KHR) {
EGLImageKHR image = createImage(mEglDisplay, mSlots[buf].mGraphicBuffer);
if (image == EGL_NO_IMAGE_KHR) {
ST_LOGW("releaseAndUpdate: unable to createImage on display=%p slot=%d",
mEglDisplay, buf);
return UNKNOWN_ERROR;
}
mEglSlots[buf].mEglImage = image;
}
// Do whatever sync ops we need to do before releasing the old slot.
err = syncForReleaseLocked(mEglDisplay);
if (err != NO_ERROR) {
// Release the buffer we just acquired. It's not safe to
// release the old buffer, so instead we just drop the new frame.
releaseBufferLocked(buf, mEglDisplay, EGL_NO_SYNC_KHR);
return err;
}
ST_LOGV("releaseAndUpdate: (slot=%d buf=%p) -> (slot=%d buf=%p)",
mCurrentTexture,
mCurrentTextureBuf != NULL ? mCurrentTextureBuf->handle : 0,
buf, mSlots[buf].mGraphicBuffer->handle);
// release old buffer
if (mCurrentTexture != BufferQueue::INVALID_BUFFER_SLOT) {
status_t status = releaseBufferLocked(mCurrentTexture, mEglDisplay,
mEglSlots[mCurrentTexture].mEglFence);
if (status != NO_ERROR && status != BufferQueue::STALE_BUFFER_SLOT) {
ST_LOGE("releaseAndUpdate: failed to release buffer: %s (%d)",
strerror(-status), status);
err = status;
// keep going, with error raised [?]
}
}
// Update the GLConsumer state.
mCurrentTexture = buf;
mCurrentTextureBuf = mSlots[buf].mGraphicBuffer;
mCurrentCrop = item.mCrop;
mCurrentTransform = item.mTransform;
mCurrentScalingMode = item.mScalingMode;
mCurrentTimestamp = item.mTimestamp;
mCurrentFence = item.mFence;
computeCurrentTransformMatrixLocked();
return err;
}
status_t GLConsumer::bindTextureImageLocked() {
if (mEglDisplay == EGL_NO_DISPLAY) {
ALOGE("bindTextureImage: invalid display");
return INVALID_OPERATION;
}
GLint error;
while ((error = glGetError()) != GL_NO_ERROR) {
ST_LOGW("bindTextureImage: clearing GL error: %#04x", error);
}
glBindTexture(mTexTarget, mTexName);
if (mCurrentTexture == BufferQueue::INVALID_BUFFER_SLOT) {
if (mCurrentTextureBuf == NULL) {
ST_LOGE("bindTextureImage: no currently-bound texture");
return NO_INIT;
}
status_t err = bindUnslottedBufferLocked(mEglDisplay);
if (err != NO_ERROR) {
return err;
}
} else {
EGLImageKHR image = mEglSlots[mCurrentTexture].mEglImage;
glEGLImageTargetTexture2DOES(mTexTarget, (GLeglImageOES)image);
while ((error = glGetError()) != GL_NO_ERROR) {
ST_LOGE("bindTextureImage: error binding external texture image %p"
": %#04x", image, error);
return UNKNOWN_ERROR;
}
}
// Wait for the new buffer to be ready.
