replicant-frameworks_native/libs/gui/BufferQueueCore.cpp
Dan Stoza e64a79cd85 Fix PTS handling for buffer replacement
This changes the way that SurfaceFlinger's shadow buffer management
works such that instead of tracking the size of the shadow queue in the
BufferQueue, SF tracks the last frame number it has seen, and passes
that into the acquireBuffer call. BufferQueueConsumer then ensures that
it never returns a buffer newer than that frame number, even if that
means that it must return PRESENT_LATER for an otherwise valid buffer.

Change-Id: I3fcb45f683ed660c3f18a8b85ae1f8a962ba6f0e
(cherry picked from commit a4650a50a0)
2015-05-13 09:43:35 -07:00

301 lines
10 KiB
C++

/*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "BufferQueueCore"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
//#define LOG_NDEBUG 0
#define EGL_EGLEXT_PROTOTYPES
#include <inttypes.h>
#include <gui/BufferItem.h>
#include <gui/BufferQueueCore.h>
#include <gui/IConsumerListener.h>
#include <gui/IGraphicBufferAlloc.h>
#include <gui/IProducerListener.h>
#include <gui/ISurfaceComposer.h>
#include <private/gui/ComposerService.h>
template <typename T>
static inline T max(T a, T b) { return a > b ? a : b; }
namespace android {
static String8 getUniqueName() {
static volatile int32_t counter = 0;
return String8::format("unnamed-%d-%d", getpid(),
android_atomic_inc(&counter));
}
BufferQueueCore::BufferQueueCore(const sp<IGraphicBufferAlloc>& allocator) :
mAllocator(allocator),
mMutex(),
mIsAbandoned(false),
mConsumerControlledByApp(false),
mConsumerName(getUniqueName()),
mConsumerListener(),
mConsumerUsageBits(0),
mConnectedApi(NO_CONNECTED_API),
mConnectedProducerListener(),
mSlots(),
mQueue(),
mFreeSlots(),
mFreeBuffers(),
mOverrideMaxBufferCount(0),
mDequeueCondition(),
mUseAsyncBuffer(true),
mDequeueBufferCannotBlock(false),
mDefaultBufferFormat(PIXEL_FORMAT_RGBA_8888),
mDefaultWidth(1),
mDefaultHeight(1),
mDefaultBufferDataSpace(HAL_DATASPACE_UNKNOWN),
mDefaultMaxBufferCount(2),
mMaxAcquiredBufferCount(1),
mBufferHasBeenQueued(false),
mFrameCounter(0),
mTransformHint(0),
mIsAllocating(false),
mIsAllocatingCondition(),
mAllowAllocation(true),
mBufferAge(0)
{
if (allocator == NULL) {
sp<ISurfaceComposer> composer(ComposerService::getComposerService());
mAllocator = composer->createGraphicBufferAlloc();
if (mAllocator == NULL) {
BQ_LOGE("createGraphicBufferAlloc failed");
}
}
for (int slot = 0; slot < BufferQueueDefs::NUM_BUFFER_SLOTS; ++slot) {
mFreeSlots.insert(slot);
}
}
BufferQueueCore::~BufferQueueCore() {}
void BufferQueueCore::dump(String8& result, const char* prefix) const {
Mutex::Autolock lock(mMutex);
String8 fifo;
Fifo::const_iterator current(mQueue.begin());
while (current != mQueue.end()) {
fifo.appendFormat("%02d:%p crop=[%d,%d,%d,%d], "
"xform=0x%02x, time=%#" PRIx64 ", scale=%s\n",
current->mSlot, current->mGraphicBuffer.get(),
current->mCrop.left, current->mCrop.top, current->mCrop.right,
current->mCrop.bottom, current->mTransform, current->mTimestamp,
BufferItem::scalingModeName(current->mScalingMode));
++current;
}
result.appendFormat("%s-BufferQueue mMaxAcquiredBufferCount=%d, "
"mDequeueBufferCannotBlock=%d, default-size=[%dx%d], "
"default-format=%d, transform-hint=%02x, FIFO(%zu)={%s}\n",
prefix, mMaxAcquiredBufferCount, mDequeueBufferCannotBlock,
mDefaultWidth, mDefaultHeight, mDefaultBufferFormat, mTransformHint,
mQueue.size(), fifo.string());
// Trim the free buffers so as to not spam the dump
int maxBufferCount = 0;
for (int s = BufferQueueDefs::NUM_BUFFER_SLOTS - 1; s >= 0; --s) {
const BufferSlot& slot(mSlots[s]);
if (slot.mBufferState != BufferSlot::FREE ||
slot.mGraphicBuffer != NULL) {
