replicant-frameworks_native/libs/ui/InputDispatcher.cpp
Jeff Brown 59abe7e090 Replace epoll() with poll() and rename PollLoop to Looper.
As part of this change, consolidated and cleaned up the Looper API so
that there are fewer distinctions between the NDK and non-NDK declarations
(no need for two callback types, etc.).

Removed the dependence on specific constants from sys/poll.h such as
POLLIN.  Instead looper.h defines events like LOOPER_EVENT_INPUT for
the events that it supports.  That should help make any future
under-the-hood implementation changes easier.

Fixed a couple of compiler warnings along the way.

Change-Id: I449a7ec780bf061bdd325452f823673e2b39b6ae
2010-09-14 01:59:45 -07:00

3189 lines
119 KiB
C++

//
// Copyright 2010 The Android Open Source Project
//
// The input dispatcher.
//
#define LOG_TAG "InputDispatcher"
//#define LOG_NDEBUG 0
// Log detailed debug messages about each inbound event notification to the dispatcher.
#define DEBUG_INBOUND_EVENT_DETAILS 0
// Log detailed debug messages about each outbound event processed by the dispatcher.
#define DEBUG_OUTBOUND_EVENT_DETAILS 0
// Log debug messages about batching.
#define DEBUG_BATCHING 0
// Log debug messages about the dispatch cycle.
#define DEBUG_DISPATCH_CYCLE 0
// Log debug messages about registrations.
#define DEBUG_REGISTRATION 0
// Log debug messages about performance statistics.
#define DEBUG_PERFORMANCE_STATISTICS 0
// Log debug messages about input event injection.
#define DEBUG_INJECTION 0
// Log debug messages about input event throttling.
#define DEBUG_THROTTLING 0
// Log debug messages about input focus tracking.
#define DEBUG_FOCUS 0
// Log debug messages about the app switch latency optimization.
#define DEBUG_APP_SWITCH 0
#include <cutils/log.h>
#include <ui/InputDispatcher.h>
#include <ui/PowerManager.h>
#include <stddef.h>
#include <unistd.h>
#include <errno.h>
#include <limits.h>
namespace android {
// Delay between reporting long touch events to the power manager.
const nsecs_t EVENT_IGNORE_DURATION = 300 * 1000000LL; // 300 ms
// Default input dispatching timeout if there is no focused application or paused window
// from which to determine an appropriate dispatching timeout.
const nsecs_t DEFAULT_INPUT_DISPATCHING_TIMEOUT = 5000 * 1000000LL; // 5 sec
// Amount of time to allow for all pending events to be processed when an app switch
// key is on the way. This is used to preempt input dispatch and drop input events
// when an application takes too long to respond and the user has pressed an app switch key.
const nsecs_t APP_SWITCH_TIMEOUT = 500 * 1000000LL; // 0.5sec
static inline nsecs_t now() {
return systemTime(SYSTEM_TIME_MONOTONIC);
}
static inline const char* toString(bool value) {
return value ? "true" : "false";
}
// --- InputWindow ---
bool InputWindow::visibleFrameIntersects(const InputWindow* other) const {
return visibleFrameRight > other->visibleFrameLeft
&& visibleFrameLeft < other->visibleFrameRight
&& visibleFrameBottom > other->visibleFrameTop
&& visibleFrameTop < other->visibleFrameBottom;
}
bool InputWindow::touchableAreaContainsPoint(int32_t x, int32_t y) const {
return x >= touchableAreaLeft && x <= touchableAreaRight
&& y >= touchableAreaTop && y <= touchableAreaBottom;
}
// --- InputDispatcher ---
InputDispatcher::InputDispatcher(const sp<InputDispatcherPolicyInterface>& policy) :
mPolicy(policy),
mPendingEvent(NULL), mAppSwitchDueTime(LONG_LONG_MAX),
mDispatchEnabled(true), mDispatchFrozen(false),
mFocusedWindow(NULL), mTouchDown(false), mTouchedWindow(NULL),
mFocusedApplication(NULL),
mCurrentInputTargetsValid(false),
mInputTargetWaitCause(INPUT_TARGET_WAIT_CAUSE_NONE) {
mLooper = new Looper(false);
mInboundQueue.headSentinel.refCount = -1;
mInboundQueue.headSentinel.type = EventEntry::TYPE_SENTINEL;
mInboundQueue.headSentinel.eventTime = LONG_LONG_MIN;
mInboundQueue.tailSentinel.refCount = -1;
mInboundQueue.tailSentinel.type = EventEntry::TYPE_SENTINEL;
mInboundQueue.tailSentinel.eventTime = LONG_LONG_MAX;
mKeyRepeatState.lastKeyEntry = NULL;
int32_t maxEventsPerSecond = policy->getMaxEventsPerSecond();
mThrottleState.minTimeBetweenEvents = 1000000000LL / maxEventsPerSecond;
mThrottleState.lastDeviceId = -1;
#if DEBUG_THROTTLING
mThrottleState.originalSampleCount = 0;
LOGD("Throttling - Max events per second = %d", maxEventsPerSecond);
#endif
}
InputDispatcher::~InputDispatcher() {
{ // acquire lock
AutoMutex _l(mLock);
resetKeyRepeatLocked();
releasePendingEventLocked(true);
drainInboundQueueLocked();
}
while (mConnectionsByReceiveFd.size() != 0) {
unregisterInputChannel(mConnectionsByReceiveFd.valueAt(0)->inputChannel);
}
}
void InputDispatcher::dispatchOnce() {
nsecs_t keyRepeatTimeout = mPolicy->getKeyRepeatTimeout();
nsecs_t keyRepeatDelay = mPolicy->getKeyRepeatDelay();
nsecs_t nextWakeupTime = LONG_LONG_MAX;
{ // acquire lock
AutoMutex _l(mLock);
dispatchOnceInnerLocked(keyRepeatTimeout, keyRepeatDelay, & nextWakeupTime);
if (runCommandsLockedInterruptible()) {
nextWakeupTime = LONG_LONG_MIN; // force next poll to wake up immediately
}
} // release lock
// Wait for callback or timeout or wake. (make sure we round up, not down)
nsecs_t currentTime = now();
int32_t timeoutMillis;
if (nextWakeupTime > currentTime) {
uint64_t timeout = uint64_t(nextWakeupTime - currentTime);
timeout = (timeout + 999999LL) / 1000000LL;
timeoutMillis = timeout > INT_MAX ? -1 : int32_t(timeout);
} else {
timeoutMillis = 0;
}
mLooper->pollOnce(timeoutMillis);
}
void InputDispatcher::dispatchOnceInnerLocked(nsecs_t keyRepeatTimeout,
nsecs_t keyRepeatDelay, nsecs_t* nextWakeupTime) {
nsecs_t currentTime = now();
// Reset the key repeat timer whenever we disallow key events, even if the next event
// is not a key. This is to ensure that we abort a key repeat if the device is just coming
// out of sleep.
if (keyRepeatTimeout < 0) {
resetKeyRepeatLocked();
}
// If dispatching is disabled, drop all events in the queue.
if (! mDispatchEnabled) {
if (mPendingEvent || ! mInboundQueue.isEmpty()) {
LOGI("Dropping pending events because input dispatch is disabled.");
releasePendingEventLocked(true);
drainInboundQueueLocked();
}
return;
}
// If dispatching is frozen, do not process timeouts or try to deliver any new events.
if (mDispatchFrozen) {
#if DEBUG_FOCUS
LOGD("Dispatch frozen. Waiting some more.");
#endif
return;
}
// Optimize latency of app switches.
// Essentially we start a short timeout when an app switch key (HOME / ENDCALL) has
// been pressed. When it expires, we preempt dispatch and drop all other pending events.
bool isAppSwitchDue = mAppSwitchDueTime <= currentTime;
if (mAppSwitchDueTime < *nextWakeupTime) {
*nextWakeupTime = mAppSwitchDueTime;
}
// Detect and process timeouts for all connections and determine if there are any
// synchronous event dispatches pending. This step is entirely non-interruptible.
bool havePendingSyncTarget = false;
size_t activeConnectionCount = mActiveConnections.size();
for (size_t i = 0; i < activeConnectionCount; i++) {
Connection* connection = mActiveConnections.itemAt(i);
if (connection->hasPendingSyncTarget()) {
if (isAppSwitchDue) {
connection->preemptSyncTarget();
} else {
havePendingSyncTarget = true;
}
}
nsecs_t connectionTimeoutTime = connection->nextTimeoutTime;
if (connectionTimeoutTime <= currentTime) {
mTimedOutConnections.add(connection);
} else if (connectionTimeoutTime < *nextWakeupTime) {
*nextWakeupTime = connectionTimeoutTime;
}
}
size_t timedOutConnectionCount = mTimedOutConnections.size();
for (size_t i = 0; i < timedOutConnectionCount; i++) {
Connection* connection = mTimedOutConnections.itemAt(i);
timeoutDispatchCycleLocked(currentTime, connection);
*nextWakeupTime = LONG_LONG_MIN; // force next poll to wake up immediately
}
mTimedOutConnections.clear();
// If we have a pending synchronous target, skip dispatch.
if (havePendingSyncTarget) {
return;
}
// Ready to start a new event.
// If we don't already have a pending event, go grab one.
if (! mPendingEvent) {
if (mInboundQueue.isEmpty()) {
if (isAppSwitchDue) {
// The inbound queue is empty so the app switch key we were waiting
// for will never arrive. Stop waiting for it.
resetPendingAppSwitchLocked(false);
isAppSwitchDue = false;
}
// Synthesize a key repeat if appropriate.
if (mKeyRepeatState.lastKeyEntry) {
if (currentTime >= mKeyRepeatState.nextRepeatTime) {
mPendingEvent = synthesizeKeyRepeatLocked(currentTime, keyRepeatDelay);
} else {
if (mKeyRepeatState.nextRepeatTime < *nextWakeupTime) {
*nextWakeupTime = mKeyRepeatState.nextRepeatTime;
}
}
}
if (! mPendingEvent) {
return;
}
} else {
// Inbound queue has at least one entry.
EventEntry* entry = mInboundQueue.headSentinel.next;
// Throttle the entry if it is a move event and there are no
// other events behind it in the queue. Due to movement batching, additional
// samples may be appended to this event by the time the throttling timeout
// expires.
// TODO Make this smarter and consider throttling per device independently.
if (entry->type == EventEntry::TYPE_MOTION) {
MotionEntry* motionEntry = static_cast<MotionEntry*>(entry);
int32_t deviceId = motionEntry->deviceId;
uint32_t source = motionEntry->source;
if (! isAppSwitchDue
&& motionEntry->next == & mInboundQueue.tailSentinel // exactly one event
&& motionEntry->action == AMOTION_EVENT_ACTION_MOVE
&& deviceId == mThrottleState.lastDeviceId
&& source == mThrottleState.lastSource) {
nsecs_t nextTime = mThrottleState.lastEventTime
+ mThrottleState.minTimeBetweenEvents;
if (currentTime < nextTime) {
// Throttle it!
#if DEBUG_THROTTLING
LOGD("Throttling - Delaying motion event for "
"device 0x%x, source 0x%08x by up to %0.3fms.",
deviceId, source, (nextTime - currentTime) * 0.000001);
#endif
if (nextTime < *nextWakeupTime) {
*nextWakeupTime = nextTime;
}
if (mThrottleState.originalSampleCount == 0) {
mThrottleState.originalSampleCount =
motionEntry->countSamples();
}
return;
}
}
#if DEBUG_THROTTLING
if (mThrottleState.originalSampleCount != 0) {
uint32_t count = motionEntry->countSamples();
LOGD("Throttling - Motion event sample count grew by %d from %d to %d.",
count - mThrottleState.originalSampleCount,
mThrottleState.originalSampleCount, count);
mThrottleState.originalSampleCount = 0;
}
#endif
mThrottleState.lastEventTime = entry->eventTime < currentTime
? entry->eventTime : currentTime;
mThrottleState.lastDeviceId = deviceId;
mThrottleState.lastSource = source;
}
mInboundQueue.dequeue(entry);
mPendingEvent = entry;
}
}
// Now we have an event to dispatch.
