a3477c862a
BREAKING CHANGE: Redesigned the key character map format to accomodate full keyboards with more comprehensive suite of modifiers. Old key character maps will not work anymore and must be updated. The new format is plain text only and it not compiled to a binary file (so the "kcm" tool will be removed in a subsequent check-in). Added FULL keyboard type to support full PC-style keyboards. Added SPECIAL_FUNCTION keyboard type to support special function keypads that do not have any printable keys suitable for typing and only have keys like HOME and POWER Added a special VIRTUAL_KEYBOARD device id convention that maps to a virtual keyboard with a fixed known layout. This is designed to work around issues injecting input events on devices whose built-in keyboard does not have a useful key character map (ie. when the built-in keyboard is a special function keyboard only.) Modified several places where events were being synthesized to use the virtual keyboard. Removed support for the "qwerty" default layout. The new default layout is "Generic". For the most part "qwerty" was being used as a backstop in case the built-in keyboard did not have a key character map (probably because it was a special function keypad) and the framework needed to be able to inject key events anyways. The latter issue is resolved by using the special VIRTUAL_KEYBOARD device instead of BUILT_IN_KEYBOARD. Added the concept of a key modifier behavior so that MetaKeyKeyListener can distinguish between keyboards that use chorded vs. toggled modifiers. Wrote more robust key layout and key character map parsers to enable support for new keyboard features and user installable key maps. Fixed a bug in InputReader generating key ups when keys are released out of sequence. Updated tons of documentation. Currently QwertyKeyListener is being used for full keyboards with autotext and capitalization disabled. This mostly works but causes some problems with character pickers, etc. These issues will be resolved in subsequent changes. Change-Id: Ica48f6097a551141c215bc0d2c6f7b3fb634d354
1073 lines
35 KiB
C++
1073 lines
35 KiB
C++
//
|
|
// Copyright 2005 The Android Open Source Project
|
|
//
|
|
// Handle events, like key input and vsync.
|
|
//
|
|
// The goal is to provide an optimized solution for Linux, not an
|
|
// implementation that works well across all platforms. We expect
|
|
// events to arrive on file descriptors, so that we can use a select()
|
|
// select() call to sleep.
|
|
//
|
|
// We can't select() on anything but network sockets in Windows, so we
|
|
// provide an alternative implementation of waitEvent for that platform.
|
|
//
|
|
#define LOG_TAG "EventHub"
|
|
|
|
//#define LOG_NDEBUG 0
|
|
|
|
#include <ui/EventHub.h>
|
|
#include <hardware_legacy/power.h>
|
|
|
|
#include <cutils/properties.h>
|
|
#include <utils/Log.h>
|
|
#include <utils/Timers.h>
|
|
#include <utils/threads.h>
|
|
#include <utils/Errors.h>
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
#include <memory.h>
|
|
#include <errno.h>
|
|
#include <assert.h>
|
|
|
|
#include <ui/KeyLayoutMap.h>
|
|
|
|
#include <string.h>
|
|
#include <stdint.h>
|
|
#include <dirent.h>
|
|
#ifdef HAVE_INOTIFY
|
|
# include <sys/inotify.h>
|
|
#endif
|
|
#ifdef HAVE_ANDROID_OS
|
|
# include <sys/limits.h> /* not part of Linux */
|
|
#endif
|
|
#include <sys/poll.h>
|
|
#include <sys/ioctl.h>
|
|
|
|
/* this macro is used to tell if "bit" is set in "array"
|
|
* it selects a byte from the array, and does a boolean AND
|
|
* operation with a byte that only has the relevant bit set.
|
|
* eg. to check for the 12th bit, we do (array[1] & 1<<4)
|
|
*/
|
|
#define test_bit(bit, array) (array[bit/8] & (1<<(bit%8)))
|
|
|
|
/* this macro computes the number of bytes needed to represent a bit array of the specified size */
|
|
#define sizeof_bit_array(bits) ((bits + 7) / 8)
|
|
|
|
#define ID_MASK 0x0000ffff
|
|
#define SEQ_MASK 0x7fff0000
|
|
#define SEQ_SHIFT 16
|
|
|
|
#ifndef ABS_MT_TOUCH_MAJOR
|
|
#define ABS_MT_TOUCH_MAJOR 0x30 /* Major axis of touching ellipse */
|
|
#endif
|
|
|
|
#ifndef ABS_MT_POSITION_X
|
|
#define ABS_MT_POSITION_X 0x35 /* Center X ellipse position */
|
|
#endif
|
|
|
|
#ifndef ABS_MT_POSITION_Y
|
|
#define ABS_MT_POSITION_Y 0x36 /* Center Y ellipse position */
|
|
#endif
|
|
|
|
#define INDENT " "
|
|
#define INDENT2 " "
|
|
#define INDENT3 " "
|
|
|
|
namespace android {
|
|
|
|
static const char *WAKE_LOCK_ID = "KeyEvents";
|
|
static const char *device_path = "/dev/input";
|
|
|
|
/* return the larger integer */
|
|
static inline int max(int v1, int v2)
|
|
{
|
|
return (v1 > v2) ? v1 : v2;
|
|
}
|
|
|
|
static inline const char* toString(bool value) {
|
|
return value ? "true" : "false";
|
|
}
|
|
|
|
EventHub::device_t::device_t(int32_t _id, const char* _path, const char* name)
|
|
: id(_id), path(_path), name(name), classes(0)
|
|
, keyBitmask(NULL), layoutMap(NULL), fd(-1), next(NULL) {
|
|
}
|
|
|
|
EventHub::device_t::~device_t() {
|
|
delete [] keyBitmask;
|
|
delete layoutMap;
|
|
}
|
|
|
|
EventHub::EventHub(void)
|
|
: mError(NO_INIT), mHaveFirstKeyboard(false), mFirstKeyboardId(-1)
|
|
, mDevicesById(0), mNumDevicesById(0)
|
|
, mOpeningDevices(0), mClosingDevices(0)
|
|
, mDevices(0), mFDs(0), mFDCount(0), mOpened(false), mNeedToSendFinishedDeviceScan(false)
|
|
, mInputBufferIndex(0), mInputBufferCount(0), mInputDeviceIndex(0)
|
|
{
|
|
acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
|
|
#ifdef EV_SW
|
|
memset(mSwitches, 0, sizeof(mSwitches));
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Clean up.
