replicant-frameworks_native/services/surfaceflinger/LayerBase.cpp

584 lines
17 KiB
C++

/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <stdint.h>
#include <sys/types.h>
#include <utils/Errors.h>
#include <utils/Log.h>
#include <binder/IPCThreadState.h>
#include <binder/IServiceManager.h>
#include <GLES/gl.h>
#include <GLES/glext.h>
#include <hardware/hardware.h>
#include "clz.h"
#include "LayerBase.h"
#include "SurfaceFlinger.h"
#include "DisplayHardware/DisplayHardware.h"
namespace android {
// ---------------------------------------------------------------------------
int32_t LayerBase::sSequence = 1;
LayerBase::LayerBase(SurfaceFlinger* flinger, DisplayID display)
: dpy(display), contentDirty(false),
sequence(uint32_t(android_atomic_inc(&sSequence))),
mFlinger(flinger), mFiltering(false),
mNeedsFiltering(false),
mOrientation(0),
mTransactionFlags(0),
mPremultipliedAlpha(true), mName("unnamed"), mDebug(false),
mInvalidate(0)
{
const DisplayHardware& hw(flinger->graphicPlane(0).displayHardware());
mFlags = hw.getFlags();
}
LayerBase::~LayerBase()
{
}
void LayerBase::setName(const String8& name) {
mName = name;
}
String8 LayerBase::getName() const {
return mName;
}
const GraphicPlane& LayerBase::graphicPlane(int dpy) const
{
return mFlinger->graphicPlane(dpy);
}
GraphicPlane& LayerBase::graphicPlane(int dpy)
{
return mFlinger->graphicPlane(dpy);
}
void LayerBase::initStates(uint32_t w, uint32_t h, uint32_t flags)
{
uint32_t layerFlags = 0;
if (flags & ISurfaceComposer::eHidden)
layerFlags = ISurfaceComposer::eLayerHidden;
if (flags & ISurfaceComposer::eNonPremultiplied)
mPremultipliedAlpha = false;
mCurrentState.z = 0;
mCurrentState.w = w;
mCurrentState.h = h;
mCurrentState.requested_w = w;
mCurrentState.requested_h = h;
mCurrentState.alpha = 0xFF;
mCurrentState.flags = layerFlags;
mCurrentState.sequence = 0;
mCurrentState.transform.set(0, 0);
// drawing state & current state are identical
mDrawingState = mCurrentState;
}
void LayerBase::commitTransaction() {
mDrawingState = mCurrentState;
}
void LayerBase::forceVisibilityTransaction() {
// this can be called without SurfaceFlinger.mStateLock, but if we
// can atomically increment the sequence number, it doesn't matter.
android_atomic_inc(&mCurrentState.sequence);
requestTransaction();
}
bool LayerBase::requestTransaction() {
int32_t old = setTransactionFlags(eTransactionNeeded);
return ((old & eTransactionNeeded) == 0);
}
uint32_t LayerBase::getTransactionFlags(uint32_t flags) {
return android_atomic_and(~flags, &mTransactionFlags) & flags;
}
uint32_t LayerBase::setTransactionFlags(uint32_t flags) {
return android_atomic_or(flags, &mTransactionFlags);
}
bool LayerBase::setPosition(float x, float y) {
if (mCurrentState.transform.tx() == x && mCurrentState.transform.ty() == y)
return false;
mCurrentState.sequence++;
mCurrentState.transform.set(x, y);
requestTransaction();
return true;
}
bool LayerBase::setLayer(uint32_t z) {
if (mCurrentState.z == z)
return false;
mCurrentState.sequence++;
mCurrentState.z = z;
requestTransaction();
return true;
}
bool LayerBase::setSize(uint32_t w, uint32_t h) {
if (mCurrentState.requested_w == w && mCurrentState.requested_h == h)
return false;
mCurrentState.requested_w = w;
mCurrentState.requested_h = h;
requestTransaction();
return true;
}
bool LayerBase::setAlpha(uint8_t alpha) {
if (mCurrentState.alpha == alpha)
return false;
mCurrentState.sequence++;
mCurrentState.alpha = alpha;
requestTransaction();
return true;
}
bool LayerBase::setMatrix(const layer_state_t::matrix22_t& matrix) {
mCurrentState.sequence++;
mCurrentState.transform.set(
matrix.dsdx, matrix.dsdy, matrix.dtdx, matrix.dtdy);
requestTransaction();
return true;
}
bool LayerBase::setTransparentRegionHint(const Region& transparent) {
mCurrentState.sequence++;
mCurrentState.transparentRegion = transparent;
requestTransaction();
return true;
}
bool LayerBase::setFlags(uint8_t flags, uint8_t mask) {
const uint32_t newFlags = (mCurrentState.flags & ~mask) | (flags & mask);
if (mCurrentState.flags == newFlags)
return false;