assert(mPendingEvent != NULL);
bool wasDispatched = false;
bool wasDropped = false;
switch (mPendingEvent->type) {
case EventEntry::TYPE_CONFIGURATION_CHANGED: {
ConfigurationChangedEntry* typedEntry =
static_cast<ConfigurationChangedEntry*>(mPendingEvent);
wasDispatched = dispatchConfigurationChangedLocked(currentTime, typedEntry);
break;
}
case EventEntry::TYPE_KEY: {
KeyEntry* typedEntry = static_cast<KeyEntry*>(mPendingEvent);
if (isAppSwitchPendingLocked()) {
if (isAppSwitchKey(typedEntry->keyCode)) {
resetPendingAppSwitchLocked(true);
} else if (isAppSwitchDue) {
LOGI("Dropping key because of pending overdue app switch.");
wasDropped = true;
break;
}
}
wasDispatched = dispatchKeyLocked(currentTime, typedEntry, keyRepeatTimeout,
nextWakeupTime);
break;
}
case EventEntry::TYPE_MOTION: {
MotionEntry* typedEntry = static_cast<MotionEntry*>(mPendingEvent);
if (isAppSwitchDue) {
LOGI("Dropping motion because of pending overdue app switch.");
wasDropped = true;
break;
}
wasDispatched = dispatchMotionLocked(currentTime, typedEntry, nextWakeupTime);
break;
}
default:
assert(false);
wasDropped = true;
break;
}
if (wasDispatched || wasDropped) {
releasePendingEventLocked(wasDropped);
*nextWakeupTime = LONG_LONG_MIN; // force next poll to wake up immediately
}
}
bool InputDispatcher::enqueueInboundEventLocked(EventEntry* entry) {
bool needWake = mInboundQueue.isEmpty();
mInboundQueue.enqueueAtTail(entry);
switch (entry->type) {
case EventEntry::TYPE_KEY:
needWake |= detectPendingAppSwitchLocked(static_cast<KeyEntry*>(entry));
break;
}
return needWake;
}
bool InputDispatcher::isAppSwitchKey(int32_t keyCode) {
return keyCode == AKEYCODE_HOME || keyCode == AKEYCODE_ENDCALL;
}
bool InputDispatcher::isAppSwitchPendingLocked() {
return mAppSwitchDueTime != LONG_LONG_MAX;
}
bool InputDispatcher::detectPendingAppSwitchLocked(KeyEntry* inboundKeyEntry) {
if (inboundKeyEntry->action == AKEY_EVENT_ACTION_UP
&& ! (inboundKeyEntry->flags & AKEY_EVENT_FLAG_CANCELED)
&& isAppSwitchKey(inboundKeyEntry->keyCode)
&& isEventFromReliableSourceLocked(inboundKeyEntry)) {
#if DEBUG_APP_SWITCH
LOGD("App switch is pending!");
#endif
mAppSwitchDueTime = inboundKeyEntry->eventTime + APP_SWITCH_TIMEOUT;
return true; // need wake
}
return false;
}
void InputDispatcher::resetPendingAppSwitchLocked(bool handled) {
mAppSwitchDueTime = LONG_LONG_MAX;
#if DEBUG_APP_SWITCH
if (handled) {
LOGD("App switch has arrived.");
} else {
LOGD("App switch was abandoned.");
}
#endif
}
bool InputDispatcher::runCommandsLockedInterruptible() {
if (mCommandQueue.isEmpty()) {
return false;
}
do {
CommandEntry* commandEntry = mCommandQueue.dequeueAtHead();
Command command = commandEntry->command;
(this->*command)(commandEntry); // commands are implicitly 'LockedInterruptible'
commandEntry->connection.clear();
mAllocator.releaseCommandEntry(commandEntry);
} while (! mCommandQueue.isEmpty());
return true;
}
InputDispatcher::CommandEntry* InputDispatcher::postCommandLocked(Command command) {
CommandEntry* commandEntry = mAllocator.obtainCommandEntry(command);
mCommandQueue.enqueueAtTail(commandEntry);
return commandEntry;
}
void InputDispatcher::drainInboundQueueLocked() {
while (! mInboundQueue.isEmpty()) {
EventEntry* entry = mInboundQueue.dequeueAtHead();
releaseInboundEventLocked(entry, true /*wasDropped*/);
}
}
void InputDispatcher::releasePendingEventLocked(bool wasDropped) {
if (mPendingEvent) {
releaseInboundEventLocked(mPendingEvent, wasDropped);
mPendingEvent = NULL;
}
}
void InputDispatcher::releaseInboundEventLocked(EventEntry* entry, bool wasDropped) {
if (wasDropped) {
#if DEBUG_DISPATCH_CYCLE
LOGD("Pending event was dropped.");
#endif
setInjectionResultLocked(entry, INPUT_EVENT_INJECTION_FAILED);
}
mAllocator.releaseEventEntry(entry);
}
bool InputDispatcher::isEventFromReliableSourceLocked(EventEntry* entry) {
return ! entry->isInjected()
|| entry->injectorUid == 0
|| mPolicy->checkInjectEventsPermissionNonReentrant(
entry->injectorPid, entry->injectorUid);
}
void InputDispatcher::resetKeyRepeatLocked() {
if (mKeyRepeatState.lastKeyEntry) {
mAllocator.releaseKeyEntry(mKeyRepeatState.lastKeyEntry);
mKeyRepeatState.lastKeyEntry = NULL;
}
}
InputDispatcher::KeyEntry* InputDispatcher::synthesizeKeyRepeatLocked(
nsecs_t currentTime, nsecs_t keyRepeatDelay) {
KeyEntry* entry = mKeyRepeatState.lastKeyEntry;
// Reuse the repeated key entry if it is otherwise unreferenced.
uint32_t policyFlags = entry->policyFlags & POLICY_FLAG_RAW_MASK;
if (entry->refCount == 1) {
entry->recycle();
entry->eventTime = currentTime;
entry->policyFlags = policyFlags;
entry->repeatCount += 1;
} else {
KeyEntry* newEntry = mAllocator.obtainKeyEntry(currentTime,
entry->deviceId, entry->source, policyFlags,
entry->action, entry->flags, entry->keyCode, entry->scanCode,
entry->metaState, entry->repeatCount + 1, entry->downTime);
mKeyRepeatState.lastKeyEntry = newEntry;
mAllocator.releaseKeyEntry(entry);
entry = newEntry;
}
entry->syntheticRepeat = true;
// Increment reference count since we keep a reference to the event in
// mKeyRepeatState.lastKeyEntry in addition to the one we return.
entry->refCount += 1;
if (entry->repeatCount == 1) {
entry->flags |= AKEY_EVENT_FLAG_LONG_PRESS;
}
mKeyRepeatState.nextRepeatTime = currentTime + keyRepeatDelay;
return entry;
}
bool InputDispatcher::dispatchConfigurationChangedLocked(
nsecs_t currentTime, ConfigurationChangedEntry* entry) {
#if DEBUG_OUTBOUND_EVENT_DETAILS
LOGD("dispatchConfigurationChanged - eventTime=%lld", entry->eventTime);
#endif
// Reset key repeating in case a keyboard device was added or removed or something.
resetKeyRepeatLocked();
// Enqueue a command to run outside the lock to tell the policy that the configuration changed.
CommandEntry* commandEntry = postCommandLocked(
& InputDispatcher::doNotifyConfigurationChangedInterruptible);
commandEntry->eventTime = entry->eventTime;
return true;
}
bool InputDispatcher::dispatchKeyLocked(
nsecs_t currentTime, KeyEntry* entry, nsecs_t keyRepeatTimeout,
nsecs_t* nextWakeupTime) {
// Preprocessing.
if (! entry->dispatchInProgress) {
logOutboundKeyDetailsLocked("dispatchKey - ", entry);
if (entry->repeatCount == 0
&& entry->action == AKEY_EVENT_ACTION_DOWN
&& ! entry->isInjected()) {
if (mKeyRepeatState.lastKeyEntry
&& mKeyRepeatState.lastKeyEntry->keyCode == entry->keyCode) {
// We have seen two identical key downs in a row which indicates that the device
// driver is automatically generating key repeats itself. We take note of the
// repeat here, but we disable our own next key repeat timer since it is clear that
// we will not need to synthesize key repeats ourselves.
entry->repeatCount = mKeyRepeatState.lastKeyEntry->repeatCount + 1;
resetKeyRepeatLocked();
mKeyRepeatState.nextRepeatTime = LONG_LONG_MAX; // don't generate repeats ourselves
} else {
// Not a repeat. Save key down state in case we do see a repeat later.
resetKeyRepeatLocked();
mKeyRepeatState.nextRepeatTime = entry->eventTime + keyRepeatTimeout;
}
mKeyRepeatState.lastKeyEntry = entry;
entry->refCount += 1;
} else if (! entry->syntheticRepeat) {
resetKeyRepeatLocked();
}
entry->dispatchInProgress = true;
startFindingTargetsLocked();
}
// Identify targets.
if (! mCurrentInputTargetsValid) {
InputWindow* window = NULL;
int32_t injectionResult = findFocusedWindowLocked(currentTime,
entry, nextWakeupTime, & window);
if (injectionResult == INPUT_EVENT_INJECTION_PENDING) {
return false;
}
setInjectionResultLocked(entry, injectionResult);
if (injectionResult != INPUT_EVENT_INJECTION_SUCCEEDED) {
return true;
}
addMonitoringTargetsLocked();
finishFindingTargetsLocked(window);
}
// Give the policy a chance to intercept the key.
if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN) {
CommandEntry* commandEntry = postCommandLocked(
& InputDispatcher::doInterceptKeyBeforeDispatchingLockedInterruptible);
commandEntry->inputChannel = mCurrentInputChannel;
commandEntry->keyEntry = entry;
entry->refCount += 1;
return false; // wait for the command to run
}
if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_SKIP) {
return true;
}
// Dispatch the key.
dispatchEventToCurrentInputTargetsLocked(currentTime, entry, false);
// Poke user activity.
pokeUserActivityLocked(entry->eventTime, mCurrentInputWindowType, POWER_MANAGER_BUTTON_EVENT);
return true;
}
void InputDispatcher::logOutboundKeyDetailsLocked(const char* prefix, const KeyEntry* entry) {
#if DEBUG_OUTBOUND_EVENT_DETAILS
LOGD("%seventTime=%lld, deviceId=0x%x, source=0x%x, policyFlags=0x%x, "
"action=0x%x, flags=0x%x, keyCode=0x%x, scanCode=0x%x, metaState=0x%x, "
"downTime=%lld",
prefix,
entry->eventTime, entry->deviceId, entry->source, entry->policyFlags,
entry->action, entry->flags, entry->keyCode, entry->scanCode, entry->metaState,
entry->downTime);
#endif
}
bool InputDispatcher::dispatchMotionLocked(
nsecs_t currentTime, MotionEntry* entry, nsecs_t* nextWakeupTime) {
// Preprocessing.
if (! entry->dispatchInProgress) {
logOutboundMotionDetailsLocked("dispatchMotion - ", entry);
entry->dispatchInProgress = true;
startFindingTargetsLocked();
}
bool isPointerEvent = entry->source & AINPUT_SOURCE_CLASS_POINTER;
// Identify targets.
if (! mCurrentInputTargetsValid) {
InputWindow* window = NULL;
int32_t injectionResult;
if (isPointerEvent) {
// Pointer event. (eg. touchscreen)
injectionResult = findTouchedWindowLocked(currentTime,
entry, nextWakeupTime, & window);
} else {
// Non touch event. (eg. trackball)
injectionResult = findFocusedWindowLocked(currentTime,
entry, nextWakeupTime, & window);
}
if (injectionResult == INPUT_EVENT_INJECTION_PENDING) {
return false;
}
setInjectionResultLocked(entry, injectionResult);
if (injectionResult != INPUT_EVENT_INJECTION_SUCCEEDED) {
return true;
}
addMonitoringTargetsLocked();
finishFindingTargetsLocked(window);
}
// Dispatch the motion.
dispatchEventToCurrentInputTargetsLocked(currentTime, entry, false);
// Poke user activity.
int32_t eventType;
if (isPointerEvent) {
switch (entry->action) {
case AMOTION_EVENT_ACTION_DOWN:
eventType = POWER_MANAGER_TOUCH_EVENT;
break;
case AMOTION_EVENT_ACTION_UP:
eventType = POWER_MANAGER_TOUCH_UP_EVENT;
break;
default:
if (entry->eventTime - entry->downTime >= EVENT_IGNORE_DURATION) {
eventType = POWER_MANAGER_TOUCH_EVENT;
} else {
eventType = POWER_MANAGER_LONG_TOUCH_EVENT;
}
break;
}
} else {
eventType = POWER_MANAGER_BUTTON_EVENT;
}
pokeUserActivityLocked(entry->eventTime, mCurrentInputWindowType, eventType);
return true;
}
void InputDispatcher::logOutboundMotionDetailsLocked(const char* prefix, const MotionEntry* entry) {
#if DEBUG_OUTBOUND_EVENT_DETAILS
LOGD("%seventTime=%lld, deviceId=0x%x, source=0x%x, policyFlags=0x%x, "
"action=0x%x, flags=0x%x, "
"metaState=0x%x, edgeFlags=0x%x, xPrecision=%f, yPrecision=%f, downTime=%lld",
prefix,
entry->eventTime, entry->deviceId, entry->source, entry->policyFlags,
entry->action, entry->flags,
entry->metaState, entry->edgeFlags, entry->xPrecision, entry->yPrecision,
entry->downTime);
// Print the most recent sample that we have available, this may change due to batching.
size_t sampleCount = 1;
const MotionSample* sample = & entry->firstSample;
for (; sample->next != NULL; sample = sample->next) {
sampleCount += 1;
}
for (uint32_t i = 0; i < entry->pointerCount; i++) {
LOGD(" Pointer %d: id=%d, x=%f, y=%f, pressure=%f, size=%f, "
"touchMajor=%f, touchMinor=%f, toolMajor=%f, toolMinor=%f, "
"orientation=%f",
i, entry->pointerIds[i],
sample->pointerCoords[i].x, sample->pointerCoords[i].y,
sample->pointerCoords[i].pressure, sample->pointerCoords[i].size,
sample->pointerCoords[i].touchMajor, sample->pointerCoords[i].touchMinor,
sample->pointerCoords[i].toolMajor, sample->pointerCoords[i].toolMinor,
sample->pointerCoords[i].orientation);
}
// Keep in mind that due to batching, it is possible for the number of samples actually
// dispatched to change before the application finally consumed them.
if (entry->action == AMOTION_EVENT_ACTION_MOVE) {
LOGD(" ... Total movement samples currently batched %d ...", sampleCount);
}
#endif
}
void InputDispatcher::dispatchEventToCurrentInputTargetsLocked(nsecs_t currentTime,
EventEntry* eventEntry, bool resumeWithAppendedMotionSample) {
#if DEBUG_DISPATCH_CYCLE
LOGD("dispatchEventToCurrentInputTargets - "
"resumeWithAppendedMotionSample=%s",
toString(resumeWithAppendedMotionSample));
#endif
assert(eventEntry->dispatchInProgress); // should already have been set to true
for (size_t i = 0; i < mCurrentInputTargets.size(); i++) {
const InputTarget& inputTarget = mCurrentInputTargets.itemAt(i);
ssize_t connectionIndex = getConnectionIndex(inputTarget.inputChannel);
if (connectionIndex >= 0) {
sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex);
prepareDispatchCycleLocked(currentTime, connection, eventEntry, & inputTarget,
resumeWithAppendedMotionSample);
} else {
LOGW("Framework requested delivery of an input event to channel '%s' but it "
"is not registered with the input dispatcher.",
inputTarget.inputChannel->getName().string());
}
}
}
void InputDispatcher::startFindingTargetsLocked() {
mCurrentInputTargetsValid = false;
mCurrentInputTargets.clear();
mCurrentInputChannel.clear();
mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_NONE;
}
void InputDispatcher::finishFindingTargetsLocked(const InputWindow* window) {
mCurrentInputWindowType = window->layoutParamsType;
mCurrentInputChannel = window->inputChannel;
mCurrentInputTargetsValid = true;
}
int32_t InputDispatcher::handleTargetsNotReadyLocked(nsecs_t currentTime,
const EventEntry* entry, const InputApplication* application, const InputWindow* window,
nsecs_t* nextWakeupTime) {
if (application == NULL && window == NULL) {
if (mInputTargetWaitCause != INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY) {
#if DEBUG_FOCUS
LOGD("Waiting for system to become ready for input.");
#endif
mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY;
mInputTargetWaitStartTime = currentTime;
mInputTargetWaitTimeoutTime = LONG_LONG_MAX;
mInputTargetWaitTimeoutExpired = false;
}
} else {
if (mInputTargetWaitCause != INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY) {
#if DEBUG_FOCUS
LOGD("Waiting for application to become ready for input: name=%s, window=%s",
application ? application->name.string() : "<unknown>",
window ? window->inputChannel->getName().string() : "<unknown>");
#endif
nsecs_t timeout = window ? window->dispatchingTimeout :
application ? application->dispatchingTimeout : DEFAULT_INPUT_DISPATCHING_TIMEOUT;
mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY;
mInputTargetWaitStartTime = currentTime;
mInputTargetWaitTimeoutTime = currentTime + timeout;
mInputTargetWaitTimeoutExpired = false;
}
}
if (mInputTargetWaitTimeoutExpired) {
return INPUT_EVENT_INJECTION_TIMED_OUT;
}
if (currentTime >= mInputTargetWaitTimeoutTime) {
LOGI("Application is not ready for input: name=%s, window=%s,"
"%01.1fms since event, %01.1fms since wait started",
application ? application->name.string() : "<unknown>",
window ? window->inputChannel->getName().string() : "<unknown>",
(currentTime - entry->eventTime) / 1000000.0,
(currentTime - mInputTargetWaitStartTime) / 1000000.0);
CommandEntry* commandEntry = postCommandLocked(
& InputDispatcher::doTargetsNotReadyTimeoutLockedInterruptible);
if (application) {
commandEntry->inputApplicationHandle = application->handle;
}
if (window) {
commandEntry->inputChannel = window->inputChannel;
}
// Force poll loop to wake up immediately on next iteration once we get the
// ANR response back from the policy.