|
|
*/
|
|
EventHub::~EventHub(void)
|
|
{
|
|
release_wake_lock(WAKE_LOCK_ID);
|
|
// we should free stuff here...
|
|
}
|
|
|
|
status_t EventHub::errorCheck() const
|
|
{
|
|
return mError;
|
|
}
|
|
|
|
String8 EventHub::getDeviceName(int32_t deviceId) const
|
|
{
|
|
AutoMutex _l(mLock);
|
|
device_t* device = getDeviceLocked(deviceId);
|
|
if (device == NULL) return String8();
|
|
return device->name;
|
|
}
|
|
|
|
uint32_t EventHub::getDeviceClasses(int32_t deviceId) const
|
|
{
|
|
AutoMutex _l(mLock);
|
|
device_t* device = getDeviceLocked(deviceId);
|
|
if (device == NULL) return 0;
|
|
return device->classes;
|
|
}
|
|
|
|
status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
|
|
RawAbsoluteAxisInfo* outAxisInfo) const {
|
|
outAxisInfo->clear();
|
|
|
|
AutoMutex _l(mLock);
|
|
device_t* device = getDeviceLocked(deviceId);
|
|
if (device == NULL) return -1;
|
|
|
|
struct input_absinfo info;
|
|
|
|
if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
|
|
LOGW("Error reading absolute controller %d for device %s fd %d\n",
|
|
axis, device->name.string(), device->fd);
|
|
return -errno;
|
|
}
|
|
|
|
if (info.minimum != info.maximum) {
|
|
outAxisInfo->valid = true;
|
|
outAxisInfo->minValue = info.minimum;
|
|
outAxisInfo->maxValue = info.maximum;
|
|
outAxisInfo->flat = info.flat;
|
|
outAxisInfo->fuzz = info.fuzz;
|
|
}
|
|
return OK;
|
|
}
|
|
|
|
int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
|
|
if (scanCode >= 0 && scanCode <= KEY_MAX) {
|
|
AutoMutex _l(mLock);
|
|
|
|
device_t* device = getDeviceLocked(deviceId);
|
|
if (device != NULL) {
|
|
return getScanCodeStateLocked(device, scanCode);
|
|
}
|
|
}
|
|
return AKEY_STATE_UNKNOWN;
|
|
}
|
|
|
|
int32_t EventHub::getScanCodeStateLocked(device_t* device, int32_t scanCode) const {
|
|
uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)];
|
|
memset(key_bitmask, 0, sizeof(key_bitmask));
|
|
if (ioctl(device->fd,
|
|
EVIOCGKEY(sizeof(key_bitmask)), key_bitmask) >= 0) {
|
|
return test_bit(scanCode, key_bitmask) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
|
|
}
|
|
return AKEY_STATE_UNKNOWN;
|
|
}
|
|
|
|
int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
|
|
AutoMutex _l(mLock);
|
|
|
|
device_t* device = getDeviceLocked(deviceId);
|
|
if (device != NULL) {
|
|
return getKeyCodeStateLocked(device, keyCode);
|
|
}
|
|
return AKEY_STATE_UNKNOWN;
|
|
}
|
|
|
|
int32_t EventHub::getKeyCodeStateLocked(device_t* device, int32_t keyCode) const {
|
|
if (!device->layoutMap) {
|
|
return AKEY_STATE_UNKNOWN;
|
|
}
|
|
|
|
Vector<int32_t> scanCodes;
|
|
device->layoutMap->findScanCodes(keyCode, &scanCodes);
|
|
|
|
uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)];
|
|
memset(key_bitmask, 0, sizeof(key_bitmask));
|
|
if (ioctl(device->fd, EVIOCGKEY(sizeof(key_bitmask)), key_bitmask) >= 0) {
|
|
#if 0
|
|
for (size_t i=0; i<=KEY_MAX; i++) {
|
|
LOGI("(Scan code %d: down=%d)", i, test_bit(i, key_bitmask));
|
|
}
|
|
#endif
|
|
const size_t N = scanCodes.size();
|
|
for (size_t i=0; i<N && i<=KEY_MAX; i++) {
|
|
int32_t sc = scanCodes.itemAt(i);
|
|
//LOGI("Code %d: down=%d", sc, test_bit(sc, key_bitmask));
|
|
if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, key_bitmask)) {
|
|
return AKEY_STATE_DOWN;
|
|
}
|
|
}
|
|
return AKEY_STATE_UP;
|
|
}
|
|
return AKEY_STATE_UNKNOWN;
|
|
}
|
|
|
|
int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
|
|
#ifdef EV_SW
|
|
if (sw >= 0 && sw <= SW_MAX) {
|
|
AutoMutex _l(mLock);
|
|
|
|
device_t* device = getDeviceLocked(deviceId);
|
|
if (device != NULL) {
|
|
return getSwitchStateLocked(device, sw);
|
|
}
|
|
}
|
|
#endif
|
|
return AKEY_STATE_UNKNOWN;
|
|
}
|
|
|
|
int32_t EventHub::getSwitchStateLocked(device_t* device, int32_t sw) const {
|
|
uint8_t sw_bitmask[sizeof_bit_array(SW_MAX + 1)];
|
|
memset(sw_bitmask, 0, sizeof(sw_bitmask));
|
|
if (ioctl(device->fd,
|
|
EVIOCGSW(sizeof(sw_bitmask)), sw_bitmask) >= 0) {
|
|