return doGLFenceWaitLocked();
}
status_t GLConsumer::checkAndUpdateEglStateLocked() {
EGLDisplay dpy = eglGetCurrentDisplay();
EGLContext ctx = eglGetCurrentContext();
if ((mEglDisplay != dpy && mEglDisplay != EGL_NO_DISPLAY) ||
dpy == EGL_NO_DISPLAY) {
ST_LOGE("checkAndUpdateEglState: invalid current EGLDisplay");
return INVALID_OPERATION;
}
if ((mEglContext != ctx && mEglContext != EGL_NO_CONTEXT) ||
ctx == EGL_NO_CONTEXT) {
ST_LOGE("checkAndUpdateEglState: invalid current EGLContext");
return INVALID_OPERATION;
}
mEglDisplay = dpy;
mEglContext = ctx;
return NO_ERROR;
}
void GLConsumer::setReleaseFence(const sp<Fence>& fence) {
if (fence->isValid() &&
mCurrentTexture != BufferQueue::INVALID_BUFFER_SLOT) {
status_t err = addReleaseFence(mCurrentTexture, fence);
if (err != OK) {
ST_LOGE("setReleaseFence: failed to add the fence: %s (%d)",
strerror(-err), err);
}
}
}
status_t GLConsumer::detachFromContext() {
ATRACE_CALL();
ST_LOGV("detachFromContext");
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
ST_LOGE("detachFromContext: abandoned GLConsumer");
return NO_INIT;
}
if (!mAttached) {
ST_LOGE("detachFromContext: GLConsumer is not attached to a "
"context");
return INVALID_OPERATION;
}
EGLDisplay dpy = eglGetCurrentDisplay();
EGLContext ctx = eglGetCurrentContext();
if (mEglDisplay != dpy && mEglDisplay != EGL_NO_DISPLAY) {
ST_LOGE("detachFromContext: invalid current EGLDisplay");
return INVALID_OPERATION;
}
if (mEglContext != ctx && mEglContext != EGL_NO_CONTEXT) {
ST_LOGE("detachFromContext: invalid current EGLContext");
return INVALID_OPERATION;
}
if (dpy != EGL_NO_DISPLAY && ctx != EGL_NO_CONTEXT) {
status_t err = syncForReleaseLocked(dpy);
if (err != OK) {
return err;
}
glDeleteTextures(1, &mTexName);
}
// Because we're giving up the EGLDisplay we need to free all the EGLImages
// that are associated with it. They'll be recreated when the
// GLConsumer gets attached to a new OpenGL ES context (and thus gets a
// new EGLDisplay).
for (int i =0; i < BufferQueue::NUM_BUFFER_SLOTS; i++) {
EGLImageKHR img = mEglSlots[i].mEglImage;
if (img != EGL_NO_IMAGE_KHR) {
eglDestroyImageKHR(mEglDisplay, img);
mEglSlots[i].mEglImage = EGL_NO_IMAGE_KHR;
}
}
mEglDisplay = EGL_NO_DISPLAY;
mEglContext = EGL_NO_CONTEXT;
mAttached = false;
return OK;
}
status_t GLConsumer::attachToContext(GLuint tex) {
ATRACE_CALL();
ST_LOGV("attachToContext");
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
ST_LOGE("attachToContext: abandoned GLConsumer");
return NO_INIT;
}
if (mAttached) {
ST_LOGE("attachToContext: GLConsumer is already attached to a "
"context");
return INVALID_OPERATION;
}
EGLDisplay dpy = eglGetCurrentDisplay();
EGLContext ctx = eglGetCurrentContext();
if (dpy == EGL_NO_DISPLAY) {
ST_LOGE("attachToContext: invalid current EGLDisplay");
return INVALID_OPERATION;
}
if (ctx == EGL_NO_CONTEXT) {
ST_LOGE("attachToContext: invalid current EGLContext");
return INVALID_OPERATION;
}
// We need to bind the texture regardless of whether there's a current
// buffer.
glBindTexture(mTexTarget, tex);
if (mCurrentTextureBuf != NULL) {
// The EGLImageKHR that was associated with the slot was destroyed when
// the GLConsumer was detached from the old context, so we need to
// recreate it here.
status_t err = bindUnslottedBufferLocked(dpy);
if (err != NO_ERROR) {
return err;
}
}
mEglDisplay = dpy;
mEglContext = ctx;
mTexName = tex;
mAttached = true;
return OK;
}
status_t GLConsumer::bindUnslottedBufferLocked(EGLDisplay dpy) {
ST_LOGV("bindUnslottedBuffer ct=%d ctb=%p",
mCurrentTexture, mCurrentTextureBuf.get());
// Create a temporary EGLImageKHR.
EGLImageKHR image = createImage(dpy, mCurrentTextureBuf);
if (image == EGL_NO_IMAGE_KHR) {
return UNKNOWN_ERROR;
}
// Attach the current buffer to the GL texture.
glEGLImageTargetTexture2DOES(mTexTarget, (GLeglImageOES)image);
GLint error;
status_t err = OK;
while ((error = glGetError()) != GL_NO_ERROR) {
ST_LOGE("bindUnslottedBuffer: error binding external texture image %p "
"(slot %d): %#04x", image, mCurrentTexture, error);
err = UNKNOWN_ERROR;
}
// We destroy the EGLImageKHR here because the current buffer may no
// longer be associated with one of the buffer slots, so we have
// nowhere to to store it. If the buffer is still associated with a
// slot then another EGLImageKHR will be created next time that buffer
// gets acquired in updateTexImage.