*nextWakeupTime = LONG_LONG_MIN;
return INPUT_EVENT_INJECTION_PENDING;
} else {
// Force poll loop to wake up when timeout is due.
if (mInputTargetWaitTimeoutTime < *nextWakeupTime) {
*nextWakeupTime = mInputTargetWaitTimeoutTime;
}
return INPUT_EVENT_INJECTION_PENDING;
}
}
void InputDispatcher::resumeAfterTargetsNotReadyTimeoutLocked(nsecs_t newTimeout) {
if (newTimeout > 0) {
// Extend the timeout.
mInputTargetWaitTimeoutTime = now() + newTimeout;
} else {
// Give up.
mInputTargetWaitTimeoutExpired = true;
}
}
nsecs_t InputDispatcher::getTimeSpentWaitingForApplicationWhileFindingTargetsLocked(
nsecs_t currentTime) {
if (mInputTargetWaitCause == INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY) {
return currentTime - mInputTargetWaitStartTime;
}
return 0;
}
void InputDispatcher::resetANRTimeoutsLocked() {
#if DEBUG_FOCUS
LOGD("Resetting ANR timeouts.");
#endif
// Reset timeouts for all active connections.
nsecs_t currentTime = now();
for (size_t i = 0; i < mActiveConnections.size(); i++) {
Connection* connection = mActiveConnections[i];
connection->resetTimeout(currentTime);
}
// Reset input target wait timeout.
mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_NONE;
}
int32_t InputDispatcher::findFocusedWindowLocked(nsecs_t currentTime, const EventEntry* entry,
nsecs_t* nextWakeupTime, InputWindow** outWindow) {
*outWindow = NULL;
mCurrentInputTargets.clear();
int32_t injectionResult;
// If there is no currently focused window and no focused application
// then drop the event.
if (! mFocusedWindow) {
if (mFocusedApplication) {
#if DEBUG_FOCUS
LOGD("Waiting because there is no focused window but there is a "
"focused application that may eventually add a window: '%s'.",
mFocusedApplication->name.string());
#endif
injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
mFocusedApplication, NULL, nextWakeupTime);
goto Unresponsive;
}
LOGI("Dropping event because there is no focused window or focused application.");
injectionResult = INPUT_EVENT_INJECTION_FAILED;
goto Failed;
}
// Check permissions.
if (! checkInjectionPermission(mFocusedWindow, entry->injectorPid, entry->injectorUid)) {
injectionResult = INPUT_EVENT_INJECTION_PERMISSION_DENIED;
goto Failed;
}
// If the currently focused window is paused then keep waiting.
if (mFocusedWindow->paused) {
#if DEBUG_FOCUS
LOGD("Waiting because focused window is paused.");
#endif
injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
mFocusedApplication, mFocusedWindow, nextWakeupTime);
goto Unresponsive;
}
// Success! Output targets.
injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED;
*outWindow = mFocusedWindow;
addWindowTargetLocked(mFocusedWindow, InputTarget::FLAG_SYNC,
getTimeSpentWaitingForApplicationWhileFindingTargetsLocked(currentTime));
// Done.
Failed:
Unresponsive:
#if DEBUG_FOCUS
LOGD("findFocusedWindow finished: injectionResult=%d",
injectionResult);
logDispatchStateLocked();
#endif
return injectionResult;
}
int32_t InputDispatcher::findTouchedWindowLocked(nsecs_t currentTime, const MotionEntry* entry,
nsecs_t* nextWakeupTime, InputWindow** outWindow) {
enum InjectionPermission {
INJECTION_PERMISSION_UNKNOWN,
INJECTION_PERMISSION_GRANTED,
INJECTION_PERMISSION_DENIED
};
*outWindow = NULL;
mCurrentInputTargets.clear();
nsecs_t startTime = now();
// For security reasons, we defer updating the touch state until we are sure that
// event injection will be allowed.
//
// FIXME In the original code, screenWasOff could never be set to true.
// The reason is that the POLICY_FLAG_WOKE_HERE
// and POLICY_FLAG_BRIGHT_HERE flags were set only when preprocessing raw
// EV_KEY, EV_REL and EV_ABS events. As it happens, the touch event was
// actually enqueued using the policyFlags that appeared in the final EV_SYN
// events upon which no preprocessing took place. So policyFlags was always 0.
// In the new native input dispatcher we're a bit more careful about event
// preprocessing so the touches we receive can actually have non-zero policyFlags.
// Unfortunately we obtain undesirable behavior.
//
// Here's what happens:
//
// When the device dims in anticipation of going to sleep, touches
// in windows which have FLAG_TOUCHABLE_WHEN_WAKING cause
// the device to brighten and reset the user activity timer.
// Touches on other windows (such as the launcher window)
// are dropped. Then after a moment, the device goes to sleep. Oops.
//
// Also notice how screenWasOff was being initialized using POLICY_FLAG_BRIGHT_HERE
// instead of POLICY_FLAG_WOKE_HERE...
//
bool screenWasOff = false; // original policy: policyFlags & POLICY_FLAG_BRIGHT_HERE;
int32_t action = entry->action;
// Update the touch state as needed based on the properties of the touch event.
int32_t injectionResult;
InjectionPermission injectionPermission;
if (action == AMOTION_EVENT_ACTION_DOWN) {
/* Case 1: ACTION_DOWN */
InputWindow* newTouchedWindow = NULL;
mTempTouchedOutsideTargets.clear();
int32_t x = int32_t(entry->firstSample.pointerCoords[0].x);
int32_t y = int32_t(entry->firstSample.pointerCoords[0].y);
InputWindow* topErrorWindow = NULL;
bool obscured = false;
// Traverse windows from front to back to find touched window and outside targets.
size_t numWindows = mWindows.size();
for (size_t i = 0; i < numWindows; i++) {
InputWindow* window = & mWindows.editItemAt(i);
int32_t flags = window->layoutParamsFlags;
if (flags & InputWindow::FLAG_SYSTEM_ERROR) {
if (! topErrorWindow) {
topErrorWindow = window;
}
}
if (window->visible) {
if (! (flags & InputWindow::FLAG_NOT_TOUCHABLE)) {
bool isTouchModal = (flags & (InputWindow::FLAG_NOT_FOCUSABLE
| InputWindow::FLAG_NOT_TOUCH_MODAL)) == 0;
if (isTouchModal || window->touchableAreaContainsPoint(x, y)) {
if (! screenWasOff || flags & InputWindow::FLAG_TOUCHABLE_WHEN_WAKING) {
newTouchedWindow = window;
obscured = isWindowObscuredLocked(window);
}
break; // found touched window, exit window loop
}
}
if (flags & InputWindow::FLAG_WATCH_OUTSIDE_TOUCH) {
OutsideTarget outsideTarget;
outsideTarget.window = window;
outsideTarget.obscured = isWindowObscuredLocked(window);
mTempTouchedOutsideTargets.push(outsideTarget);
}
}
}
// If there is an error window but it is not taking focus (typically because
// it is invisible) then wait for it. Any other focused window may in
// fact be in ANR state.
if (topErrorWindow && newTouchedWindow != topErrorWindow) {
#if DEBUG_FOCUS
LOGD("Waiting because system error window is pending.");
#endif
injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
NULL, NULL, nextWakeupTime);
injectionPermission = INJECTION_PERMISSION_UNKNOWN;
goto Unresponsive;
}
// If we did not find a touched window then fail.
if (! newTouchedWindow) {
if (mFocusedApplication) {
#if DEBUG_FOCUS
LOGD("Waiting because there is no touched window but there is a "
"focused application that may eventually add a new window: '%s'.",
mFocusedApplication->name.string());
#endif
injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
mFocusedApplication, NULL, nextWakeupTime);
injectionPermission = INJECTION_PERMISSION_UNKNOWN;
goto Unresponsive;
}
LOGI("Dropping event because there is no touched window or focused application.");
injectionResult = INPUT_EVENT_INJECTION_FAILED;
injectionPermission = INJECTION_PERMISSION_UNKNOWN;
goto Failed;
}
// Check permissions.
if (! checkInjectionPermission(newTouchedWindow, entry->injectorPid, entry->injectorUid)) {
injectionResult = INPUT_EVENT_INJECTION_PERMISSION_DENIED;
injectionPermission = INJECTION_PERMISSION_DENIED;
goto Failed;
}
// If the touched window is paused then keep waiting.
if (newTouchedWindow->paused) {
#if DEBUG_INPUT_DISPATCHER_POLICY
LOGD("Waiting because touched window is paused.");
#endif
injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
NULL, newTouchedWindow, nextWakeupTime);
injectionPermission = INJECTION_PERMISSION_GRANTED;
goto Unresponsive;
}
// Success! Update the touch dispatch state for real.
releaseTouchedWindowLocked();
mTouchedWindow = newTouchedWindow;
mTouchedWindowIsObscured = obscured;
if (newTouchedWindow->hasWallpaper) {
mTouchedWallpaperWindows.appendVector(mWallpaperWindows);
}
} else {
/* Case 2: Everything but ACTION_DOWN */
// Check permissions.
if (! checkInjectionPermission(mTouchedWindow, entry->injectorPid, entry->injectorUid)) {
injectionResult = INPUT_EVENT_INJECTION_PERMISSION_DENIED;
injectionPermission = INJECTION_PERMISSION_DENIED;
goto Failed;
}
// If the pointer is not currently down, then ignore the event.
if (! mTouchDown) {
LOGI("Dropping event because the pointer is not down.");
injectionResult = INPUT_EVENT_INJECTION_FAILED;
injectionPermission = INJECTION_PERMISSION_GRANTED;
goto Failed;
}
// If there is no currently touched window then fail.
if (! mTouchedWindow) {
#if DEBUG_INPUT_DISPATCHER_POLICY
LOGD("Dropping event because there is no touched window to receive it.");
#endif
injectionResult = INPUT_EVENT_INJECTION_FAILED;
injectionPermission = INJECTION_PERMISSION_GRANTED;
goto Failed;
}
// If the touched window is paused then keep waiting.
if (mTouchedWindow->paused) {
#if DEBUG_INPUT_DISPATCHER_POLICY
LOGD("Waiting because touched window is paused.");
#endif
injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
NULL, mTouchedWindow, nextWakeupTime);
injectionPermission = INJECTION_PERMISSION_GRANTED;
goto Unresponsive;
}
}
// Success! Output targets.
injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED;
injectionPermission = INJECTION_PERMISSION_GRANTED;
{
size_t numWallpaperWindows = mTouchedWallpaperWindows.size();
for (size_t i = 0; i < numWallpaperWindows; i++) {
addWindowTargetLocked(mTouchedWallpaperWindows[i],
InputTarget::FLAG_WINDOW_IS_OBSCURED, 0);
}
size_t numOutsideTargets = mTempTouchedOutsideTargets.size();
for (size_t i = 0; i < numOutsideTargets; i++) {
const OutsideTarget& outsideTarget = mTempTouchedOutsideTargets[i];
int32_t outsideTargetFlags = InputTarget::FLAG_OUTSIDE;
if (outsideTarget.obscured) {
outsideTargetFlags |= InputTarget::FLAG_WINDOW_IS_OBSCURED;
}
addWindowTargetLocked(outsideTarget.window, outsideTargetFlags, 0);
}
mTempTouchedOutsideTargets.clear();
int32_t targetFlags = InputTarget::FLAG_SYNC;
if (mTouchedWindowIsObscured) {
targetFlags |= InputTarget::FLAG_WINDOW_IS_OBSCURED;
}
addWindowTargetLocked(mTouchedWindow, targetFlags,
getTimeSpentWaitingForApplicationWhileFindingTargetsLocked(currentTime));
*outWindow = mTouchedWindow;
}
Failed:
// Check injection permission once and for all.
if (injectionPermission == INJECTION_PERMISSION_UNKNOWN) {
if (checkInjectionPermission(action == AMOTION_EVENT_ACTION_DOWN ? NULL : mTouchedWindow,
entry->injectorPid, entry->injectorUid)) {
injectionPermission = INJECTION_PERMISSION_GRANTED;
} else {
injectionPermission = INJECTION_PERMISSION_DENIED;
}
}
// Update final pieces of touch state if the injector had permission.
if (injectionPermission == INJECTION_PERMISSION_GRANTED) {
if (action == AMOTION_EVENT_ACTION_DOWN) {
if (mTouchDown) {
// This is weird. We got a down but we thought it was already down!