return test_bit(sw, sw_bitmask) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
|
|
}
|
|
return AKEY_STATE_UNKNOWN;
|
|
}
|
|
|
|
bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes,
|
|
const int32_t* keyCodes, uint8_t* outFlags) const {
|
|
AutoMutex _l(mLock);
|
|
|
|
device_t* device = getDeviceLocked(deviceId);
|
|
if (device != NULL) {
|
|
return markSupportedKeyCodesLocked(device, numCodes, keyCodes, outFlags);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool EventHub::markSupportedKeyCodesLocked(device_t* device, size_t numCodes,
|
|
const int32_t* keyCodes, uint8_t* outFlags) const {
|
|
if (device->layoutMap == NULL || device->keyBitmask == NULL) {
|
|
return false;
|
|
}
|
|
|
|
Vector<int32_t> scanCodes;
|
|
for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
|
|
scanCodes.clear();
|
|
|
|
status_t err = device->layoutMap->findScanCodes(keyCodes[codeIndex], &scanCodes);
|
|
if (! err) {
|
|
// check the possible scan codes identified by the layout map against the
|
|
// map of codes actually emitted by the driver
|
|
for (size_t sc = 0; sc < scanCodes.size(); sc++) {
|
|
if (test_bit(scanCodes[sc], device->keyBitmask)) {
|
|
outFlags[codeIndex] = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
status_t EventHub::scancodeToKeycode(int32_t deviceId, int scancode,
|
|
int32_t* outKeycode, uint32_t* outFlags) const
|
|
{
|
|
AutoMutex _l(mLock);
|
|
device_t* device = getDeviceLocked(deviceId);
|
|
|
|
if (device != NULL && device->layoutMap != NULL) {
|
|
status_t err = device->layoutMap->map(scancode, outKeycode, outFlags);
|
|
if (err == NO_ERROR) {
|
|
return NO_ERROR;
|
|
}
|
|
}
|
|
|
|
if (mHaveFirstKeyboard) {
|
|
device = getDeviceLocked(mFirstKeyboardId);
|
|
|
|
if (device != NULL && device->layoutMap != NULL) {
|
|
status_t err = device->layoutMap->map(scancode, outKeycode, outFlags);
|
|
if (err == NO_ERROR) {
|
|
return NO_ERROR;
|
|
}
|
|
}
|
|
}
|
|
|
|
*outKeycode = 0;
|
|
*outFlags = 0;
|
|
return NAME_NOT_FOUND;
|
|
}
|
|
|
|
void EventHub::addExcludedDevice(const char* deviceName)
|
|
{
|
|
AutoMutex _l(mLock);
|
|
|
|
String8 name(deviceName);
|
|
mExcludedDevices.push_back(name);
|
|
}
|
|
|
|
bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
|
|
AutoMutex _l(mLock);
|
|
device_t* device = getDeviceLocked(deviceId);
|
|
if (device) {
|
|
uint8_t bitmask[sizeof_bit_array(LED_MAX + 1)];
|
|
memset(bitmask, 0, sizeof(bitmask));
|
|
if (ioctl(device->fd, EVIOCGBIT(EV_LED, sizeof(bitmask)), bitmask) >= 0) {
|
|
if (test_bit(led, bitmask)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
|
|
AutoMutex _l(mLock);
|
|
device_t* device = getDeviceLocked(deviceId);
|
|
if (device) {
|
|
struct input_event ev;
|
|
ev.time.tv_sec = 0;
|
|
ev.time.tv_usec = 0;
|
|
ev.type = EV_LED;
|
|
ev.code = led;
|
|
ev.value = on ? 1 : 0;
|
|
|
|
ssize_t nWrite;
|
|
do {
|
|
nWrite = write(device->fd, &ev, sizeof(struct input_event));
|
|
} while (nWrite == -1 && errno == EINTR);
|
|
}
|
|
}
|
|
|
|
EventHub::device_t* EventHub::getDeviceLocked(int32_t deviceId) const
|
|
{
|
|
if (deviceId == 0) deviceId = mFirstKeyboardId;
|
|
int32_t id = deviceId & ID_MASK;
|
|
if (id >= mNumDevicesById || id < 0) return NULL;
|
|
device_t* dev = mDevicesById[id].device;
|
|
if (dev == NULL) return NULL;
|
|
if (dev->id == deviceId) {
|
|
return dev;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
bool EventHub::getEvent(RawEvent* outEvent)
|
|
{
|
|
outEvent->deviceId = 0;
|
|
outEvent->type = 0;
|
|
outEvent->scanCode = 0;
|
|
outEvent->keyCode = 0;
|
|
outEvent->flags = 0;
|
|
outEvent->value = 0;
|
|
outEvent->when = 0;
|
|
|
|
// Note that we only allow one caller to getEvent(), so don't need
|
|
// to do locking here... only when adding/removing devices.
|
|
|
|
if (!mOpened) {
|
|
mError = openPlatformInput() ? NO_ERROR : UNKNOWN_ERROR;
|
|
mOpened = true;
|
|
mNeedToSendFinishedDeviceScan = true;
|
|
}
|
|
|
|
for (;;) {
|
|
// Report any devices that had last been added/removed.