eglDestroyImageKHR(dpy, image);
return err;
}
status_t GLConsumer::syncForReleaseLocked(EGLDisplay dpy) {
ST_LOGV("syncForReleaseLocked");
if (mCurrentTexture != BufferQueue::INVALID_BUFFER_SLOT) {
if (sUseNativeFenceSync) {
EGLSyncKHR sync = eglCreateSyncKHR(dpy,
EGL_SYNC_NATIVE_FENCE_ANDROID, NULL);
if (sync == EGL_NO_SYNC_KHR) {
ST_LOGE("syncForReleaseLocked: error creating EGL fence: %#x",
eglGetError());
return UNKNOWN_ERROR;
}
glFlush();
int fenceFd = eglDupNativeFenceFDANDROID(dpy, sync);
eglDestroySyncKHR(dpy, sync);
if (fenceFd == EGL_NO_NATIVE_FENCE_FD_ANDROID) {
ST_LOGE("syncForReleaseLocked: error dup'ing native fence "
"fd: %#x", eglGetError());
return UNKNOWN_ERROR;
}
sp<Fence> fence(new Fence(fenceFd));
status_t err = addReleaseFenceLocked(mCurrentTexture, fence);
if (err != OK) {
ST_LOGE("syncForReleaseLocked: error adding release fence: "
"%s (%d)", strerror(-err), err);
return err;
}
} else if (mUseFenceSync) {
EGLSyncKHR fence = mEglSlots[mCurrentTexture].mEglFence;
if (fence != EGL_NO_SYNC_KHR) {
// There is already a fence for the current slot. We need to
// wait on that before replacing it with another fence to
// ensure that all outstanding buffer accesses have completed
// before the producer accesses it.
EGLint result = eglClientWaitSyncKHR(dpy, fence, 0, 1000000000);
if (result == EGL_FALSE) {
ST_LOGE("syncForReleaseLocked: error waiting for previous "
"fence: %#x", eglGetError());
return UNKNOWN_ERROR;
} else if (result == EGL_TIMEOUT_EXPIRED_KHR) {
ST_LOGE("syncForReleaseLocked: timeout waiting for previous "
"fence");
return TIMED_OUT;
}
eglDestroySyncKHR(dpy, fence);
}
// Create a fence for the outstanding accesses in the current
// OpenGL ES context.
fence = eglCreateSyncKHR(dpy, EGL_SYNC_FENCE_KHR, NULL);
if (fence == EGL_NO_SYNC_KHR) {
ST_LOGE("syncForReleaseLocked: error creating fence: %#x",
eglGetError());
return UNKNOWN_ERROR;
}
glFlush();
mEglSlots[mCurrentTexture].mEglFence = fence;
}
}
return OK;
}
bool GLConsumer::isExternalFormat(uint32_t format)
{
switch (format) {
// supported YUV formats
case HAL_PIXEL_FORMAT_YV12:
// Legacy/deprecated YUV formats
case HAL_PIXEL_FORMAT_YCbCr_422_SP:
case HAL_PIXEL_FORMAT_YCrCb_420_SP:
case HAL_PIXEL_FORMAT_YCbCr_422_I:
return true;
}
// Any OEM format needs to be considered
if (format>=0x100 && format<=0x1FF)
return true;
return false;
}
GLenum GLConsumer::getCurrentTextureTarget() const {
return mTexTarget;
}
void GLConsumer::getTransformMatrix(float mtx[16]) {
Mutex::Autolock lock(mMutex);
memcpy(mtx, mCurrentTransformMatrix, sizeof(mCurrentTransformMatrix));
}
void GLConsumer::setFilteringEnabled(bool enabled) {
Mutex::Autolock lock(mMutex);
if (mAbandoned) {
ST_LOGE("setFilteringEnabled: GLConsumer is abandoned!");
return;
}
bool needsRecompute = mFilteringEnabled != enabled;
mFilteringEnabled = enabled;
if (needsRecompute && mCurrentTextureBuf==NULL) {