LOGW("Pointer down received while already down.");
} else {
mTouchDown = true;
}
if (injectionResult != INPUT_EVENT_INJECTION_SUCCEEDED) {
// Since we failed to identify a target for this touch down, we may still
// be holding on to an earlier target from a previous touch down. Release it.
releaseTouchedWindowLocked();
}
} else if (action == AMOTION_EVENT_ACTION_UP) {
mTouchDown = false;
releaseTouchedWindowLocked();
}
} else {
LOGW("Not updating touch focus because injection was denied.");
}
Unresponsive:
#if DEBUG_FOCUS
LOGD("findTouchedWindow finished: injectionResult=%d, injectionPermission=%d",
injectionResult, injectionPermission);
logDispatchStateLocked();
#endif
return injectionResult;
}
void InputDispatcher::releaseTouchedWindowLocked() {
mTouchedWindow = NULL;
mTouchedWindowIsObscured = false;
mTouchedWallpaperWindows.clear();
}
void InputDispatcher::addWindowTargetLocked(const InputWindow* window, int32_t targetFlags,
nsecs_t timeSpentWaitingForApplication) {
mCurrentInputTargets.push();
InputTarget& target = mCurrentInputTargets.editTop();
target.inputChannel = window->inputChannel;
target.flags = targetFlags;
target.timeout = window->dispatchingTimeout;
target.timeSpentWaitingForApplication = timeSpentWaitingForApplication;
target.xOffset = - window->frameLeft;
target.yOffset = - window->frameTop;
}
void InputDispatcher::addMonitoringTargetsLocked() {
for (size_t i = 0; i < mMonitoringChannels.size(); i++) {
mCurrentInputTargets.push();
InputTarget& target = mCurrentInputTargets.editTop();
target.inputChannel = mMonitoringChannels[i];
target.flags = 0;
target.timeout = -1;
target.timeSpentWaitingForApplication = 0;
target.xOffset = 0;
target.yOffset = 0;
}
}
bool InputDispatcher::checkInjectionPermission(const InputWindow* window,
int32_t injectorPid, int32_t injectorUid) {
if (injectorUid > 0 && (window == NULL || window->ownerUid != injectorUid)) {
bool result = mPolicy->checkInjectEventsPermissionNonReentrant(injectorPid, injectorUid);
if (! result) {
if (window) {
LOGW("Permission denied: injecting event from pid %d uid %d to window "
"with input channel %s owned by uid %d",
injectorPid, injectorUid, window->inputChannel->getName().string(),
window->ownerUid);
} else {
LOGW("Permission denied: injecting event from pid %d uid %d",
injectorPid, injectorUid);
}
return false;
}
}
return true;
}
bool InputDispatcher::isWindowObscuredLocked(const InputWindow* window) {
size_t numWindows = mWindows.size();
for (size_t i = 0; i < numWindows; i++) {
const InputWindow* other = & mWindows.itemAt(i);
if (other == window) {
break;
}
if (other->visible && window->visibleFrameIntersects(other)) {
return true;
}
}
return false;
}
void InputDispatcher::pokeUserActivityLocked(nsecs_t eventTime,
int32_t windowType, int32_t eventType) {
CommandEntry* commandEntry = postCommandLocked(
& InputDispatcher::doPokeUserActivityLockedInterruptible);
commandEntry->eventTime = eventTime;
commandEntry->windowType = windowType;
commandEntry->userActivityEventType = eventType;
}
void InputDispatcher::prepareDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection, EventEntry* eventEntry, const InputTarget* inputTarget,
bool resumeWithAppendedMotionSample) {
#if DEBUG_DISPATCH_CYCLE
LOGD("channel '%s' ~ prepareDispatchCycle - flags=%d, timeout=%lldns, "
"xOffset=%f, yOffset=%f, resumeWithAppendedMotionSample=%s",
connection->getInputChannelName(), inputTarget->flags, inputTarget->timeout,
inputTarget->xOffset, inputTarget->yOffset,
toString(resumeWithAppendedMotionSample));
#endif
// Skip this event if the connection status is not normal.
// We don't want to enqueue additional outbound events if the connection is broken or
// not responding.
if (connection->status != Connection::STATUS_NORMAL) {
LOGW("channel '%s' ~ Dropping event because the channel status is %s",
connection->getInputChannelName(), connection->getStatusLabel());
// If the connection is not responding but the user is poking the application anyways,
// retrigger the original timeout.
if (connection->status == Connection::STATUS_NOT_RESPONDING) {
timeoutDispatchCycleLocked(currentTime, connection);
}
return;
}
// Resume the dispatch cycle with a freshly appended motion sample.
// First we check that the last dispatch entry in the outbound queue is for the same
// motion event to which we appended the motion sample. If we find such a dispatch
// entry, and if it is currently in progress then we try to stream the new sample.
bool wasEmpty = connection->outboundQueue.isEmpty();
if (! wasEmpty && resumeWithAppendedMotionSample) {
DispatchEntry* motionEventDispatchEntry =
connection->findQueuedDispatchEntryForEvent(eventEntry);
if (motionEventDispatchEntry) {
// If the dispatch entry is not in progress, then we must be busy dispatching an
// earlier event. Not a problem, the motion event is on the outbound queue and will
// be dispatched later.
if (! motionEventDispatchEntry->inProgress) {
#if DEBUG_BATCHING
LOGD("channel '%s' ~ Not streaming because the motion event has "
"not yet been dispatched. "
"(Waiting for earlier events to be consumed.)",
connection->getInputChannelName());
#endif
return;
}
// If the dispatch entry is in progress but it already has a tail of pending
// motion samples, then it must mean that the shared memory buffer filled up.
// Not a problem, when this dispatch cycle is finished, we will eventually start
// a new dispatch cycle to process the tail and that tail includes the newly
// appended motion sample.
if (motionEventDispatchEntry->tailMotionSample) {
#if DEBUG_BATCHING
LOGD("channel '%s' ~ Not streaming because no new samples can "
"be appended to the motion event in this dispatch cycle. "
"(Waiting for next dispatch cycle to start.)",
connection->getInputChannelName());
#endif
return;
}
// The dispatch entry is in progress and is still potentially open for streaming.
// Try to stream the new motion sample. This might fail if the consumer has already
// consumed the motion event (or if the channel is broken).
MotionSample* appendedMotionSample = static_cast<MotionEntry*>(eventEntry)->lastSample;
status_t status = connection->inputPublisher.appendMotionSample(
appendedMotionSample->eventTime, appendedMotionSample->pointerCoords);
if (status == OK) {
#if DEBUG_BATCHING
LOGD("channel '%s' ~ Successfully streamed new motion sample.",
connection->getInputChannelName());
#endif
return;
}
#if DEBUG_BATCHING
if (status == NO_MEMORY) {
LOGD("channel '%s' ~ Could not append motion sample to currently "
"dispatched move event because the shared memory buffer is full. "
"(Waiting for next dispatch cycle to start.)",
connection->getInputChannelName());
} else if (status == status_t(FAILED_TRANSACTION)) {
LOGD("channel '%s' ~ Could not append motion sample to currently "
"dispatched move event because the event has already been consumed. "
"(Waiting for next dispatch cycle to start.)",
connection->getInputChannelName());
} else {
LOGD("channel '%s' ~ Could not append motion sample to currently "
"dispatched move event due to an error, status=%d. "
"(Waiting for next dispatch cycle to start.)",
connection->getInputChannelName(), status);
}
#endif
// Failed to stream. Start a new tail of pending motion samples to dispatch
// in the next cycle.
motionEventDispatchEntry->tailMotionSample = appendedMotionSample;
return;
}
}
// Bring the input state back in line with reality in case it drifted off during an ANR.
if (connection->inputState.isOutOfSync()) {
mTempCancelationEvents.clear();
connection->inputState.synthesizeCancelationEvents(& mAllocator, mTempCancelationEvents);
connection->inputState.resetOutOfSync();
if (! mTempCancelationEvents.isEmpty()) {
LOGI("channel '%s' ~ Generated %d cancelation events to bring channel back in sync "
"with reality.",
connection->getInputChannelName(), mTempCancelationEvents.size());
for (size_t i = 0; i < mTempCancelationEvents.size(); i++) {
EventEntry* cancelationEventEntry = mTempCancelationEvents.itemAt(i);
switch (cancelationEventEntry->type) {
case EventEntry::TYPE_KEY:
logOutboundKeyDetailsLocked(" ",
static_cast<KeyEntry*>(cancelationEventEntry));
break;
case EventEntry::TYPE_MOTION:
logOutboundMotionDetailsLocked(" ",
static_cast<MotionEntry*>(cancelationEventEntry));
break;
}
DispatchEntry* cancelationDispatchEntry =
mAllocator.obtainDispatchEntry(cancelationEventEntry,
0, inputTarget->xOffset, inputTarget->yOffset, inputTarget->timeout);
connection->outboundQueue.enqueueAtTail(cancelationDispatchEntry);
mAllocator.releaseEventEntry(cancelationEventEntry);
}
}
}
// This is a new event.
// Enqueue a new dispatch entry onto the outbound queue for this connection.
DispatchEntry* dispatchEntry = mAllocator.obtainDispatchEntry(eventEntry, // increments ref
inputTarget->flags, inputTarget->xOffset, inputTarget->yOffset,
inputTarget->timeout);
if (dispatchEntry->isSyncTarget()) {
eventEntry->pendingSyncDispatches += 1;
}
// Handle the case where we could not stream a new motion sample because the consumer has
// already consumed the motion event (otherwise the corresponding dispatch entry would
// still be in the outbound queue for this connection). We set the head motion sample
// to the list starting with the newly appended motion sample.
if (resumeWithAppendedMotionSample) {
#if DEBUG_BATCHING
LOGD("channel '%s' ~ Preparing a new dispatch cycle for additional motion samples "
"that cannot be streamed because the motion event has already been consumed.",
connection->getInputChannelName());
#endif
MotionSample* appendedMotionSample = static_cast<MotionEntry*>(eventEntry)->lastSample;
dispatchEntry->headMotionSample = appendedMotionSample;
}
// Enqueue the dispatch entry.
connection->outboundQueue.enqueueAtTail(dispatchEntry);
// If the outbound queue was previously empty, start the dispatch cycle going.
if (wasEmpty) {
activateConnectionLocked(connection.get());
startDispatchCycleLocked(currentTime, connection,
inputTarget->timeSpentWaitingForApplication);
}
}
void InputDispatcher::startDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection, nsecs_t timeSpentWaitingForApplication) {
#if DEBUG_DISPATCH_CYCLE
LOGD("channel '%s' ~ startDispatchCycle",
connection->getInputChannelName());
#endif
assert(connection->status == Connection::STATUS_NORMAL);
assert(! connection->outboundQueue.isEmpty());
DispatchEntry* dispatchEntry = connection->outboundQueue.headSentinel.next;
assert(! dispatchEntry->inProgress);
// Mark the dispatch entry as in progress.
dispatchEntry->inProgress = true;
// Update the connection's input state.
InputState::Consistency consistency = connection->inputState.trackEvent(
dispatchEntry->eventEntry);
#if FILTER_INPUT_EVENTS
// Filter out inconsistent sequences of input events.
// The input system may drop or inject events in a way that could violate implicit
// invariants on input state and potentially cause an application to crash
// or think that a key or pointer is stuck down. Technically we make no guarantees
// of consistency but it would be nice to improve on this where possible.
// XXX: This code is a proof of concept only. Not ready for prime time.
if (consistency == InputState::TOLERABLE) {
#if DEBUG_DISPATCH_CYCLE
LOGD("channel '%s' ~ Sending an event that is inconsistent with the connection's "
"current input state but that is likely to be tolerated by the application.",
connection->getInputChannelName());
#endif
} else if (consistency == InputState::BROKEN) {
LOGI("channel '%s' ~ Dropping an event that is inconsistent with the connection's "
"current input state and that is likely to cause the application to crash.",
connection->getInputChannelName());
startNextDispatchCycleLocked(currentTime, connection);
return;
}
#endif
// Publish the event.
status_t status;
switch (dispatchEntry->eventEntry->type) {
case EventEntry::TYPE_KEY: {
KeyEntry* keyEntry = static_cast<KeyEntry*>(dispatchEntry->eventEntry);
// Apply target flags.
int32_t action = keyEntry->action;
int32_t flags = keyEntry->flags;
if (dispatchEntry->targetFlags & InputTarget::FLAG_CANCEL) {
flags |= AKEY_EVENT_FLAG_CANCELED;
}
// Publish the key event.
status = connection->inputPublisher.publishKeyEvent(keyEntry->deviceId, keyEntry->source,
action, flags, keyEntry->keyCode, keyEntry->scanCode,
keyEntry->metaState, keyEntry->repeatCount, keyEntry->downTime,
keyEntry->eventTime);
if (status) {
LOGE("channel '%s' ~ Could not publish key event, "
"status=%d", connection->getInputChannelName(), status);
abortDispatchCycleLocked(currentTime, connection, true /*broken*/);
return;
}
break;
}
case EventEntry::TYPE_MOTION: {
MotionEntry* motionEntry = static_cast<MotionEntry*>(dispatchEntry->eventEntry);
// Apply target flags.
int32_t action = motionEntry->action;
int32_t flags = motionEntry->flags;
if (dispatchEntry->targetFlags & InputTarget::FLAG_OUTSIDE) {
action = AMOTION_EVENT_ACTION_OUTSIDE;
}
if (dispatchEntry->targetFlags & InputTarget::FLAG_CANCEL) {
action = AMOTION_EVENT_ACTION_CANCEL;
}
if (dispatchEntry->targetFlags & InputTarget::FLAG_WINDOW_IS_OBSCURED) {
flags |= AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED;
}
// If headMotionSample is non-NULL, then it points to the first new sample that we
// were unable to dispatch during the previous cycle so we resume dispatching from
// that point in the list of motion samples.
// Otherwise, we just start from the first sample of the motion event.