|
|
if (mClosingDevices != NULL) {
|
|
device_t* device = mClosingDevices;
|
|
LOGV("Reporting device closed: id=0x%x, name=%s\n",
|
|
device->id, device->path.string());
|
|
mClosingDevices = device->next;
|
|
if (device->id == mFirstKeyboardId) {
|
|
outEvent->deviceId = 0;
|
|
} else {
|
|
outEvent->deviceId = device->id;
|
|
}
|
|
outEvent->type = DEVICE_REMOVED;
|
|
outEvent->when = systemTime(SYSTEM_TIME_MONOTONIC);
|
|
delete device;
|
|
mNeedToSendFinishedDeviceScan = true;
|
|
return true;
|
|
}
|
|
|
|
if (mOpeningDevices != NULL) {
|
|
device_t* device = mOpeningDevices;
|
|
LOGV("Reporting device opened: id=0x%x, name=%s\n",
|
|
device->id, device->path.string());
|
|
mOpeningDevices = device->next;
|
|
if (device->id == mFirstKeyboardId) {
|
|
outEvent->deviceId = 0;
|
|
} else {
|
|
outEvent->deviceId = device->id;
|
|
}
|
|
outEvent->type = DEVICE_ADDED;
|
|
outEvent->when = systemTime(SYSTEM_TIME_MONOTONIC);
|
|
mNeedToSendFinishedDeviceScan = true;
|
|
return true;
|
|
}
|
|
|
|
if (mNeedToSendFinishedDeviceScan) {
|
|
mNeedToSendFinishedDeviceScan = false;
|
|
outEvent->type = FINISHED_DEVICE_SCAN;
|
|
outEvent->when = systemTime(SYSTEM_TIME_MONOTONIC);
|
|
return true;
|
|
}
|
|
|
|
// Grab the next input event.
|
|
for (;;) {
|
|
// Consume buffered input events, if any.
|
|
if (mInputBufferIndex < mInputBufferCount) {
|
|
const struct input_event& iev = mInputBufferData[mInputBufferIndex++];
|
|
const device_t* device = mDevices[mInputDeviceIndex];
|
|
|
|
LOGV("%s got: t0=%d, t1=%d, type=%d, code=%d, v=%d", device->path.string(),
|
|
(int) iev.time.tv_sec, (int) iev.time.tv_usec, iev.type, iev.code, iev.value);
|
|
if (device->id == mFirstKeyboardId) {
|
|
outEvent->deviceId = 0;
|
|
} else {
|
|
outEvent->deviceId = device->id;
|
|
}
|
|
outEvent->type = iev.type;
|
|
outEvent->scanCode = iev.code;
|
|
outEvent->flags = 0;
|
|
if (iev.type == EV_KEY) {
|
|
outEvent->keyCode = AKEYCODE_UNKNOWN;
|
|
if (device->layoutMap) {
|
|
status_t err = device->layoutMap->map(iev.code,
|
|
&outEvent->keyCode, &outEvent->flags);
|
|
LOGV("iev.code=%d keyCode=%d flags=0x%08x err=%d\n",
|
|
iev.code, outEvent->keyCode, outEvent->flags, err);
|
|
}
|
|
} else {
|
|
outEvent->keyCode = iev.code;
|
|
}
|
|
outEvent->value = iev.value;
|
|
|
|
// Use an event timestamp in the same timebase as
|
|
// java.lang.System.nanoTime() and android.os.SystemClock.uptimeMillis()
|
|
// as expected by the rest of the system.
|
|
outEvent->when = systemTime(SYSTEM_TIME_MONOTONIC);
|
|
return true;
|
|
}
|
|
|
|
// Finish reading all events from devices identified in previous poll().
|
|
// This code assumes that mInputDeviceIndex is initially 0 and that the
|
|
// revents member of pollfd is initialized to 0 when the device is first added.
|
|
// Since mFDs[0] is used for inotify, we process regular events starting at index 1.
|
|
mInputDeviceIndex += 1;
|
|
if (mInputDeviceIndex >= mFDCount) {
|
|
break;
|
|
}
|
|
|
|
const struct pollfd& pfd = mFDs[mInputDeviceIndex];
|
|
if (pfd.revents & POLLIN) {
|
|
int32_t readSize = read(pfd.fd, mInputBufferData,
|
|
sizeof(struct input_event) * INPUT_BUFFER_SIZE);
|
|
if (readSize < 0) {
|
|
if (errno != EAGAIN && errno != EINTR) {
|
|
LOGW("could not get event (errno=%d)", errno);
|
|
}
|
|
} else if ((readSize % sizeof(struct input_event)) != 0) {
|
|
LOGE("could not get event (wrong size: %d)", readSize);
|
|
} else {
|
|
mInputBufferCount = readSize / sizeof(struct input_event);
|
|
mInputBufferIndex = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if HAVE_INOTIFY
|
|
// readNotify() will modify mFDs and mFDCount, so this must be done after
|
|
// processing all other events.
|
|
if(mFDs[0].revents & POLLIN) {
|
|
readNotify(mFDs[0].fd);
|
|
mFDs[0].revents = 0;
|
|
continue; // report added or removed devices immediately
|
|
}
|
|
#endif
|
|
|
|
mInputDeviceIndex = 0;
|
|
|
|
// Poll for events. Mind the wake lock dance!
|
|
// We hold a wake lock at all times except during poll(). This works due to some
|
|
// subtle choreography. When a device driver has pending (unread) events, it acquires
|
|
// a kernel wake lock. However, once the last pending event has been read, the device
|
|
// driver will release the kernel wake lock. To prevent the system from going to sleep
|
|
// when this happens, the EventHub holds onto its own user wake lock while the client
|
|
// is processing events. Thus the system can only sleep if there are no events
|
|
// pending or currently being processed.