ST_LOGD("setFilteringEnabled called with mCurrentTextureBuf == NULL");
}
if (needsRecompute && mCurrentTextureBuf != NULL) {
computeCurrentTransformMatrixLocked();
}
}
void GLConsumer::computeCurrentTransformMatrixLocked() {
ST_LOGV("computeCurrentTransformMatrixLocked");
float xform[16];
for (int i = 0; i < 16; i++) {
xform[i] = mtxIdentity[i];
}
if (mCurrentTransform & NATIVE_WINDOW_TRANSFORM_FLIP_H) {
float result[16];
mtxMul(result, xform, mtxFlipH);
for (int i = 0; i < 16; i++) {
xform[i] = result[i];
}
}
if (mCurrentTransform & NATIVE_WINDOW_TRANSFORM_FLIP_V) {
float result[16];
mtxMul(result, xform, mtxFlipV);
for (int i = 0; i < 16; i++) {
xform[i] = result[i];
}
}
if (mCurrentTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
float result[16];
mtxMul(result, xform, mtxRot90);
for (int i = 0; i < 16; i++) {
xform[i] = result[i];
}
}
sp<GraphicBuffer>& buf(mCurrentTextureBuf);
if (buf == NULL) {
ST_LOGD("computeCurrentTransformMatrixLocked: mCurrentTextureBuf is NULL");
}
Rect cropRect = mCurrentCrop;
float tx = 0.0f, ty = 0.0f, sx = 1.0f, sy = 1.0f;
float bufferWidth = buf->getWidth();
float bufferHeight = buf->getHeight();
if (!cropRect.isEmpty()) {
float shrinkAmount = 0.0f;
if (mFilteringEnabled) {
// In order to prevent bilinear sampling beyond the edge of the
// crop rectangle we may need to shrink it by 2 texels in each
// dimension. Normally this would just need to take 1/2 a texel
// off each end, but because the chroma channels of YUV420 images
// are subsampled we may need to shrink the crop region by a whole
// texel on each side.
switch (buf->getPixelFormat()) {
case PIXEL_FORMAT_RGBA_8888:
case PIXEL_FORMAT_RGBX_8888:
case PIXEL_FORMAT_RGB_888:
case PIXEL_FORMAT_RGB_565:
case PIXEL_FORMAT_BGRA_8888:
case PIXEL_FORMAT_RGBA_5551:
case PIXEL_FORMAT_RGBA_4444:
// We know there's no subsampling of any channels, so we
// only need to shrink by a half a pixel.
shrinkAmount = 0.5;
break;
default:
// If we don't recognize the format, we must assume the
// worst case (that we care about), which is YUV420.
shrinkAmount = 1.0;
break;
}
}
// Only shrink the dimensions that are not the size of the buffer.
if (cropRect.width() < bufferWidth) {
tx = (float(cropRect.left) + shrinkAmount) / bufferWidth;
sx = (float(cropRect.width()) - (2.0f * shrinkAmount)) /
bufferWidth;
}
if (cropRect.height() < bufferHeight) {
ty = (float(bufferHeight - cropRect.bottom) + shrinkAmount) /
bufferHeight;
sy = (float(cropRect.height()) - (2.0f * shrinkAmount)) /
bufferHeight;
}
}
float crop[16] = {
sx, 0, 0, 0,
0, sy, 0, 0,
0, 0, 1, 0,
tx, ty, 0, 1,
};
float mtxBeforeFlipV[16];
mtxMul(mtxBeforeFlipV, crop, xform);
// SurfaceFlinger expects the top of its window textures to be at a Y
// coordinate of 0, so GLConsumer must behave the same way. We don't
// want to expose this to applications, however, so we must add an
// additional vertical flip to the transform after all the other transforms.