mCurrentState.sequence++;
mCurrentState.flags = newFlags;
requestTransaction();
return true;
}
Rect LayerBase::visibleBounds() const
{
return mTransformedBounds;
}
void LayerBase::setVisibleRegion(const Region& visibleRegion) {
// always called from main thread
visibleRegionScreen = visibleRegion;
}
void LayerBase::setCoveredRegion(const Region& coveredRegion) {
// always called from main thread
coveredRegionScreen = coveredRegion;
}
uint32_t LayerBase::doTransaction(uint32_t flags)
{
const Layer::State& front(drawingState());
const Layer::State& temp(currentState());
if ((front.requested_w != temp.requested_w) ||
(front.requested_h != temp.requested_h)) {
// resize the layer, set the physical size to the requested size
Layer::State& editTemp(currentState());
editTemp.w = temp.requested_w;
editTemp.h = temp.requested_h;
}
if ((front.w != temp.w) || (front.h != temp.h)) {
// invalidate and recompute the visible regions if needed
flags |= Layer::eVisibleRegion;
}
if (temp.sequence != front.sequence) {
// invalidate and recompute the visible regions if needed
flags |= eVisibleRegion;
this->contentDirty = true;
// we may use linear filtering, if the matrix scales us
const uint8_t type = temp.transform.getType();
mNeedsFiltering = (!temp.transform.preserveRects() ||
(type >= Transform::SCALE));
}
// Commit the transaction
commitTransaction();
return flags;
}
void LayerBase::validateVisibility(const Transform& planeTransform)
{
const Layer::State& s(drawingState());
const Transform tr(planeTransform * s.transform);
const bool transformed = tr.transformed();
const DisplayHardware& hw(graphicPlane(0).displayHardware());
const uint32_t hw_h = hw.getHeight();
uint32_t w = s.w;
uint32_t h = s.h;
tr.transform(mVertices[0], 0, 0);
tr.transform(mVertices[1], 0, h);
tr.transform(mVertices[2], w, h);
tr.transform(mVertices[3], w, 0);
for (size_t i=0 ; i<4 ; i++)
mVertices[i][1] = hw_h - mVertices[i][1];
if (UNLIKELY(transformed)) {
// NOTE: here we could also punt if we have too many rectangles
// in the transparent region
if (tr.preserveRects()) {
// transform the transparent region
transparentRegionScreen = tr.transform(s.transparentRegion);
} else {
// transformation too complex, can't do the transparent region
// optimization.
transparentRegionScreen.clear();
}
} else {
transparentRegionScreen = s.transparentRegion;
}
// cache a few things...
mOrientation = tr.getOrientation();
mTransform = tr;
mTransformedBounds = tr.makeBounds(w, h);
}
void LayerBase::lockPageFlip(bool& recomputeVisibleRegions)
{
}
void LayerBase::unlockPageFlip(
const Transform& planeTransform, Region& outDirtyRegion)
{
if ((android_atomic_and(~1, &mInvalidate)&1) == 1) {
outDirtyRegion.orSelf(visibleRegionScreen);
}
}
void LayerBase::invalidate()
{
if ((android_atomic_or(1, &mInvalidate)&1) == 0) {
mFlinger->signalEvent();
}
}
void LayerBase::drawRegion(const Region& reg) const
{
Region::const_iterator it = reg.begin();
Region::const_iterator const end = reg.end();
if (it != end) {
Rect r;
const DisplayHardware& hw(graphicPlane(0).displayHardware());
const int32_t fbWidth = hw.getWidth();
const int32_t fbHeight = hw.getHeight();
const GLshort vertices[][2] = { { 0, 0 }, { fbWidth, 0 },
{ fbWidth, fbHeight }, { 0, fbHeight } };
glVertexPointer(2, GL_SHORT, 0, vertices);
while (it != end) {
const Rect& r = *it++;
const GLint sy = fbHeight - (r.top + r.height());
glScissor(r.left, sy, r.width(), r.height());
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
}
}
void LayerBase::setGeometry(hwc_layer_t* hwcl)
{
hwcl->compositionType = HWC_FRAMEBUFFER;
hwcl->hints = 0;
hwcl->flags = HWC_SKIP_LAYER;
hwcl->transform = 0;
hwcl->blending = HWC_BLENDING_NONE;
// this gives us only the "orientation" component of the transform
const State& s(drawingState());
const uint32_t finalTransform = s.transform.getOrientation();
// we can only handle simple transformation
if (finalTransform & Transform::ROT_INVALID) {
hwcl->flags = HWC_SKIP_LAYER;
} else {
hwcl->transform = finalTransform;
}
if (!isOpaque()) {
hwcl->blending = mPremultipliedAlpha ?