|
|
release_wake_lock(WAKE_LOCK_ID);
|
|
|
|
int pollResult = poll(mFDs, mFDCount, -1);
|
|
|
|
acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
|
|
|
|
if (pollResult <= 0) {
|
|
if (errno != EINTR) {
|
|
LOGW("poll failed (errno=%d)\n", errno);
|
|
usleep(100000);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Open the platform-specific input device.
|
|
*/
|
|
bool EventHub::openPlatformInput(void)
|
|
{
|
|
/*
|
|
* Open platform-specific input device(s).
|
|
*/
|
|
int res;
|
|
|
|
mFDCount = 1;
|
|
mFDs = (pollfd *)calloc(1, sizeof(mFDs[0]));
|
|
mDevices = (device_t **)calloc(1, sizeof(mDevices[0]));
|
|
mFDs[0].events = POLLIN;
|
|
mFDs[0].revents = 0;
|
|
mDevices[0] = NULL;
|
|
#ifdef HAVE_INOTIFY
|
|
mFDs[0].fd = inotify_init();
|
|
res = inotify_add_watch(mFDs[0].fd, device_path, IN_DELETE | IN_CREATE);
|
|
if(res < 0) {
|
|
LOGE("could not add watch for %s, %s\n", device_path, strerror(errno));
|
|
}
|
|
#else
|
|
/*
|
|
* The code in EventHub::getEvent assumes that mFDs[0] is an inotify fd.
|
|
* We allocate space for it and set it to something invalid.
|
|
*/
|
|
mFDs[0].fd = -1;
|
|
#endif
|
|
|
|
res = scanDir(device_path);
|
|
if(res < 0) {
|
|
LOGE("scan dir failed for %s\n", device_path);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) {
|
|
const uint8_t* end = array + endIndex;
|
|
array += startIndex;
|
|
while (array != end) {
|
|
if (*(array++) != 0) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static const int32_t GAMEPAD_KEYCODES[] = {
|
|
AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C,
|
|
AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z,
|
|
AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1,
|
|
AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2,
|
|
AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR,
|
|
AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE
|
|
};
|
|
|
|
int EventHub::openDevice(const char *deviceName) {
|
|
int version;
|
|
int fd;
|
|
struct pollfd *new_mFDs;
|
|
device_t **new_devices;
|
|
char **new_device_names;
|
|
char name[80];
|
|
char location[80];
|
|
char idstr[80];
|
|
struct input_id id;
|
|
|
|
LOGV("Opening device: %s", deviceName);
|
|
|
|
AutoMutex _l(mLock);
|
|
|
|
fd = open(deviceName, O_RDWR);
|
|
if(fd < 0) {
|
|
LOGE("could not open %s, %s\n", deviceName, strerror(errno));
|
|
return -1;
|
|
}
|
|
|
|
if(ioctl(fd, EVIOCGVERSION, &version)) {
|
|
LOGE("could not get driver version for %s, %s\n", deviceName, strerror(errno));
|
|
return -1;
|
|
}
|
|
if(ioctl(fd, EVIOCGID, &id)) {
|
|
LOGE("could not get driver id for %s, %s\n", deviceName, strerror(errno));
|
|
return -1;
|
|
}
|
|
name[sizeof(name) - 1] = '\0';
|
|
location[sizeof(location) - 1] = '\0';
|
|
idstr[sizeof(idstr) - 1] = '\0';
|
|
if(ioctl(fd, EVIOCGNAME(sizeof(name) - 1), &name) < 1) {
|
|
//fprintf(stderr, "could not get device name for %s, %s\n", deviceName, strerror(errno));
|
|
name[0] = '\0';
|
|
}
|
|
|
|
// check to see if the device is on our excluded list
|
|
List<String8>::iterator iter = mExcludedDevices.begin();
|
|
List<String8>::iterator end = mExcludedDevices.end();
|
|
for ( ; iter != end; iter++) {
|
|
const char* test = *iter;
|
|
if (strcmp(name, test) == 0) {
|
|
LOGI("ignoring event id %s driver %s\n", deviceName, test);
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if(ioctl(fd, EVIOCGPHYS(sizeof(location) - 1), &location) < 1) {
|
|
//fprintf(stderr, "could not get location for %s, %s\n", deviceName, strerror(errno));
|
|
location[0] = '\0';
|
|
}
|
|
if(ioctl(fd, EVIOCGUNIQ(sizeof(idstr) - 1), &idstr) < 1) {
|
|
//fprintf(stderr, "could not get idstring for %s, %s\n", deviceName, strerror(errno));
|
|
idstr[0] = '\0';
|
|
}
|
|
|
|
if (fcntl(fd, F_SETFL, O_NONBLOCK)) {
|
|
LOGE("Error %d making device file descriptor non-blocking.", errno);
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
|
|
int devid = 0;
|
|
while (devid < mNumDevicesById) {
|
|
if (mDevicesById[devid].device == NULL) {
|
|
break;
|
|
}
|
|
devid++;
|
|
}
|
|
if (devid >= mNumDevicesById) {
|
|
device_ent* new_devids = (device_ent*)realloc(mDevicesById,
|
|
sizeof(mDevicesById[0]) * (devid + 1));
|
|
if (new_devids == NULL) {
|
|
LOGE("out of memory");
|
|
return -1;
|
|
}
|
|
mDevicesById = new_devids;
|
|
mNumDevicesById = devid+1;
|
|
mDevicesById[devid].device = NULL;
|
|
mDevicesById[devid].seq = 0;
|
|
}
|
|
|
|