mtxMul(mCurrentTransformMatrix, mtxFlipV, mtxBeforeFlipV);
}
nsecs_t GLConsumer::getTimestamp() {
ST_LOGV("getTimestamp");
Mutex::Autolock lock(mMutex);
return mCurrentTimestamp;
}
EGLImageKHR GLConsumer::createImage(EGLDisplay dpy,
const sp<GraphicBuffer>& graphicBuffer) {
EGLClientBuffer cbuf = (EGLClientBuffer)graphicBuffer->getNativeBuffer();
EGLint attrs[] = {
EGL_IMAGE_PRESERVED_KHR, EGL_TRUE,
EGL_NONE,
};
EGLImageKHR image = eglCreateImageKHR(dpy, EGL_NO_CONTEXT,
EGL_NATIVE_BUFFER_ANDROID, cbuf, attrs);
if (image == EGL_NO_IMAGE_KHR) {
EGLint error = eglGetError();
ST_LOGE("error creating EGLImage: %#x", error);
}
return image;
}
sp<GraphicBuffer> GLConsumer::getCurrentBuffer() const {
Mutex::Autolock lock(mMutex);
return mCurrentTextureBuf;
}
Rect GLConsumer::getCurrentCrop() const {
Mutex::Autolock lock(mMutex);
Rect outCrop = mCurrentCrop;
if (mCurrentScalingMode == NATIVE_WINDOW_SCALING_MODE_SCALE_CROP) {
int32_t newWidth = mCurrentCrop.width();
int32_t newHeight = mCurrentCrop.height();
if (newWidth * mDefaultHeight > newHeight * mDefaultWidth) {
newWidth = newHeight * mDefaultWidth / mDefaultHeight;
ST_LOGV("too wide: newWidth = %d", newWidth);
} else if (newWidth * mDefaultHeight < newHeight * mDefaultWidth) {
newHeight = newWidth * mDefaultHeight / mDefaultWidth;
ST_LOGV("too tall: newHeight = %d", newHeight);
}
// The crop is too wide
if (newWidth < mCurrentCrop.width()) {
int32_t dw = (newWidth - mCurrentCrop.width())/2;
outCrop.left -=dw;
outCrop.right += dw;
// The crop is too tall
} else if (newHeight < mCurrentCrop.height()) {
int32_t dh = (newHeight - mCurrentCrop.height())/2;
outCrop.top -= dh;
outCrop.bottom += dh;
}
ST_LOGV("getCurrentCrop final crop [%d,%d,%d,%d]",
outCrop.left, outCrop.top,
outCrop.right,outCrop.bottom);
}
return outCrop;
}
uint32_t GLConsumer::getCurrentTransform() const {
Mutex::Autolock lock(mMutex);
return mCurrentTransform;
}
uint32_t GLConsumer::getCurrentScalingMode() const {
Mutex::Autolock lock(mMutex);
return mCurrentScalingMode;
}
sp<Fence> GLConsumer::getCurrentFence() const {
Mutex::Autolock lock(mMutex);
return mCurrentFence;
}
status_t GLConsumer::doGLFenceWait() const {
Mutex::Autolock lock(mMutex);
return doGLFenceWaitLocked();
}
status_t GLConsumer::doGLFenceWaitLocked() const {
EGLDisplay dpy = eglGetCurrentDisplay();
EGLContext ctx = eglGetCurrentContext();
if (mEglDisplay != dpy || mEglDisplay == EGL_NO_DISPLAY) {
ST_LOGE("doGLFenceWait: invalid current EGLDisplay");
return INVALID_OPERATION;
}
if (mEglContext != ctx || mEglContext == EGL_NO_CONTEXT) {
ST_LOGE("doGLFenceWait: invalid current EGLContext");
return INVALID_OPERATION;
}
if (mCurrentFence->isValid()) {
if (useWaitSync) {
// Create an EGLSyncKHR from the current fence.
int fenceFd = mCurrentFence->dup();
if (fenceFd == -1) {
ST_LOGE("doGLFenceWait: error dup'ing fence fd: %d", errno);
return -errno;
}
EGLint attribs[] = {
EGL_SYNC_NATIVE_FENCE_FD_ANDROID, fenceFd,
EGL_NONE
};
EGLSyncKHR sync = eglCreateSyncKHR(dpy,
EGL_SYNC_NATIVE_FENCE_ANDROID, attribs);
if (sync == EGL_NO_SYNC_KHR) {
close(fenceFd);
ST_LOGE("doGLFenceWait: error creating EGL fence: %#x",
eglGetError());
return UNKNOWN_ERROR;
}
// XXX: The spec draft is inconsistent as to whether this should
// return an EGLint or void. Ignore the return value for now, as
// it's not strictly needed.