MotionSample* firstMotionSample = dispatchEntry->headMotionSample;
if (! firstMotionSample) {
firstMotionSample = & motionEntry->firstSample;
}
// Set the X and Y offset depending on the input source.
float xOffset, yOffset;
if (motionEntry->source & AINPUT_SOURCE_CLASS_POINTER) {
xOffset = dispatchEntry->xOffset;
yOffset = dispatchEntry->yOffset;
} else {
xOffset = 0.0f;
yOffset = 0.0f;
}
// Publish the motion event and the first motion sample.
status = connection->inputPublisher.publishMotionEvent(motionEntry->deviceId,
motionEntry->source, action, flags, motionEntry->edgeFlags, motionEntry->metaState,
xOffset, yOffset,
motionEntry->xPrecision, motionEntry->yPrecision,
motionEntry->downTime, firstMotionSample->eventTime,
motionEntry->pointerCount, motionEntry->pointerIds,
firstMotionSample->pointerCoords);
if (status) {
LOGE("channel '%s' ~ Could not publish motion event, "
"status=%d", connection->getInputChannelName(), status);
abortDispatchCycleLocked(currentTime, connection, true /*broken*/);
return;
}
// Append additional motion samples.
MotionSample* nextMotionSample = firstMotionSample->next;
for (; nextMotionSample != NULL; nextMotionSample = nextMotionSample->next) {
status = connection->inputPublisher.appendMotionSample(
nextMotionSample->eventTime, nextMotionSample->pointerCoords);
if (status == NO_MEMORY) {
#if DEBUG_DISPATCH_CYCLE
LOGD("channel '%s' ~ Shared memory buffer full. Some motion samples will "
"be sent in the next dispatch cycle.",
connection->getInputChannelName());
#endif
break;
}
if (status != OK) {
LOGE("channel '%s' ~ Could not append motion sample "
"for a reason other than out of memory, status=%d",
connection->getInputChannelName(), status);
abortDispatchCycleLocked(currentTime, connection, true /*broken*/);
return;
}
}
// Remember the next motion sample that we could not dispatch, in case we ran out
// of space in the shared memory buffer.
dispatchEntry->tailMotionSample = nextMotionSample;
break;
}
default: {
assert(false);
}
}
// Send the dispatch signal.
status = connection->inputPublisher.sendDispatchSignal();
if (status) {
LOGE("channel '%s' ~ Could not send dispatch signal, status=%d",
connection->getInputChannelName(), status);
abortDispatchCycleLocked(currentTime, connection, true /*broken*/);
return;
}
// Record information about the newly started dispatch cycle.
connection->lastEventTime = dispatchEntry->eventEntry->eventTime;
connection->lastDispatchTime = currentTime;
nsecs_t timeout = dispatchEntry->timeout - timeSpentWaitingForApplication;
connection->setNextTimeoutTime(currentTime, timeout);
// Notify other system components.
onDispatchCycleStartedLocked(currentTime, connection);
}
void InputDispatcher::finishDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection) {
#if DEBUG_DISPATCH_CYCLE
LOGD("channel '%s' ~ finishDispatchCycle - %01.1fms since event, "
"%01.1fms since dispatch",
connection->getInputChannelName(),
connection->getEventLatencyMillis(currentTime),
connection->getDispatchLatencyMillis(currentTime));
#endif
if (connection->status == Connection::STATUS_BROKEN
|| connection->status == Connection::STATUS_ZOMBIE) {
return;
}
// Clear the pending timeout.
connection->nextTimeoutTime = LONG_LONG_MAX;
if (connection->status == Connection::STATUS_NOT_RESPONDING) {
// Recovering from an ANR.
connection->status = Connection::STATUS_NORMAL;
// Notify other system components.
onDispatchCycleFinishedLocked(currentTime, connection, true /*recoveredFromANR*/);
} else {
// Normal finish. Not much to do here.
// Notify other system components.
onDispatchCycleFinishedLocked(currentTime, connection, false /*recoveredFromANR*/);
}
// Reset the publisher since the event has been consumed.
// We do this now so that the publisher can release some of its internal resources
// while waiting for the next dispatch cycle to begin.
status_t status = connection->inputPublisher.reset();
if (status) {
LOGE("channel '%s' ~ Could not reset publisher, status=%d",
connection->getInputChannelName(), status);
abortDispatchCycleLocked(currentTime, connection, true /*broken*/);
return;
}
startNextDispatchCycleLocked(currentTime, connection);
}
void InputDispatcher::startNextDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection) {
// Start the next dispatch cycle for this connection.
while (! connection->outboundQueue.isEmpty()) {
DispatchEntry* dispatchEntry = connection->outboundQueue.headSentinel.next;
if (dispatchEntry->inProgress) {
// Finish or resume current event in progress.
if (dispatchEntry->tailMotionSample) {
// We have a tail of undispatched motion samples.
// Reuse the same DispatchEntry and start a new cycle.
dispatchEntry->inProgress = false;
dispatchEntry->headMotionSample = dispatchEntry->tailMotionSample;
dispatchEntry->tailMotionSample = NULL;
startDispatchCycleLocked(currentTime, connection, 0);
return;
}
// Finished.
connection->outboundQueue.dequeueAtHead();
if (dispatchEntry->isSyncTarget()) {
decrementPendingSyncDispatchesLocked(dispatchEntry->eventEntry);
}
mAllocator.releaseDispatchEntry(dispatchEntry);
} else {
// If the head is not in progress, then we must have already dequeued the in
// progress event, which means we actually aborted it (due to ANR).
// So just start the next event for this connection.
startDispatchCycleLocked(currentTime, connection, 0);
return;
}
}
// Outbound queue is empty, deactivate the connection.
deactivateConnectionLocked(connection.get());
}
void InputDispatcher::timeoutDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection) {
#if DEBUG_DISPATCH_CYCLE
LOGD("channel '%s' ~ timeoutDispatchCycle",
connection->getInputChannelName());
#endif
if (connection->status == Connection::STATUS_NORMAL) {
// Enter the not responding state.
connection->status = Connection::STATUS_NOT_RESPONDING;
connection->lastANRTime = currentTime;
} else if (connection->status != Connection::STATUS_NOT_RESPONDING) {
// Connection is broken or dead.
return;
}
// Notify other system components.
// This enqueues a command which will eventually call resumeAfterTimeoutDispatchCycleLocked.
onDispatchCycleANRLocked(currentTime, connection);
}
void InputDispatcher::resumeAfterTimeoutDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection, nsecs_t newTimeout) {
#if DEBUG_DISPATCH_CYCLE
LOGD("channel '%s' ~ resumeAfterTimeoutDispatchCycleLocked - newTimeout=%lld",
connection->getInputChannelName(), newTimeout);
#endif
if (connection->status != Connection::STATUS_NOT_RESPONDING) {
return;
}
if (newTimeout > 0) {
// The system has decided to give the application some more time.
// Keep waiting synchronously and resume normal dispatch.
connection->status = Connection::STATUS_NORMAL;
connection->setNextTimeoutTime(currentTime, newTimeout);
} else {
// The system is about to throw up an ANR dialog and has requested that we abort dispatch.
// Reset the timeout.
connection->nextTimeoutTime = LONG_LONG_MAX;
// Input state will no longer be realistic.
connection->inputState.setOutOfSync();
if (! connection->outboundQueue.isEmpty()) {
// Make the current pending dispatch asynchronous (if it isn't already) so that
// subsequent events can be delivered to the ANR dialog or to another application.
DispatchEntry* currentDispatchEntry = connection->outboundQueue.headSentinel.next;
currentDispatchEntry->preemptSyncTarget();
// Drain all but the first entry in the outbound queue. We keep the first entry
// since that is the one that dispatch is stuck on. We throw away the others
// so that we don't spam the application with stale messages if it eventually
// wakes up and recovers from the ANR.
drainOutboundQueueLocked(connection.get(), currentDispatchEntry->next);
}
}
}
void InputDispatcher::abortDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection, bool broken) {
#if DEBUG_DISPATCH_CYCLE
LOGD("channel '%s' ~ abortDispatchCycle - broken=%s",
connection->getInputChannelName(), toString(broken));
#endif
// Clear the pending timeout.
connection->nextTimeoutTime = LONG_LONG_MAX;
// Input state will no longer be realistic.
connection->inputState.setOutOfSync();
// Clear the outbound queue.
drainOutboundQueueLocked(connection.get(), connection->outboundQueue.headSentinel.next);
// Handle the case where the connection appears to be unrecoverably broken.
// Ignore already broken or zombie connections.
if (broken) {
if (connection->status == Connection::STATUS_NORMAL
|| connection->status == Connection::STATUS_NOT_RESPONDING) {
connection->status = Connection::STATUS_BROKEN;
// Notify other system components.
onDispatchCycleBrokenLocked(currentTime, connection);
}
}
}
void InputDispatcher::drainOutboundQueueLocked(Connection* connection,
DispatchEntry* firstDispatchEntryToDrain) {
for (DispatchEntry* dispatchEntry = firstDispatchEntryToDrain;
dispatchEntry != & connection->outboundQueue.tailSentinel;) {
DispatchEntry* next = dispatchEntry->next;
connection->outboundQueue.dequeue(dispatchEntry);
if (dispatchEntry->isSyncTarget()) {
decrementPendingSyncDispatchesLocked(dispatchEntry->eventEntry);
}
mAllocator.releaseDispatchEntry(dispatchEntry);
dispatchEntry = next;
}
if (connection->outboundQueue.isEmpty()) {
deactivateConnectionLocked(connection);
}
}
int InputDispatcher::handleReceiveCallback(int receiveFd, int events, void* data) {
InputDispatcher* d = static_cast<InputDispatcher*>(data);
{ // acquire lock
AutoMutex _l(d->mLock);
ssize_t connectionIndex = d->mConnectionsByReceiveFd.indexOfKey(receiveFd);
if (connectionIndex < 0) {
LOGE("Received spurious receive callback for unknown input channel. "
"fd=%d, events=0x%x", receiveFd, events);
return 0; // remove the callback
}
nsecs_t currentTime = now();
sp<Connection> connection = d->mConnectionsByReceiveFd.valueAt(connectionIndex);
if (events & (ALOOPER_EVENT_ERROR | ALOOPER_EVENT_HANGUP)) {
LOGE("channel '%s' ~ Consumer closed input channel or an error occurred. "
"events=0x%x", connection->getInputChannelName(), events);
d->abortDispatchCycleLocked(currentTime, connection, true /*broken*/);
d->runCommandsLockedInterruptible();
return 0; // remove the callback
}
if (! (events & ALOOPER_EVENT_INPUT)) {
LOGW("channel '%s' ~ Received spurious callback for unhandled poll event. "
"events=0x%x", connection->getInputChannelName(), events);
return 1;
}
status_t status = connection->inputPublisher.receiveFinishedSignal();
if (status) {
LOGE("channel '%s' ~ Failed to receive finished signal. status=%d",
connection->getInputChannelName(), status);
d->abortDispatchCycleLocked(currentTime, connection, true /*broken*/);
d->runCommandsLockedInterruptible();
return 0; // remove the callback
}
d->finishDispatchCycleLocked(currentTime, connection);
d->runCommandsLockedInterruptible();
return 1;
} // release lock
}
void InputDispatcher::notifyConfigurationChanged(nsecs_t eventTime) {
#if DEBUG_INBOUND_EVENT_DETAILS
LOGD("notifyConfigurationChanged - eventTime=%lld", eventTime);
#endif
bool needWake;
{ // acquire lock
AutoMutex _l(mLock);
ConfigurationChangedEntry* newEntry = mAllocator.obtainConfigurationChangedEntry(eventTime);
needWake = enqueueInboundEventLocked(newEntry);
} // release lock
if (needWake) {
mLooper->wake();
}
}
void InputDispatcher::notifyKey(nsecs_t eventTime, int32_t deviceId, int32_t source,
uint32_t policyFlags, int32_t action, int32_t flags,
int32_t keyCode, int32_t scanCode, int32_t metaState, nsecs_t downTime) {
#if DEBUG_INBOUND_EVENT_DETAILS
LOGD("notifyKey - eventTime=%lld, deviceId=0x%x, source=0x%x, policyFlags=0x%x, action=0x%x, "
"flags=0x%x, keyCode=0x%x, scanCode=0x%x, metaState=0x%x, downTime=%lld",
eventTime, deviceId, source, policyFlags, action, flags,
keyCode, scanCode, metaState, downTime);
#endif
bool needWake;
{ // acquire lock
AutoMutex _l(mLock);
int32_t repeatCount = 0;
KeyEntry* newEntry = mAllocator.obtainKeyEntry(eventTime,
deviceId, source, policyFlags, action, flags, keyCode, scanCode,
metaState, repeatCount, downTime);
needWake = enqueueInboundEventLocked(newEntry);
} // release lock
if (needWake) {
mLooper->wake();
}
}
void InputDispatcher::notifyMotion(nsecs_t eventTime, int32_t deviceId, int32_t source,
uint32_t policyFlags, int32_t action, int32_t flags, int32_t metaState, int32_t edgeFlags,
uint32_t pointerCount, const int32_t* pointerIds, const PointerCoords* pointerCoords,
float xPrecision, float yPrecision, nsecs_t downTime) {
#if DEBUG_INBOUND_EVENT_DETAILS
LOGD("notifyMotion - eventTime=%lld, deviceId=0x%x, source=0x%x, policyFlags=0x%x, "
"action=0x%x, flags=0x%x, metaState=0x%x, edgeFlags=0x%x, "
"xPrecision=%f, yPrecision=%f, downTime=%lld",
eventTime, deviceId, source, policyFlags, action, flags, metaState, edgeFlags,
xPrecision, yPrecision, downTime);
for (uint32_t i = 0; i < pointerCount; i++) {
LOGD(" Pointer %d: id=%d, x=%f, y=%f, pressure=%f, size=%f, "
"touchMajor=%f, touchMinor=%f, toolMajor=%f, toolMinor=%f, "
"orientation=%f",
i, pointerIds[i], pointerCoords[i].x, pointerCoords[i].y,
pointerCoords[i].pressure, pointerCoords[i].size,
pointerCoords[i].touchMajor, pointerCoords[i].touchMinor,
pointerCoords[i].toolMajor, pointerCoords[i].toolMinor,
pointerCoords[i].orientation);
}
#endif
bool needWake;
{ // acquire lock
AutoMutex _l(mLock);
// Attempt batching and streaming of move events.
if (action == AMOTION_EVENT_ACTION_MOVE) {
// BATCHING CASE
//
// Try to append a move sample to the tail of the inbound queue for this device.