mDevicesById[devid].seq = (mDevicesById[devid].seq+(1<<SEQ_SHIFT))&SEQ_MASK;
|
|
if (mDevicesById[devid].seq == 0) {
|
|
mDevicesById[devid].seq = 1<<SEQ_SHIFT;
|
|
}
|
|
|
|
new_mFDs = (pollfd*)realloc(mFDs, sizeof(mFDs[0]) * (mFDCount + 1));
|
|
new_devices = (device_t**)realloc(mDevices, sizeof(mDevices[0]) * (mFDCount + 1));
|
|
if (new_mFDs == NULL || new_devices == NULL) {
|
|
LOGE("out of memory");
|
|
return -1;
|
|
}
|
|
mFDs = new_mFDs;
|
|
mDevices = new_devices;
|
|
|
|
#if 0
|
|
LOGI("add device %d: %s\n", mFDCount, deviceName);
|
|
LOGI(" bus: %04x\n"
|
|
" vendor %04x\n"
|
|
" product %04x\n"
|
|
" version %04x\n",
|
|
id.bustype, id.vendor, id.product, id.version);
|
|
LOGI(" name: \"%s\"\n", name);
|
|
LOGI(" location: \"%s\"\n"
|
|
" id: \"%s\"\n", location, idstr);
|
|
LOGI(" version: %d.%d.%d\n",
|
|
version >> 16, (version >> 8) & 0xff, version & 0xff);
|
|
#endif
|
|
|
|
device_t* device = new device_t(devid|mDevicesById[devid].seq, deviceName, name);
|
|
if (device == NULL) {
|
|
LOGE("out of memory");
|
|
return -1;
|
|
}
|
|
|
|
device->fd = fd;
|
|
mFDs[mFDCount].fd = fd;
|
|
mFDs[mFDCount].events = POLLIN;
|
|
mFDs[mFDCount].revents = 0;
|
|
|
|
// Figure out the kinds of events the device reports.
|
|
|
|
uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)];
|
|
memset(key_bitmask, 0, sizeof(key_bitmask));
|
|
|
|
LOGV("Getting keys...");
|
|
if (ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(key_bitmask)), key_bitmask) >= 0) {
|
|
//LOGI("MAP\n");
|
|
//for (int i = 0; i < sizeof(key_bitmask); i++) {
|
|
// LOGI("%d: 0x%02x\n", i, key_bitmask[i]);
|
|
//}
|
|
|
|
// See if this is a keyboard. Ignore everything in the button range except for
|
|
// gamepads which are also considered keyboards.
|
|
if (containsNonZeroByte(key_bitmask, 0, sizeof_bit_array(BTN_MISC))
|
|
|| containsNonZeroByte(key_bitmask, sizeof_bit_array(BTN_GAMEPAD),
|
|
sizeof_bit_array(BTN_DIGI))
|
|
|| containsNonZeroByte(key_bitmask, sizeof_bit_array(KEY_OK),
|
|
sizeof_bit_array(KEY_MAX + 1))) {
|
|
device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
|
|
|
|
device->keyBitmask = new uint8_t[sizeof(key_bitmask)];
|
|
if (device->keyBitmask != NULL) {
|
|
memcpy(device->keyBitmask, key_bitmask, sizeof(key_bitmask));
|
|
} else {
|
|
delete device;
|
|
LOGE("out of memory allocating key bitmask");
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
// See if this is a trackball (or mouse).
|
|
if (test_bit(BTN_MOUSE, key_bitmask)) {
|
|
uint8_t rel_bitmask[sizeof_bit_array(REL_MAX + 1)];
|
|
memset(rel_bitmask, 0, sizeof(rel_bitmask));
|
|
LOGV("Getting relative controllers...");
|
|
if (ioctl(fd, EVIOCGBIT(EV_REL, sizeof(rel_bitmask)), rel_bitmask) >= 0) {
|
|
if (test_bit(REL_X, rel_bitmask) && test_bit(REL_Y, rel_bitmask)) {
|
|
device->classes |= INPUT_DEVICE_CLASS_TRACKBALL;
|
|
}
|
|
}
|
|
}
|
|
|
|
// See if this is a touch pad.
|
|
uint8_t abs_bitmask[sizeof_bit_array(ABS_MAX + 1)];
|
|
memset(abs_bitmask, 0, sizeof(abs_bitmask));
|
|
LOGV("Getting absolute controllers...");
|
|
if (ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(abs_bitmask)), abs_bitmask) >= 0) {
|
|
// Is this a new modern multi-touch driver?
|
|
if (test_bit(ABS_MT_POSITION_X, abs_bitmask)
|
|
&& test_bit(ABS_MT_POSITION_Y, abs_bitmask)) {
|
|
device->classes |= INPUT_DEVICE_CLASS_TOUCHSCREEN | INPUT_DEVICE_CLASS_TOUCHSCREEN_MT;
|
|
|
|
// Is this an old style single-touch driver?
|
|
} else if (test_bit(BTN_TOUCH, key_bitmask)
|
|
&& test_bit(ABS_X, abs_bitmask) && test_bit(ABS_Y, abs_bitmask)) {
|
|
device->classes |= INPUT_DEVICE_CLASS_TOUCHSCREEN;
|
|
}
|
|
}
|
|
|
|
#ifdef EV_SW
|
|
// figure out the switches this device reports
|
|
uint8_t sw_bitmask[sizeof_bit_array(SW_MAX + 1)];
|
|
memset(sw_bitmask, 0, sizeof(sw_bitmask));
|
|
bool hasSwitches = false;
|
|
if (ioctl(fd, EVIOCGBIT(EV_SW, sizeof(sw_bitmask)), sw_bitmask) >= 0) {
|
|
for (int i=0; i<EV_SW; i++) {
|
|
//LOGI("Device 0x%x sw %d: has=%d", device->id, i, test_bit(i, sw_bitmask));
|
|
if (test_bit(i, sw_bitmask)) {
|
|
hasSwitches = true;
|
|
if (mSwitches[i] == 0) {
|
|
mSwitches[i] = device->id;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (hasSwitches) {
|
|
device->classes |= INPUT_DEVICE_CLASS_SWITCH;
|
|
}
|
|
#endif
|
|
|
|
if ((device->classes & INPUT_DEVICE_CLASS_KEYBOARD) != 0) {
|
|
// a more descriptive name
|
|
device->name = name;
|
|
|
|
// Configure the keymap for the device.