eglWaitSyncKHR(dpy, sync, 0);
EGLint eglErr = eglGetError();
eglDestroySyncKHR(dpy, sync);
if (eglErr != EGL_SUCCESS) {
ST_LOGE("doGLFenceWait: error waiting for EGL fence: %#x",
eglErr);
return UNKNOWN_ERROR;
}
} else {
status_t err = mCurrentFence->waitForever(1000,
"GLConsumer::doGLFenceWaitLocked");
if (err != NO_ERROR) {
ST_LOGE("doGLFenceWait: error waiting for fence: %d", err);
return err;
}
}
}
return NO_ERROR;
}
bool GLConsumer::isSynchronousMode() const {
Mutex::Autolock lock(mMutex);
return mBufferQueue->isSynchronousMode();
}
void GLConsumer::freeBufferLocked(int slotIndex) {
ST_LOGV("freeBufferLocked: slotIndex=%d", slotIndex);
if (slotIndex == mCurrentTexture) {
mCurrentTexture = BufferQueue::INVALID_BUFFER_SLOT;
}
EGLImageKHR img = mEglSlots[slotIndex].mEglImage;
if (img != EGL_NO_IMAGE_KHR) {
ST_LOGV("destroying EGLImage dpy=%p img=%p", mEglDisplay, img);
eglDestroyImageKHR(mEglDisplay, img);
}
mEglSlots[slotIndex].mEglImage = EGL_NO_IMAGE_KHR;
ConsumerBase::freeBufferLocked(slotIndex);
}
void GLConsumer::abandonLocked() {
ST_LOGV("abandonLocked");
mCurrentTextureBuf.clear();
ConsumerBase::abandonLocked();
}
void GLConsumer::setName(const String8& name) {
Mutex::Autolock _l(mMutex);
mName = name;
mBufferQueue->setConsumerName(name);
}
status_t GLConsumer::setDefaultBufferFormat(uint32_t defaultFormat) {
Mutex::Autolock lock(mMutex);
return mBufferQueue->setDefaultBufferFormat(defaultFormat);
}
status_t GLConsumer::setConsumerUsageBits(uint32_t usage) {
Mutex::Autolock lock(mMutex);
usage |= DEFAULT_USAGE_FLAGS;
return mBufferQueue->setConsumerUsageBits(usage);
}
status_t GLConsumer::setTransformHint(uint32_t hint) {
Mutex::Autolock lock(mMutex);
return mBufferQueue->setTransformHint(hint);
}
// Used for refactoring BufferQueue from GLConsumer
// Should not be in final interface once users of GLConsumer are clean up.
status_t GLConsumer::setSynchronousMode(bool enabled) {
Mutex::Autolock lock(mMutex);
return mBufferQueue->setSynchronousMode(enabled);
}
void GLConsumer::dumpLocked(String8& result, const char* prefix,
char* buffer, size_t size) const
{
snprintf(buffer, size,
"%smTexName=%d mCurrentTexture=%d\n"
"%smCurrentCrop=[%d,%d,%d,%d] mCurrentTransform=%#x\n",
prefix, mTexName, mCurrentTexture, prefix, mCurrentCrop.left,
mCurrentCrop.top, mCurrentCrop.right, mCurrentCrop.bottom,
mCurrentTransform);
result.append(buffer);
ConsumerBase::dumpLocked(result, prefix, buffer, size);
}
static void mtxMul(float out[16], const float a[16], const float b[16]) {
out[0] = a[0]*b[0] + a[4]*b[1] + a[8]*b[2] + a[12]*b[3];
out[1] = a[1]*b[0] + a[5]*b[1] + a[9]*b[2] + a[13]*b[3];
out[2] = a[2]*b[0] + a[6]*b[1] + a[10]*b[2] + a[14]*b[3];
out[3] = a[3]*b[0] + a[7]*b[1] + a[11]*b[2] + a[15]*b[3];
out[4] = a[0]*b[4] + a[4]*b[5] + a[8]*b[6] + a[12]*b[7];
out[5] = a[1]*b[4] + a[5]*b[5] + a[9]*b[6] + a[13]*b[7];
out[6] = a[2]*b[4] + a[6]*b[5] + a[10]*b[6] + a[14]*b[7];
out[7] = a[3]*b[4] + a[7]*b[5] + a[11]*b[6] + a[15]*b[7];
out[8] = a[0]*b[8] + a[4]*b[9] + a[8]*b[10] + a[12]*b[11];
out[9] = a[1]*b[8] + a[5]*b[9] + a[9]*b[10] + a[13]*b[11];
out[10] = a[2]*b[8] + a[6]*b[9] + a[10]*b[10] + a[14]*b[11];
out[11] = a[3]*b[8] + a[7]*b[9] + a[11]*b[10] + a[15]*b[11];
out[12] = a[0]*b[12] + a[4]*b[13] + a[8]*b[14] + a[12]*b[15];
out[13] = a[1]*b[12] + a[5]*b[13] + a[9]*b[14] + a[13]*b[15];
out[14] = a[2]*b[12] + a[6]*b[13] + a[10]*b[14] + a[14]*b[15];
out[15] = a[3]*b[12] + a[7]*b[13] + a[11]*b[14] + a[15]*b[15];
}
}; // namespace android