// Give up if we encounter a non-move motion event for this device since that
// means we cannot append any new samples until a new motion event has started.
for (EventEntry* entry = mInboundQueue.tailSentinel.prev;
entry != & mInboundQueue.headSentinel; entry = entry->prev) {
if (entry->type != EventEntry::TYPE_MOTION) {
// Keep looking for motion events.
continue;
}
MotionEntry* motionEntry = static_cast<MotionEntry*>(entry);
if (motionEntry->deviceId != deviceId) {
// Keep looking for this device.
continue;
}
if (motionEntry->action != AMOTION_EVENT_ACTION_MOVE
|| motionEntry->pointerCount != pointerCount
|| motionEntry->isInjected()) {
// Last motion event in the queue for this device is not compatible for
// appending new samples. Stop here.
goto NoBatchingOrStreaming;
}
// The last motion event is a move and is compatible for appending.
// Do the batching magic.
mAllocator.appendMotionSample(motionEntry, eventTime, pointerCoords);
#if DEBUG_BATCHING
LOGD("Appended motion sample onto batch for most recent "
"motion event for this device in the inbound queue.");
#endif
return; // done!
}
// STREAMING CASE
//
// There is no pending motion event (of any kind) for this device in the inbound queue.
// Search the outbound queues for a synchronously dispatched motion event for this
// device. If found, then we append the new sample to that event and then try to
// push it out to all current targets. It is possible that some targets will already
// have consumed the motion event. This case is automatically handled by the
// logic in prepareDispatchCycleLocked by tracking where resumption takes place.
//
// The reason we look for a synchronously dispatched motion event is because we
// want to be sure that no other motion events have been dispatched since the move.
// It's also convenient because it means that the input targets are still valid.
// This code could be improved to support streaming of asynchronously dispatched
// motion events (which might be significantly more efficient) but it may become
// a little more complicated as a result.
//
// Note: This code crucially depends on the invariant that an outbound queue always
// contains at most one synchronous event and it is always last (but it might
// not be first!).
if (mCurrentInputTargetsValid) {
for (size_t i = 0; i < mActiveConnections.size(); i++) {
Connection* connection = mActiveConnections.itemAt(i);
if (! connection->outboundQueue.isEmpty()) {
DispatchEntry* dispatchEntry = connection->outboundQueue.tailSentinel.prev;
if (dispatchEntry->isSyncTarget()) {
if (dispatchEntry->eventEntry->type != EventEntry::TYPE_MOTION) {
goto NoBatchingOrStreaming;
}
MotionEntry* syncedMotionEntry = static_cast<MotionEntry*>(
dispatchEntry->eventEntry);
if (syncedMotionEntry->action != AMOTION_EVENT_ACTION_MOVE
|| syncedMotionEntry->deviceId != deviceId
|| syncedMotionEntry->pointerCount != pointerCount
|| syncedMotionEntry->isInjected()) {
goto NoBatchingOrStreaming;
}
// Found synced move entry. Append sample and resume dispatch.
mAllocator.appendMotionSample(syncedMotionEntry, eventTime,
pointerCoords);
#if DEBUG_BATCHING
LOGD("Appended motion sample onto batch for most recent synchronously "
"dispatched motion event for this device in the outbound queues.");
#endif
nsecs_t currentTime = now();
dispatchEventToCurrentInputTargetsLocked(currentTime, syncedMotionEntry,
true /*resumeWithAppendedMotionSample*/);
runCommandsLockedInterruptible();
return; // done!
}
}
}
}
NoBatchingOrStreaming:;
}
// Just enqueue a new motion event.
MotionEntry* newEntry = mAllocator.obtainMotionEntry(eventTime,
deviceId, source, policyFlags, action, flags, metaState, edgeFlags,
xPrecision, yPrecision, downTime,
pointerCount, pointerIds, pointerCoords);
needWake = enqueueInboundEventLocked(newEntry);
} // release lock
if (needWake) {
mLooper->wake();
}
}
int32_t InputDispatcher::injectInputEvent(const InputEvent* event,
int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis) {
#if DEBUG_INBOUND_EVENT_DETAILS
LOGD("injectInputEvent - eventType=%d, injectorPid=%d, injectorUid=%d, "
"syncMode=%d, timeoutMillis=%d",
event->getType(), injectorPid, injectorUid, syncMode, timeoutMillis);
#endif
nsecs_t endTime = now() + milliseconds_to_nanoseconds(timeoutMillis);
EventEntry* injectedEntry;
bool needWake;
{ // acquire lock
AutoMutex _l(mLock);
injectedEntry = createEntryFromInjectedInputEventLocked(event);
if (! injectedEntry) {
return INPUT_EVENT_INJECTION_FAILED;
}
injectedEntry->refCount += 1;
injectedEntry->injectorPid = injectorPid;
injectedEntry->injectorUid = injectorUid;
if (syncMode == INPUT_EVENT_INJECTION_SYNC_NONE) {
injectedEntry->injectionIsAsync = true;
}
needWake = enqueueInboundEventLocked(injectedEntry);
} // release lock
if (needWake) {
mLooper->wake();
}
int32_t injectionResult;
{ // acquire lock
AutoMutex _l(mLock);
if (syncMode == INPUT_EVENT_INJECTION_SYNC_NONE) {
injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED;
} else {
for (;;) {
injectionResult = injectedEntry->injectionResult;
if (injectionResult != INPUT_EVENT_INJECTION_PENDING) {
break;
}
nsecs_t remainingTimeout = endTime - now();
if (remainingTimeout <= 0) {
#if DEBUG_INJECTION
LOGD("injectInputEvent - Timed out waiting for injection result "
"to become available.");
#endif
injectionResult = INPUT_EVENT_INJECTION_TIMED_OUT;
break;
}
mInjectionResultAvailableCondition.waitRelative(mLock, remainingTimeout);
}
if (injectionResult == INPUT_EVENT_INJECTION_SUCCEEDED
&& syncMode == INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_FINISHED) {
while (injectedEntry->pendingSyncDispatches != 0) {
#if DEBUG_INJECTION
LOGD("injectInputEvent - Waiting for %d pending synchronous dispatches.",
injectedEntry->pendingSyncDispatches);
#endif
nsecs_t remainingTimeout = endTime - now();
if (remainingTimeout <= 0) {
#if DEBUG_INJECTION
LOGD("injectInputEvent - Timed out waiting for pending synchronous "
"dispatches to finish.");
#endif
injectionResult = INPUT_EVENT_INJECTION_TIMED_OUT;
break;
}
mInjectionSyncFinishedCondition.waitRelative(mLock, remainingTimeout);
}
}
}
mAllocator.releaseEventEntry(injectedEntry);
} // release lock
#if DEBUG_INJECTION
LOGD("injectInputEvent - Finished with result %d. "
"injectorPid=%d, injectorUid=%d",
injectionResult, injectorPid, injectorUid);
#endif
return injectionResult;
}
void InputDispatcher::setInjectionResultLocked(EventEntry* entry, int32_t injectionResult) {
if (entry->isInjected()) {
#if DEBUG_INJECTION
LOGD("Setting input event injection result to %d. "
"injectorPid=%d, injectorUid=%d",
injectionResult, entry->injectorPid, entry->injectorUid);
#endif
if (entry->injectionIsAsync) {
// Log the outcome since the injector did not wait for the injection result.
switch (injectionResult) {
case INPUT_EVENT_INJECTION_SUCCEEDED:
LOGV("Asynchronous input event injection succeeded.");
break;
case INPUT_EVENT_INJECTION_FAILED:
LOGW("Asynchronous input event injection failed.");
break;
case INPUT_EVENT_INJECTION_PERMISSION_DENIED:
LOGW("Asynchronous input event injection permission denied.");
break;
case INPUT_EVENT_INJECTION_TIMED_OUT:
LOGW("Asynchronous input event injection timed out.");
break;
}
}
entry->injectionResult = injectionResult;
mInjectionResultAvailableCondition.broadcast();
}
}
void InputDispatcher::decrementPendingSyncDispatchesLocked(EventEntry* entry) {
entry->pendingSyncDispatches -= 1;
if (entry->isInjected() && entry->pendingSyncDispatches == 0) {
mInjectionSyncFinishedCondition.broadcast();
}
}
static bool isValidKeyAction(int32_t action) {
switch (action) {
case AKEY_EVENT_ACTION_DOWN:
case AKEY_EVENT_ACTION_UP:
return true;
default:
return false;
}
}
static bool isValidMotionAction(int32_t action) {
switch (action & AMOTION_EVENT_ACTION_MASK) {
case AMOTION_EVENT_ACTION_DOWN:
case AMOTION_EVENT_ACTION_UP:
case AMOTION_EVENT_ACTION_CANCEL:
case AMOTION_EVENT_ACTION_MOVE:
case AMOTION_EVENT_ACTION_POINTER_DOWN:
case AMOTION_EVENT_ACTION_POINTER_UP:
case AMOTION_EVENT_ACTION_OUTSIDE:
return true;
default:
return false;
}
}
InputDispatcher::EventEntry* InputDispatcher::createEntryFromInjectedInputEventLocked(
const InputEvent* event) {
switch (event->getType()) {
case AINPUT_EVENT_TYPE_KEY: {
const KeyEvent* keyEvent = static_cast<const KeyEvent*>(event);
if (! isValidKeyAction(keyEvent->getAction())) {
LOGE("Dropping injected key event since it has invalid action code 0x%x",
keyEvent->getAction());
return NULL;
}
uint32_t policyFlags = POLICY_FLAG_INJECTED;
KeyEntry* keyEntry = mAllocator.obtainKeyEntry(keyEvent->getEventTime(),
keyEvent->getDeviceId(), keyEvent->getSource(), policyFlags,
keyEvent->getAction(), keyEvent->getFlags(),
keyEvent->getKeyCode(), keyEvent->getScanCode(), keyEvent->getMetaState(),
keyEvent->getRepeatCount(), keyEvent->getDownTime());
return keyEntry;
}
case AINPUT_EVENT_TYPE_MOTION: {
const MotionEvent* motionEvent = static_cast<const MotionEvent*>(event);
if (! isValidMotionAction(motionEvent->getAction())) {
LOGE("Dropping injected motion event since it has invalid action code 0x%x.",
motionEvent->getAction());
return NULL;
}
if (motionEvent->getPointerCount() == 0
|| motionEvent->getPointerCount() > MAX_POINTERS) {
LOGE("Dropping injected motion event since it has an invalid pointer count %d.",
motionEvent->getPointerCount());
}
uint32_t policyFlags = POLICY_FLAG_INJECTED;
const nsecs_t* sampleEventTimes = motionEvent->getSampleEventTimes();
const PointerCoords* samplePointerCoords = motionEvent->getSamplePointerCoords();
size_t pointerCount = motionEvent->getPointerCount();
MotionEntry* motionEntry = mAllocator.obtainMotionEntry(*sampleEventTimes,
motionEvent->getDeviceId(), motionEvent->getSource(), policyFlags,
motionEvent->getAction(), motionEvent->getFlags(),
motionEvent->getMetaState(), motionEvent->getEdgeFlags(),
motionEvent->getXPrecision(), motionEvent->getYPrecision(),
motionEvent->getDownTime(), uint32_t(pointerCount),
motionEvent->getPointerIds(), samplePointerCoords);
for (size_t i = motionEvent->getHistorySize(); i > 0; i--) {
sampleEventTimes += 1;
samplePointerCoords += pointerCount;
mAllocator.appendMotionSample(motionEntry, *sampleEventTimes, samplePointerCoords);
}
return motionEntry;
}
default:
assert(false);
return NULL;
}
}
void InputDispatcher::setInputWindows(const Vector<InputWindow>& inputWindows) {
#if DEBUG_FOCUS
LOGD("setInputWindows");
#endif
{ // acquire lock
AutoMutex _l(mLock);
sp<InputChannel> touchedWindowChannel;
if (mTouchedWindow) {
touchedWindowChannel = mTouchedWindow->inputChannel;
mTouchedWindow = NULL;
}
size_t numTouchedWallpapers = mTouchedWallpaperWindows.size();
if (numTouchedWallpapers != 0) {
for (size_t i = 0; i < numTouchedWallpapers; i++) {
mTempTouchedWallpaperChannels.push(mTouchedWallpaperWindows[i]->inputChannel);
}
mTouchedWallpaperWindows.clear();
}
bool hadFocusedWindow = mFocusedWindow != NULL;
mFocusedWindow = NULL;
mWallpaperWindows.clear();
mWindows.clear();
mWindows.appendVector(inputWindows);
size_t numWindows = mWindows.size();
for (size_t i = 0; i < numWindows; i++) {
InputWindow* window = & mWindows.editItemAt(i);
if (window->hasFocus) {
mFocusedWindow = window;
}
if (window->layoutParamsType == InputWindow::TYPE_WALLPAPER) {
mWallpaperWindows.push(window);
for (size_t j = 0; j < numTouchedWallpapers; j++) {
if (window->inputChannel == mTempTouchedWallpaperChannels[i]) {
mTouchedWallpaperWindows.push(window);
}
}
}
if (window->inputChannel == touchedWindowChannel) {
mTouchedWindow = window;
}
}
mTempTouchedWallpaperChannels.clear();
if ((hadFocusedWindow && ! mFocusedWindow)
|| (mFocusedWindow && ! mFocusedWindow->visible)) {
preemptInputDispatchInnerLocked();
}
#if DEBUG_FOCUS
logDispatchStateLocked();
#endif
} // release lock
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
}
void InputDispatcher::setFocusedApplication(const InputApplication* inputApplication) {
#if DEBUG_FOCUS
LOGD("setFocusedApplication");
#endif
{ // acquire lock
AutoMutex _l(mLock);
releaseFocusedApplicationLocked();
if (inputApplication) {
mFocusedApplicationStorage = *inputApplication;
mFocusedApplication = & mFocusedApplicationStorage;
}
#if DEBUG_FOCUS
logDispatchStateLocked();
#endif
} // release lock
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
}
void InputDispatcher::releaseFocusedApplicationLocked() {
if (mFocusedApplication) {
mFocusedApplication = NULL;
mFocusedApplicationStorage.handle.clear();
}
}
void InputDispatcher::setInputDispatchMode(bool enabled, bool frozen) {
#if DEBUG_FOCUS
LOGD("setInputDispatchMode: enabled=%d, frozen=%d", enabled, frozen);
#endif
bool changed;
{ // acquire lock
AutoMutex _l(mLock);
if (mDispatchEnabled != enabled || mDispatchFrozen != frozen) {
if (mDispatchFrozen && ! frozen) {
resetANRTimeoutsLocked();
}
mDispatchEnabled = enabled;
mDispatchFrozen = frozen;
changed = true;
} else {
changed = false;
}
#if DEBUG_FOCUS
logDispatchStateLocked();
#endif
} // release lock
if (changed) {
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
}
}
void InputDispatcher::preemptInputDispatch() {
#if DEBUG_FOCUS
LOGD("preemptInputDispatch");
#endif
bool preemptedOne;
{ // acquire lock
AutoMutex _l(mLock);
preemptedOne = preemptInputDispatchInnerLocked();
} // release lock
if (preemptedOne) {
// Wake up the poll loop so it can get a head start dispatching the next event.