|
|
|
|
configureKeyMap(device);
|
|
|
|
// Tell the world about the devname (the descriptive name)
|
|
if (!mHaveFirstKeyboard && !device->keyMapInfo.isDefaultKeyMap && strstr(name, "-keypad")) {
|
|
// the built-in keyboard has a well-known device ID of 0,
|
|
// this device better not go away.
|
|
mHaveFirstKeyboard = true;
|
|
mFirstKeyboardId = device->id;
|
|
setKeyboardProperties(device, true);
|
|
} else {
|
|
// ensure mFirstKeyboardId is set to -something-.
|
|
if (mFirstKeyboardId == -1) {
|
|
mFirstKeyboardId = device->id;
|
|
setKeyboardProperties(device, true);
|
|
}
|
|
}
|
|
setKeyboardProperties(device, false);
|
|
|
|
// Load the keylayout.
|
|
if (!device->keyMapInfo.keyLayoutFile.isEmpty()) {
|
|
status_t status = KeyLayoutMap::load(device->keyMapInfo.keyLayoutFile,
|
|
&device->layoutMap);
|
|
if (status) {
|
|
LOGE("Error %d loading key layout file '%s'.", status,
|
|
device->keyMapInfo.keyLayoutFile.string());
|
|
}
|
|
}
|
|
|
|
// 'Q' key support = cheap test of whether this is an alpha-capable kbd
|
|
if (hasKeycodeLocked(device, AKEYCODE_Q)) {
|
|
device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY;
|
|
}
|
|
|
|
// See if this device has a DPAD.
|
|
if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) &&
|
|
hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) &&
|
|
hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) &&
|
|
hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) &&
|
|
hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) {
|
|
device->classes |= INPUT_DEVICE_CLASS_DPAD;
|
|
}
|
|
|
|
// See if this device has a gamepad.
|
|
for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) {
|
|
if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) {
|
|
device->classes |= INPUT_DEVICE_CLASS_GAMEPAD;
|
|
break;
|
|
}
|
|
}
|
|
|
|
LOGI("New keyboard: device->id=0x%x devname='%s' keylayout='%s' keycharactermap='%s'\n",
|
|
device->id, name,
|
|
device->keyMapInfo.keyLayoutFile.string(),
|
|
device->keyMapInfo.keyCharacterMapFile.string());
|
|
}
|
|
|
|
// If the device isn't recognized as something we handle, don't monitor it.
|
|
if (device->classes == 0) {
|
|
LOGV("Dropping device %s %p, id = %d\n", deviceName, device, devid);
|
|
close(fd);
|
|
delete device;
|
|
return -1;
|
|
}
|
|
|
|
LOGI("New device: path=%s name=%s id=0x%x (of 0x%x) index=%d fd=%d classes=0x%x\n",
|
|
deviceName, name, device->id, mNumDevicesById, mFDCount, fd, device->classes);
|
|
|
|
LOGV("Adding device %s %p at %d, id = %d, classes = 0x%x\n",
|
|
deviceName, device, mFDCount, devid, device->classes);
|
|
|
|
mDevicesById[devid].device = device;
|
|
device->next = mOpeningDevices;
|
|
mOpeningDevices = device;
|
|
mDevices[mFDCount] = device;
|
|
|
|
mFDCount++;
|
|
return 0;
|
|
}
|
|
|
|
void EventHub::configureKeyMap(device_t* device) {
|
|
android::resolveKeyMap(device->name, device->keyMapInfo);
|
|
}
|
|
|
|
void EventHub::setKeyboardProperties(device_t* device, bool firstKeyboard) {
|
|
int32_t id = firstKeyboard ? 0 : device->id;
|
|
android::setKeyboardProperties(id, device->name, device->keyMapInfo);
|
|
}
|
|
|
|
void EventHub::clearKeyboardProperties(device_t* device, bool firstKeyboard) {
|
|
int32_t id = firstKeyboard ? 0 : device->id;
|
|
android::clearKeyboardProperties(id);
|
|
}
|
|
|
|
bool EventHub::hasKeycodeLocked(device_t* device, int keycode) const
|
|
{
|
|
if (device->keyBitmask == NULL || device->layoutMap == NULL) {
|
|
return false;
|
|
}
|
|
|
|
Vector<int32_t> scanCodes;
|
|
device->layoutMap->findScanCodes(keycode, &scanCodes);
|
|
const size_t N = scanCodes.size();
|
|
for (size_t i=0; i<N && i<=KEY_MAX; i++) {
|
|
int32_t sc = scanCodes.itemAt(i);
|
|
if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
int EventHub::closeDevice(const char *deviceName) {
|
|
AutoMutex _l(mLock);
|
|
|
|
int i;
|
|
for(i = 1; i < mFDCount; i++) {
|
|
if(strcmp(mDevices[i]->path.string(), deviceName) == 0) {
|
|
//LOGD("remove device %d: %s\n", i, deviceName);
|
|
device_t* device = mDevices[i];
|
|
|
|
LOGI("Removed device: path=%s name=%s id=0x%x (of 0x%x) index=%d fd=%d classes=0x%x\n",
|
|
device->path.string(), device->name.string(), device->id,
|
|
mNumDevicesById, mFDCount, mFDs[i].fd, device->classes);
|
|
|
|
// Clear this device's entry.