HWC_BLENDING_PREMULT : HWC_BLENDING_COVERAGE;
}
// scaling is already applied in mTransformedBounds
hwcl->displayFrame.left = mTransformedBounds.left;
hwcl->displayFrame.top = mTransformedBounds.top;
hwcl->displayFrame.right = mTransformedBounds.right;
hwcl->displayFrame.bottom = mTransformedBounds.bottom;
hwcl->visibleRegionScreen.rects =
reinterpret_cast<hwc_rect_t const *>(
visibleRegionScreen.getArray(
&hwcl->visibleRegionScreen.numRects));
}
void LayerBase::setPerFrameData(hwc_layer_t* hwcl) {
hwcl->compositionType = HWC_FRAMEBUFFER;
hwcl->handle = NULL;
hwcl->sourceCrop.left = 0;
hwcl->sourceCrop.top = 0;
hwcl->sourceCrop.right = mTransformedBounds.width();
hwcl->sourceCrop.bottom = mTransformedBounds.height();
}
void LayerBase::setFiltering(bool filtering)
{
mFiltering = filtering;
}
bool LayerBase::getFiltering() const
{
return mFiltering;
}
void LayerBase::draw(const Region& clip) const
{
// reset GL state
glEnable(GL_SCISSOR_TEST);
onDraw(clip);
}
void LayerBase::drawForSreenShot()
{
const DisplayHardware& hw(graphicPlane(0).displayHardware());
setFiltering(true);
onDraw( Region(hw.bounds()) );
setFiltering(false);
}
void LayerBase::clearWithOpenGL(const Region& clip, GLclampf red,
GLclampf green, GLclampf blue,
GLclampf alpha) const
{
const DisplayHardware& hw(graphicPlane(0).displayHardware());
const uint32_t fbHeight = hw.getHeight();
glColor4f(red,green,blue,alpha);
#if defined(GL_OES_EGL_image_external)
if (GLExtensions::getInstance().haveTextureExternal()) {
glDisable(GL_TEXTURE_EXTERNAL_OES);
}
#endif
glDisable(GL_TEXTURE_2D);
glDisable(GL_BLEND);
glDisable(GL_DITHER);
Region::const_iterator it = clip.begin();
Region::const_iterator const end = clip.end();
glEnable(GL_SCISSOR_TEST);
glVertexPointer(2, GL_FLOAT, 0, mVertices);
while (it != end) {
const Rect& r = *it++;
const GLint sy = fbHeight - (r.top + r.height());
glScissor(r.left, sy, r.width(), r.height());
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
}
void LayerBase::clearWithOpenGL(const Region& clip) const
{
clearWithOpenGL(clip,0,0,0,0);
}
void LayerBase::drawWithOpenGL(const Region& clip) const
{
const DisplayHardware& hw(graphicPlane(0).displayHardware());
const uint32_t fbHeight = hw.getHeight();
const State& s(drawingState());
GLenum src = mPremultipliedAlpha ? GL_ONE : GL_SRC_ALPHA;
if (UNLIKELY(s.alpha < 0xFF)) {
const GLfloat alpha = s.alpha * (1.0f/255.0f);
if (mPremultipliedAlpha) {
glColor4f(alpha, alpha, alpha, alpha);
} else {
glColor4f(1, 1, 1, alpha);
}
glEnable(GL_BLEND);
glBlendFunc(src, GL_ONE_MINUS_SRC_ALPHA);
glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
} else {
glColor4f(1, 1, 1, 1);
glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
if (!isOpaque()) {
glEnable(GL_BLEND);
glBlendFunc(src, GL_ONE_MINUS_SRC_ALPHA);
} else {
glDisable(GL_BLEND);
}
}
struct TexCoords {
GLfloat u;
GLfloat v;
};
TexCoords texCoords[4];
texCoords[0].u = 0;
texCoords[0].v = 1;
texCoords[1].u = 0;
texCoords[1].v = 0;
texCoords[2].u = 1;
texCoords[2].v = 0;
texCoords[3].u = 1;
texCoords[3].v = 1;
if (needsDithering()) {
glEnable(GL_DITHER);
} else {
glDisable(GL_DITHER);
}
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glVertexPointer(2, GL_FLOAT, 0, mVertices);
glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
Region::const_iterator it = clip.begin();
Region::const_iterator const end = clip.end();
while (it != end) {
const Rect& r = *it++;
const GLint sy = fbHeight - (r.top + r.height());
glScissor(r.left, sy, r.width(), r.height());
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
void LayerBase::dump(String8& result, char* buffer, size_t SIZE) const
{
const Layer::State& s(drawingState());
snprintf(buffer, SIZE,
"+ %s %p\n"
" "
"z=%9d, pos=(%g,%g), size=(%4d,%4d), "
"isOpaque=%1d, needsDithering=%1d, invalidate=%1d, "
"alpha=0x%02x, flags=0x%08x, tr=[%.2f, %.2f][%.2f, %.2f]\n",
getTypeId(), this, s.z, s.transform.tx(), s.transform.ty(), s.w, s.h,
isOpaque(), needsDithering(), contentDirty,
s.alpha, s.flags,
s.transform[0][0], s.transform[0][1],
s.transform[1][0], s.transform[1][1]);
result.append(buffer);
}
void LayerBase::shortDump(String8& result, char* scratch, size_t size) const
{
LayerBase::dump(result, scratch, size);
}
// ---------------------------------------------------------------------------
int32_t LayerBaseClient::sIdentity = 1;
LayerBaseClient::LayerBaseClient(SurfaceFlinger* flinger, DisplayID display,
const sp<Client>& client)
: LayerBase(flinger, display),
mHasSurface(false),
mClientRef(client),
mIdentity(uint32_t(android_atomic_inc(&sIdentity)))
{
}
LayerBaseClient::~LayerBaseClient()
{
sp<Client> c(mClientRef.promote());
if (c != 0) {
c->detachLayer(this);
}
}
sp<ISurface> LayerBaseClient::createSurface()
{
class BSurface : public BnSurface, public LayerCleaner {
virtual sp<ISurfaceTexture> getSurfaceTexture() const { return 0; }
public:
BSurface(const sp<SurfaceFlinger>& flinger,
const sp<LayerBaseClient>& layer)
: LayerCleaner(flinger, layer) { }
};
sp<ISurface> sur(new BSurface(mFlinger, this));
return sur;
}
sp<ISurface> LayerBaseClient::getSurface()
{
sp<ISurface> s;
Mutex::Autolock _l(mLock);
LOG_ALWAYS_FATAL_IF(mHasSurface,
"LayerBaseClient::getSurface() has already been called");
mHasSurface = true;
s = createSurface();
mClientSurfaceBinder = s->asBinder();
return s;
}
wp<IBinder> LayerBaseClient::getSurfaceBinder() const {
return mClientSurfaceBinder;
}
wp<IBinder> LayerBaseClient::getSurfaceTextureBinder() const {
return 0;
}
void LayerBaseClient::dump(String8& result, char* buffer, size_t SIZE) const
{
LayerBase::dump(result, buffer, SIZE);
sp<Client> client(mClientRef.promote());
snprintf(buffer, SIZE,
" name=%s\n"
" client=%p, identity=%u\n",
getName().string(),
client.get(), getIdentity());
result.append(buffer);
}
void LayerBaseClient::shortDump(String8& result, char* scratch, size_t size) const
{
LayerBaseClient::dump(result, scratch, size);
}
// ---------------------------------------------------------------------------
LayerBaseClient::LayerCleaner::LayerCleaner(const sp<SurfaceFlinger>& flinger,
const sp<LayerBaseClient>& layer)
: mFlinger(flinger), mLayer(layer) {
}
LayerBaseClient::LayerCleaner::~LayerCleaner() {
// destroy client resources
mFlinger->destroySurface(mLayer);
}
// ---------------------------------------------------------------------------
}; // namespace android