mLooper->wake();
}
}
bool InputDispatcher::preemptInputDispatchInnerLocked() {
bool preemptedOne = false;
for (size_t i = 0; i < mActiveConnections.size(); i++) {
Connection* connection = mActiveConnections[i];
if (connection->hasPendingSyncTarget()) {
#if DEBUG_DISPATCH_CYCLE
LOGD("channel '%s' ~ Preempted pending synchronous dispatch",
connection->getInputChannelName());
#endif
connection->preemptSyncTarget();
preemptedOne = true;
}
}
return preemptedOne;
}
void InputDispatcher::logDispatchStateLocked() {
String8 dump;
dumpDispatchStateLocked(dump);
LOGD("%s", dump.string());
}
void InputDispatcher::dumpDispatchStateLocked(String8& dump) {
dump.appendFormat(" dispatchEnabled: %d\n", mDispatchEnabled);
dump.appendFormat(" dispatchFrozen: %d\n", mDispatchFrozen);
if (mFocusedApplication) {
dump.appendFormat(" focusedApplication: name='%s', dispatchingTimeout=%0.3fms\n",
mFocusedApplication->name.string(),
mFocusedApplication->dispatchingTimeout / 1000000.0);
} else {
dump.append(" focusedApplication: <null>\n");
}
dump.appendFormat(" focusedWindow: '%s'\n",
mFocusedWindow != NULL ? mFocusedWindow->inputChannel->getName().string() : "<null>");
dump.appendFormat(" touchedWindow: '%s', touchDown=%d\n",
mTouchedWindow != NULL ? mTouchedWindow->inputChannel->getName().string() : "<null>",
mTouchDown);
for (size_t i = 0; i < mTouchedWallpaperWindows.size(); i++) {
dump.appendFormat(" touchedWallpaperWindows[%d]: '%s'\n",
i, mTouchedWallpaperWindows[i]->inputChannel->getName().string());
}
for (size_t i = 0; i < mWindows.size(); i++) {
dump.appendFormat(" windows[%d]: '%s', paused=%s, hasFocus=%s, hasWallpaper=%s, "
"visible=%s, flags=0x%08x, type=0x%08x, "
"frame=[%d,%d][%d,%d], "
"visibleFrame=[%d,%d][%d,%d], "
"touchableArea=[%d,%d][%d,%d], "
"ownerPid=%d, ownerUid=%d, dispatchingTimeout=%0.3fms\n",
i, mWindows[i].inputChannel->getName().string(),
toString(mWindows[i].paused),
toString(mWindows[i].hasFocus),
toString(mWindows[i].hasWallpaper),
toString(mWindows[i].visible),
mWindows[i].layoutParamsFlags, mWindows[i].layoutParamsType,
mWindows[i].frameLeft, mWindows[i].frameTop,
mWindows[i].frameRight, mWindows[i].frameBottom,
mWindows[i].visibleFrameLeft, mWindows[i].visibleFrameTop,
mWindows[i].visibleFrameRight, mWindows[i].visibleFrameBottom,
mWindows[i].touchableAreaLeft, mWindows[i].touchableAreaTop,
mWindows[i].touchableAreaRight, mWindows[i].touchableAreaBottom,
mWindows[i].ownerPid, mWindows[i].ownerUid,
mWindows[i].dispatchingTimeout / 1000000.0);
}
for (size_t i = 0; i < mMonitoringChannels.size(); i++) {
const sp<InputChannel>& channel = mMonitoringChannels[i];
dump.appendFormat(" monitoringChannel[%d]: '%s'\n",
i, channel->getName().string());
}
for (size_t i = 0; i < mActiveConnections.size(); i++) {
const Connection* connection = mActiveConnections[i];
dump.appendFormat(" activeConnection[%d]: '%s', status=%s, hasPendingSyncTarget=%s, "
"inputState.isNeutral=%s, inputState.isOutOfSync=%s\n",
i, connection->getInputChannelName(), connection->getStatusLabel(),
toString(connection->hasPendingSyncTarget()),
toString(connection->inputState.isNeutral()),
toString(connection->inputState.isOutOfSync()));
}
if (isAppSwitchPendingLocked()) {
dump.appendFormat(" appSwitch: pending, due in %01.1fms\n",
(mAppSwitchDueTime - now()) / 1000000.0);
} else {
dump.append(" appSwitch: not pending\n");
}
}
status_t InputDispatcher::registerInputChannel(const sp<InputChannel>& inputChannel, bool monitor) {
#if DEBUG_REGISTRATION
LOGD("channel '%s' ~ registerInputChannel - monitor=%s", inputChannel->getName().string(),
toString(monitor));
#endif
{ // acquire lock
AutoMutex _l(mLock);
if (getConnectionIndex(inputChannel) >= 0) {
LOGW("Attempted to register already registered input channel '%s'",
inputChannel->getName().string());
return BAD_VALUE;
}
sp<Connection> connection = new Connection(inputChannel);
status_t status = connection->initialize();
if (status) {
LOGE("Failed to initialize input publisher for input channel '%s', status=%d",
inputChannel->getName().string(), status);
return status;
}
int32_t receiveFd = inputChannel->getReceivePipeFd();
mConnectionsByReceiveFd.add(receiveFd, connection);
if (monitor) {
mMonitoringChannels.push(inputChannel);
}
mLooper->addFd(receiveFd, 0, ALOOPER_EVENT_INPUT, handleReceiveCallback, this);
runCommandsLockedInterruptible();
} // release lock
return OK;
}
status_t InputDispatcher::unregisterInputChannel(const sp<InputChannel>& inputChannel) {
#if DEBUG_REGISTRATION
LOGD("channel '%s' ~ unregisterInputChannel", inputChannel->getName().string());
#endif
{ // acquire lock
AutoMutex _l(mLock);
ssize_t connectionIndex = getConnectionIndex(inputChannel);
if (connectionIndex < 0) {
LOGW("Attempted to unregister already unregistered input channel '%s'",
inputChannel->getName().string());
return BAD_VALUE;
}
sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex);
mConnectionsByReceiveFd.removeItemsAt(connectionIndex);
connection->status = Connection::STATUS_ZOMBIE;
for (size_t i = 0; i < mMonitoringChannels.size(); i++) {
if (mMonitoringChannels[i] == inputChannel) {
mMonitoringChannels.removeAt(i);
break;
}
}
mLooper->removeFd(inputChannel->getReceivePipeFd());
nsecs_t currentTime = now();
abortDispatchCycleLocked(currentTime, connection, true /*broken*/);
runCommandsLockedInterruptible();
} // release lock
// Wake the poll loop because removing the connection may have changed the current
// synchronization state.
mLooper->wake();
return OK;
}
ssize_t InputDispatcher::getConnectionIndex(const sp<InputChannel>& inputChannel) {
ssize_t connectionIndex = mConnectionsByReceiveFd.indexOfKey(inputChannel->getReceivePipeFd());
if (connectionIndex >= 0) {
sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex);
if (connection->inputChannel.get() == inputChannel.get()) {
return connectionIndex;
}
}
return -1;
}
void InputDispatcher::activateConnectionLocked(Connection* connection) {
for (size_t i = 0; i < mActiveConnections.size(); i++) {
if (mActiveConnections.itemAt(i) == connection) {
return;
}
}
mActiveConnections.add(connection);
}
void InputDispatcher::deactivateConnectionLocked(Connection* connection) {
for (size_t i = 0; i < mActiveConnections.size(); i++) {
if (mActiveConnections.itemAt(i) == connection) {
mActiveConnections.removeAt(i);
return;
}
}
}
void InputDispatcher::onDispatchCycleStartedLocked(
nsecs_t currentTime, const sp<Connection>& connection) {
}
void InputDispatcher::onDispatchCycleFinishedLocked(
nsecs_t currentTime, const sp<Connection>& connection, bool recoveredFromANR) {
if (recoveredFromANR) {
LOGI("channel '%s' ~ Recovered from ANR. %01.1fms since event, "
"%01.1fms since dispatch, %01.1fms since ANR",
connection->getInputChannelName(),
connection->getEventLatencyMillis(currentTime),
connection->getDispatchLatencyMillis(currentTime),
connection->getANRLatencyMillis(currentTime));
CommandEntry* commandEntry = postCommandLocked(
& InputDispatcher::doNotifyInputChannelRecoveredFromANRLockedInterruptible);
commandEntry->connection = connection;
}
}
void InputDispatcher::onDispatchCycleANRLocked(
nsecs_t currentTime, const sp<Connection>& connection) {
LOGI("channel '%s' ~ Not responding! %01.1fms since event, %01.1fms since dispatch",
connection->getInputChannelName(),
connection->getEventLatencyMillis(currentTime),
connection->getDispatchLatencyMillis(currentTime));
CommandEntry* commandEntry = postCommandLocked(
& InputDispatcher::doNotifyInputChannelANRLockedInterruptible);
commandEntry->connection = connection;
}
void InputDispatcher::onDispatchCycleBrokenLocked(
nsecs_t currentTime, const sp<Connection>& connection) {
LOGE("channel '%s' ~ Channel is unrecoverably broken and will be disposed!",
connection->getInputChannelName());
CommandEntry* commandEntry = postCommandLocked(
& InputDispatcher::doNotifyInputChannelBrokenLockedInterruptible);
commandEntry->connection = connection;
}
void InputDispatcher::doNotifyConfigurationChangedInterruptible(
CommandEntry* commandEntry) {
mLock.unlock();
mPolicy->notifyConfigurationChanged(commandEntry->eventTime);
mLock.lock();
}
void InputDispatcher::doNotifyInputChannelBrokenLockedInterruptible(
CommandEntry* commandEntry) {
sp<Connection> connection = commandEntry->connection;
if (connection->status != Connection::STATUS_ZOMBIE) {
mLock.unlock();
mPolicy->notifyInputChannelBroken(connection->inputChannel);
mLock.lock();
}
}
void InputDispatcher::doNotifyInputChannelANRLockedInterruptible(
CommandEntry* commandEntry) {
sp<Connection> connection = commandEntry->connection;
if (connection->status != Connection::STATUS_ZOMBIE) {
mLock.unlock();
nsecs_t newTimeout = mPolicy->notifyInputChannelANR(connection->inputChannel);
mLock.lock();
nsecs_t currentTime = now();
resumeAfterTimeoutDispatchCycleLocked(currentTime, connection, newTimeout);
}
}
void InputDispatcher::doNotifyInputChannelRecoveredFromANRLockedInterruptible(
CommandEntry* commandEntry) {
sp<Connection> connection = commandEntry->connection;
if (connection->status != Connection::STATUS_ZOMBIE) {
mLock.unlock();
mPolicy->notifyInputChannelRecoveredFromANR(connection->inputChannel);
mLock.lock();
}
}
void InputDispatcher::doInterceptKeyBeforeDispatchingLockedInterruptible(
CommandEntry* commandEntry) {
KeyEntry* entry = commandEntry->keyEntry;
mReusableKeyEvent.initialize(entry->deviceId, entry->source, entry->action, entry->flags,
entry->keyCode, entry->scanCode, entry->metaState, entry->repeatCount,
entry->downTime, entry->eventTime);
mLock.unlock();
bool consumed = mPolicy->interceptKeyBeforeDispatching(commandEntry->inputChannel,
& mReusableKeyEvent, entry->policyFlags);
mLock.lock();
entry->interceptKeyResult = consumed
? KeyEntry::INTERCEPT_KEY_RESULT_SKIP
: KeyEntry::INTERCEPT_KEY_RESULT_CONTINUE;
mAllocator.releaseKeyEntry(entry);
}
void InputDispatcher::doPokeUserActivityLockedInterruptible(CommandEntry* commandEntry) {
mLock.unlock();
mPolicy->pokeUserActivity(commandEntry->eventTime, commandEntry->windowType,
commandEntry->userActivityEventType);
mLock.lock();
}
void InputDispatcher::doTargetsNotReadyTimeoutLockedInterruptible(
CommandEntry* commandEntry) {
mLock.unlock();
nsecs_t newTimeout;
if (commandEntry->inputChannel.get()) {
newTimeout = mPolicy->notifyInputChannelANR(commandEntry->inputChannel);
} else if (commandEntry->inputApplicationHandle.get()) {
newTimeout = mPolicy->notifyANR(commandEntry->inputApplicationHandle);
} else {
newTimeout = 0;
}
mLock.lock();
resumeAfterTargetsNotReadyTimeoutLocked(newTimeout);
}
void InputDispatcher::dump(String8& dump) {
dumpDispatchStateLocked(dump);
}
// --- InputDispatcher::Allocator ---
InputDispatcher::Allocator::Allocator() {
}
void InputDispatcher::Allocator::initializeEventEntry(EventEntry* entry, int32_t type,
nsecs_t eventTime) {
entry->type = type;
entry->refCount = 1;
entry->dispatchInProgress = false;
entry->eventTime = eventTime;
entry->injectionResult = INPUT_EVENT_INJECTION_PENDING;
entry->injectionIsAsync = false;
entry->injectorPid = -1;
entry->injectorUid = -1;
entry->pendingSyncDispatches = 0;
}
InputDispatcher::ConfigurationChangedEntry*
InputDispatcher::Allocator::obtainConfigurationChangedEntry(nsecs_t eventTime) {
ConfigurationChangedEntry* entry = mConfigurationChangeEntryPool.alloc();
initializeEventEntry(entry, EventEntry::TYPE_CONFIGURATION_CHANGED, eventTime);
return entry;
}
InputDispatcher::KeyEntry* InputDispatcher::Allocator::obtainKeyEntry(nsecs_t eventTime,