|
|
int index = (device->id&ID_MASK);
|
|
mDevicesById[index].device = NULL;
|
|
|
|
// Close the file descriptor and compact the fd array.
|
|
close(mFDs[i].fd);
|
|
int count = mFDCount - i - 1;
|
|
memmove(mDevices + i, mDevices + i + 1, sizeof(mDevices[0]) * count);
|
|
memmove(mFDs + i, mFDs + i + 1, sizeof(mFDs[0]) * count);
|
|
mFDCount--;
|
|
|
|
#ifdef EV_SW
|
|
for (int j=0; j<EV_SW; j++) {
|
|
if (mSwitches[j] == device->id) {
|
|
mSwitches[j] = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
device->next = mClosingDevices;
|
|
mClosingDevices = device;
|
|
|
|
if (device->id == mFirstKeyboardId) {
|
|
LOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
|
|
device->path.string(), mFirstKeyboardId);
|
|
mFirstKeyboardId = -1;
|
|
clearKeyboardProperties(device, true);
|
|
}
|
|
clearKeyboardProperties(device, false);
|
|
return 0;
|
|
}
|
|
}
|
|
LOGE("remove device: %s not found\n", deviceName);
|
|
return -1;
|
|
}
|
|
|
|
int EventHub::readNotify(int nfd) {
|
|
#ifdef HAVE_INOTIFY
|
|
int res;
|
|
char devname[PATH_MAX];
|
|
char *filename;
|
|
char event_buf[512];
|
|
int event_size;
|
|
int event_pos = 0;
|
|
struct inotify_event *event;
|
|
|
|
LOGV("EventHub::readNotify nfd: %d\n", nfd);
|
|
res = read(nfd, event_buf, sizeof(event_buf));
|
|
if(res < (int)sizeof(*event)) {
|
|
if(errno == EINTR)
|
|
return 0;
|
|
LOGW("could not get event, %s\n", strerror(errno));
|
|
return 1;
|
|
}
|
|
//printf("got %d bytes of event information\n", res);
|
|
|
|
strcpy(devname, device_path);
|
|
filename = devname + strlen(devname);
|
|
*filename++ = '/';
|
|
|
|
while(res >= (int)sizeof(*event)) {
|
|
event = (struct inotify_event *)(event_buf + event_pos);
|
|
//printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : "");
|
|
if(event->len) {
|
|
strcpy(filename, event->name);
|
|
if(event->mask & IN_CREATE) {
|
|
openDevice(devname);
|
|
}
|
|
else {
|
|
closeDevice(devname);
|
|
}
|
|
}
|
|
event_size = sizeof(*event) + event->len;
|
|
res -= event_size;
|
|
event_pos += event_size;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
|
|
int EventHub::scanDir(const char *dirname)
|
|
{
|
|
char devname[PATH_MAX];
|
|
char *filename;
|
|
DIR *dir;
|
|
struct dirent *de;
|
|
dir = opendir(dirname);
|
|
if(dir == NULL)
|
|
return -1;
|
|
strcpy(devname, dirname);
|
|
filename = devname + strlen(devname);
|
|
*filename++ = '/';
|
|
while((de = readdir(dir))) {
|
|
if(de->d_name[0] == '.' &&
|
|
(de->d_name[1] == '\0' ||
|
|
(de->d_name[1] == '.' && de->d_name[2] == '\0')))
|
|
continue;
|
|
strcpy(filename, de->d_name);
|
|
openDevice(devname);
|
|
}
|
|
closedir(dir);
|
|
return 0;
|
|
}
|
|
|
|
void EventHub::dump(String8& dump) {
|
|
dump.append("Event Hub State:\n");
|
|
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
dump.appendFormat(INDENT "HaveFirstKeyboard: %s\n", toString(mHaveFirstKeyboard));
|
|
dump.appendFormat(INDENT "FirstKeyboardId: 0x%x\n", mFirstKeyboardId);
|
|
|
|
dump.append(INDENT "Devices:\n");
|
|
|
|
for (int i = 0; i < mNumDevicesById; i++) {
|
|
const device_t* device = mDevicesById[i].device;
|
|
if (device) {
|
|
if (mFirstKeyboardId == device->id) {
|
|
dump.appendFormat(INDENT2 "0x%x: %s (aka device 0 - first keyboard)\n",
|
|
device->id, device->name.string());
|
|
} else {
|
|
dump.appendFormat(INDENT2 "0x%x: %s\n", device->id, device->name.string());
|
|
}
|
|
dump.appendFormat(INDENT3 "Classes: 0x%08x\n", device->classes);
|
|
dump.appendFormat(INDENT3 "Path: %s\n", device->path.string());
|
|
dump.appendFormat(INDENT3 "IsDefaultKeyMap: %s\n",
|
|
toString(device->keyMapInfo.isDefaultKeyMap));
|
|
dump.appendFormat(INDENT3 "KeyMapName: %s\n",
|
|
device->keyMapInfo.keyMapName.string());
|
|
dump.appendFormat(INDENT3 "KeyLayoutFile: %s\n",
|
|
device->keyMapInfo.keyLayoutFile.string());
|
|
dump.appendFormat(INDENT3 "KeyCharacterMapFile: %s\n",
|
|
device->keyMapInfo.keyCharacterMapFile.string());
|
|
}
|
|
}
|
|
} // release lock
|
|
}
|
|
|
|
}; // namespace android
|