int32_t deviceId, int32_t source, uint32_t policyFlags, int32_t action,
int32_t flags, int32_t keyCode, int32_t scanCode, int32_t metaState,
int32_t repeatCount, nsecs_t downTime) {
KeyEntry* entry = mKeyEntryPool.alloc();
initializeEventEntry(entry, EventEntry::TYPE_KEY, eventTime);
entry->deviceId = deviceId;
entry->source = source;
entry->policyFlags = policyFlags;
entry->action = action;
entry->flags = flags;
entry->keyCode = keyCode;
entry->scanCode = scanCode;
entry->metaState = metaState;
entry->repeatCount = repeatCount;
entry->downTime = downTime;
entry->syntheticRepeat = false;
entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN;
return entry;
}
InputDispatcher::MotionEntry* InputDispatcher::Allocator::obtainMotionEntry(nsecs_t eventTime,
int32_t deviceId, int32_t source, uint32_t policyFlags, int32_t action, int32_t flags,
int32_t metaState, int32_t edgeFlags, float xPrecision, float yPrecision,
nsecs_t downTime, uint32_t pointerCount,
const int32_t* pointerIds, const PointerCoords* pointerCoords) {
MotionEntry* entry = mMotionEntryPool.alloc();
initializeEventEntry(entry, EventEntry::TYPE_MOTION, eventTime);
entry->eventTime = eventTime;
entry->deviceId = deviceId;
entry->source = source;
entry->policyFlags = policyFlags;
entry->action = action;
entry->flags = flags;
entry->metaState = metaState;
entry->edgeFlags = edgeFlags;
entry->xPrecision = xPrecision;
entry->yPrecision = yPrecision;
entry->downTime = downTime;
entry->pointerCount = pointerCount;
entry->firstSample.eventTime = eventTime;
entry->firstSample.next = NULL;
entry->lastSample = & entry->firstSample;
for (uint32_t i = 0; i < pointerCount; i++) {
entry->pointerIds[i] = pointerIds[i];
entry->firstSample.pointerCoords[i] = pointerCoords[i];
}
return entry;
}
InputDispatcher::DispatchEntry* InputDispatcher::Allocator::obtainDispatchEntry(
EventEntry* eventEntry,
int32_t targetFlags, float xOffset, float yOffset, nsecs_t timeout) {
DispatchEntry* entry = mDispatchEntryPool.alloc();
entry->eventEntry = eventEntry;
eventEntry->refCount += 1;
entry->targetFlags = targetFlags;
entry->xOffset = xOffset;
entry->yOffset = yOffset;
entry->timeout = timeout;
entry->inProgress = false;
entry->headMotionSample = NULL;
entry->tailMotionSample = NULL;
return entry;
}
InputDispatcher::CommandEntry* InputDispatcher::Allocator::obtainCommandEntry(Command command) {
CommandEntry* entry = mCommandEntryPool.alloc();
entry->command = command;
return entry;
}
void InputDispatcher::Allocator::releaseEventEntry(EventEntry* entry) {
switch (entry->type) {
case EventEntry::TYPE_CONFIGURATION_CHANGED:
releaseConfigurationChangedEntry(static_cast<ConfigurationChangedEntry*>(entry));
break;
case EventEntry::TYPE_KEY:
releaseKeyEntry(static_cast<KeyEntry*>(entry));
break;
case EventEntry::TYPE_MOTION:
releaseMotionEntry(static_cast<MotionEntry*>(entry));
break;
default:
assert(false);
break;
}
}
void InputDispatcher::Allocator::releaseConfigurationChangedEntry(
ConfigurationChangedEntry* entry) {
entry->refCount -= 1;
if (entry->refCount == 0) {
mConfigurationChangeEntryPool.free(entry);
} else {
assert(entry->refCount > 0);
}
}
void InputDispatcher::Allocator::releaseKeyEntry(KeyEntry* entry) {
entry->refCount -= 1;
if (entry->refCount == 0) {
mKeyEntryPool.free(entry);
} else {
assert(entry->refCount > 0);
}
}
void InputDispatcher::Allocator::releaseMotionEntry(MotionEntry* entry) {
entry->refCount -= 1;
if (entry->refCount == 0) {
for (MotionSample* sample = entry->firstSample.next; sample != NULL; ) {
MotionSample* next = sample->next;
mMotionSamplePool.free(sample);
sample = next;
}
mMotionEntryPool.free(entry);
} else {
assert(entry->refCount > 0);
}
}
void InputDispatcher::Allocator::releaseDispatchEntry(DispatchEntry* entry) {
releaseEventEntry(entry->eventEntry);
mDispatchEntryPool.free(entry);
}
void InputDispatcher::Allocator::releaseCommandEntry(CommandEntry* entry) {
mCommandEntryPool.free(entry);
}
void InputDispatcher::Allocator::appendMotionSample(MotionEntry* motionEntry,
nsecs_t eventTime, const PointerCoords* pointerCoords) {
MotionSample* sample = mMotionSamplePool.alloc();
sample->eventTime = eventTime;
uint32_t pointerCount = motionEntry->pointerCount;
for (uint32_t i = 0; i < pointerCount; i++) {
sample->pointerCoords[i] = pointerCoords[i];
}
sample->next = NULL;
motionEntry->lastSample->next = sample;
motionEntry->lastSample = sample;
}
// --- InputDispatcher::EventEntry ---
void InputDispatcher::EventEntry::recycle() {
injectionResult = INPUT_EVENT_INJECTION_PENDING;
dispatchInProgress = false;
pendingSyncDispatches = 0;
}
// --- InputDispatcher::KeyEntry ---
void InputDispatcher::KeyEntry::recycle() {
EventEntry::recycle();
syntheticRepeat = false;
interceptKeyResult = INTERCEPT_KEY_RESULT_UNKNOWN;
}
// --- InputDispatcher::MotionEntry ---
uint32_t InputDispatcher::MotionEntry::countSamples() const {
uint32_t count = 1;
for (MotionSample* sample = firstSample.next; sample != NULL; sample = sample->next) {
count += 1;
}
return count;
}
// --- InputDispatcher::InputState ---
InputDispatcher::InputState::InputState() :
mIsOutOfSync(false) {
}
InputDispatcher::InputState::~InputState() {
}
bool InputDispatcher::InputState::isNeutral() const {
return mKeyMementos.isEmpty() && mMotionMementos.isEmpty();
}
bool InputDispatcher::InputState::isOutOfSync() const {
return mIsOutOfSync;
}
void InputDispatcher::InputState::setOutOfSync() {
if (! isNeutral()) {
mIsOutOfSync = true;
}
}
void InputDispatcher::InputState::resetOutOfSync() {
mIsOutOfSync = false;
}
InputDispatcher::InputState::Consistency InputDispatcher::InputState::trackEvent(
const EventEntry* entry) {
switch (entry->type) {
case EventEntry::TYPE_KEY:
return trackKey(static_cast<const KeyEntry*>(entry));
case EventEntry::TYPE_MOTION:
return trackMotion(static_cast<const MotionEntry*>(entry));
default:
return CONSISTENT;
}
}
InputDispatcher::InputState::Consistency InputDispatcher::InputState::trackKey(
const KeyEntry* entry) {
int32_t action = entry->action;
for (size_t i = 0; i < mKeyMementos.size(); i++) {
KeyMemento& memento = mKeyMementos.editItemAt(i);
if (memento.deviceId == entry->deviceId
&& memento.source == entry->source
&& memento.keyCode == entry->keyCode
&& memento.scanCode == entry->scanCode) {
switch (action) {
case AKEY_EVENT_ACTION_UP:
mKeyMementos.removeAt(i);
if (isNeutral()) {
mIsOutOfSync = false;
}
return CONSISTENT;
case AKEY_EVENT_ACTION_DOWN:
return TOLERABLE;
default:
return BROKEN;
}
}
}
switch (action) {
case AKEY_EVENT_ACTION_DOWN: {
mKeyMementos.push();
KeyMemento& memento = mKeyMementos.editTop();
memento.deviceId = entry->deviceId;
memento.source = entry->source;
memento.keyCode = entry->keyCode;
memento.scanCode = entry->scanCode;
memento.downTime = entry->downTime;
return CONSISTENT;
}
default:
return BROKEN;
}
}
InputDispatcher::InputState::Consistency InputDispatcher::InputState::trackMotion(
const MotionEntry* entry) {
int32_t action = entry->action & AMOTION_EVENT_ACTION_MASK;
for (size_t i = 0; i < mMotionMementos.size(); i++) {
MotionMemento& memento = mMotionMementos.editItemAt(i);
if (memento.deviceId == entry->deviceId
&& memento.source == entry->source) {
switch (action) {
case AMOTION_EVENT_ACTION_UP:
case AMOTION_EVENT_ACTION_CANCEL:
mMotionMementos.removeAt(i);
if (isNeutral()) {
mIsOutOfSync = false;
}
return CONSISTENT;
case AMOTION_EVENT_ACTION_DOWN:
return TOLERABLE;
case AMOTION_EVENT_ACTION_POINTER_DOWN:
if (entry->pointerCount == memento.pointerCount + 1) {
memento.setPointers(entry);
return CONSISTENT;
}
return BROKEN;
case AMOTION_EVENT_ACTION_POINTER_UP:
if (entry->pointerCount == memento.pointerCount - 1) {
memento.setPointers(entry);
return CONSISTENT;
}
return BROKEN;
case AMOTION_EVENT_ACTION_MOVE:
if (entry->pointerCount == memento.pointerCount) {
return CONSISTENT;
}
return BROKEN;
default:
return BROKEN;
}
}
}
switch (action) {
case AMOTION_EVENT_ACTION_DOWN: {
mMotionMementos.push();
MotionMemento& memento = mMotionMementos.editTop();
memento.deviceId = entry->deviceId;
memento.source = entry->source;
memento.xPrecision = entry->xPrecision;
memento.yPrecision = entry->yPrecision;
memento.downTime = entry->downTime;
memento.setPointers(entry);
return CONSISTENT;
}
default:
return BROKEN;
}
}
void InputDispatcher::InputState::MotionMemento::setPointers(const MotionEntry* entry) {
pointerCount = entry->pointerCount;
for (uint32_t i = 0; i < entry->pointerCount; i++) {
pointerIds[i] = entry->pointerIds[i];
pointerCoords[i] = entry->lastSample->pointerCoords[i];
}
}
void InputDispatcher::InputState::synthesizeCancelationEvents(
Allocator* allocator, Vector<EventEntry*>& outEvents) const {
for (size_t i = 0; i < mKeyMementos.size(); i++) {
const KeyMemento& memento = mKeyMementos.itemAt(i);
outEvents.push(allocator->obtainKeyEntry(now(),
memento.deviceId, memento.source, 0,
AKEY_EVENT_ACTION_UP, AKEY_EVENT_FLAG_CANCELED,
memento.keyCode, memento.scanCode, 0, 0, memento.downTime));
}
for (size_t i = 0; i < mMotionMementos.size(); i++) {
const MotionMemento& memento = mMotionMementos.itemAt(i);
outEvents.push(allocator->obtainMotionEntry(now(),
memento.deviceId, memento.source, 0,
AMOTION_EVENT_ACTION_CANCEL, 0, 0, 0,
memento.xPrecision, memento.yPrecision, memento.downTime,
memento.pointerCount, memento.pointerIds, memento.pointerCoords));
}
}
void InputDispatcher::InputState::clear() {
mKeyMementos.clear();
mMotionMementos.clear();
mIsOutOfSync = false;
}
// --- InputDispatcher::Connection ---
InputDispatcher::Connection::Connection(const sp<InputChannel>& inputChannel) :
status(STATUS_NORMAL), inputChannel(inputChannel), inputPublisher(inputChannel),
nextTimeoutTime(LONG_LONG_MAX),
lastEventTime(LONG_LONG_MAX), lastDispatchTime(LONG_LONG_MAX),
lastANRTime(LONG_LONG_MAX) {
}
InputDispatcher::Connection::~Connection() {
}
status_t InputDispatcher::Connection::initialize() {
return inputPublisher.initialize();
}
void InputDispatcher::Connection::setNextTimeoutTime(nsecs_t currentTime, nsecs_t timeout) {
nextTimeoutTime = (timeout >= 0) ? currentTime + timeout : LONG_LONG_MAX;
}
void InputDispatcher::Connection::resetTimeout(nsecs_t currentTime) {
if (outboundQueue.isEmpty()) {
nextTimeoutTime = LONG_LONG_MAX;
} else {
setNextTimeoutTime(currentTime, outboundQueue.headSentinel.next->timeout);
}
}
const char* InputDispatcher::Connection::getStatusLabel() const {
switch (status) {
case STATUS_NORMAL:
return "NORMAL";
case STATUS_BROKEN:
return "BROKEN";
case STATUS_NOT_RESPONDING:
return "NOT_RESPONDING";
case STATUS_ZOMBIE:
return "ZOMBIE";
default:
return "UNKNOWN";
}
}
InputDispatcher::DispatchEntry* InputDispatcher::Connection::findQueuedDispatchEntryForEvent(
const EventEntry* eventEntry) const {
for (DispatchEntry* dispatchEntry = outboundQueue.tailSentinel.prev;
dispatchEntry != & outboundQueue.headSentinel; dispatchEntry = dispatchEntry->prev) {
if (dispatchEntry->eventEntry == eventEntry) {
return dispatchEntry;
}
}
return NULL;
}
// --- InputDispatcher::CommandEntry ---
InputDispatcher::CommandEntry::CommandEntry() :
keyEntry(NULL) {
}
InputDispatcher::CommandEntry::~CommandEntry() {
}
// --- InputDispatcherThread ---
InputDispatcherThread::InputDispatcherThread(const sp<InputDispatcherInterface>& dispatcher) :
Thread(/*canCallJava*/ true), mDispatcher(dispatcher) {
}
InputDispatcherThread::~InputDispatcherThread() {
}
bool InputDispatcherThread::threadLoop() {
mDispatcher->dispatchOnce();
return true;
}
} // namespace android