maxBufferCount = s + 1;
break;
}
}
for (int s = 0; s < maxBufferCount; ++s) {
const BufferSlot& slot(mSlots[s]);
const sp<GraphicBuffer>& buffer(slot.mGraphicBuffer);
result.appendFormat("%s%s[%02d:%p] state=%-8s", prefix,
(slot.mBufferState == BufferSlot::ACQUIRED) ? ">" : " ",
s, buffer.get(),
BufferSlot::bufferStateName(slot.mBufferState));
if (buffer != NULL) {
result.appendFormat(", %p [%4ux%4u:%4u,%3X]", buffer->handle,
buffer->width, buffer->height, buffer->stride,
buffer->format);
}
result.append("\n");
}
}
int BufferQueueCore::getMinUndequeuedBufferCountLocked(bool async) const {
// If dequeueBuffer is allowed to error out, we don't have to add an
// extra buffer.
if (!mUseAsyncBuffer) {
return mMaxAcquiredBufferCount;
}
if (mDequeueBufferCannotBlock || async) {
return mMaxAcquiredBufferCount + 1;
}
return mMaxAcquiredBufferCount;
}
int BufferQueueCore::getMinMaxBufferCountLocked(bool async) const {
return getMinUndequeuedBufferCountLocked(async) + 1;
}
int BufferQueueCore::getMaxBufferCountLocked(bool async) const {
int minMaxBufferCount = getMinMaxBufferCountLocked(async);
int maxBufferCount = max(mDefaultMaxBufferCount, minMaxBufferCount);
if (mOverrideMaxBufferCount != 0) {
assert(mOverrideMaxBufferCount >= minMaxBufferCount);
maxBufferCount = mOverrideMaxBufferCount;
}
// Any buffers that are dequeued by the producer or sitting in the queue
// waiting to be consumed need to have their slots preserved. Such buffers
// will temporarily keep the max buffer count up until the slots no longer
// need to be preserved.
for (int s = maxBufferCount; s < BufferQueueDefs::NUM_BUFFER_SLOTS; ++s) {
BufferSlot::BufferState state = mSlots[s].mBufferState;
if (state == BufferSlot::QUEUED || state == BufferSlot::DEQUEUED) {
maxBufferCount = s + 1;
}
}
return maxBufferCount;
}
status_t BufferQueueCore::setDefaultMaxBufferCountLocked(int count) {
const int minBufferCount = mUseAsyncBuffer ? 2 : 1;
if (count < minBufferCount || count > BufferQueueDefs::NUM_BUFFER_SLOTS) {
BQ_LOGV("setDefaultMaxBufferCount: invalid count %d, should be in "
"[%d, %d]",
count, minBufferCount, BufferQueueDefs::NUM_BUFFER_SLOTS);
return BAD_VALUE;
}
BQ_LOGV("setDefaultMaxBufferCount: setting count to %d", count);
mDefaultMaxBufferCount = count;
mDequeueCondition.broadcast();
return NO_ERROR;
}
void BufferQueueCore::freeBufferLocked(int slot) {
BQ_LOGV("freeBufferLocked: slot %d", slot);
bool hadBuffer = mSlots[slot].mGraphicBuffer != NULL;
mSlots[slot].mGraphicBuffer.clear();
if (mSlots[slot].mBufferState == BufferSlot::ACQUIRED) {
mSlots[slot].mNeedsCleanupOnRelease = true;
}
if (mSlots[slot].mBufferState != BufferSlot::FREE) {
mFreeSlots.insert(slot);
} else if (hadBuffer) {
// If the slot was FREE, but we had a buffer, we need to move this slot
// from the free buffers list to the the free slots list
mFreeBuffers.remove(slot);
mFreeSlots.insert(slot);
}
mSlots[slot].mBufferState = BufferSlot::FREE;
mSlots[slot].mAcquireCalled = false;
mSlots[slot].mFrameNumber = 0;
// Destroy fence as BufferQueue now takes ownership
if (mSlots[slot].mEglFence != EGL_NO_SYNC_KHR) {
eglDestroySyncKHR(mSlots[slot].mEglDisplay, mSlots[slot].mEglFence);
mSlots[slot].mEglFence = EGL_NO_SYNC_KHR;
}
mSlots[slot].mFence = Fence::NO_FENCE;
validateConsistencyLocked();
}
void BufferQueueCore::freeAllBuffersLocked() {
mBufferHasBeenQueued = false;
for (int s = 0; s < BufferQueueDefs::NUM_BUFFER_SLOTS; ++s) {
freeBufferLocked(s);
}
}
bool BufferQueueCore::stillTracking(const BufferItem* item) const {
const BufferSlot& slot = mSlots[item->mSlot];
BQ_LOGV("stillTracking: item { slot=%d/%" PRIu64 " buffer=%p } "
"slot { slot=%d/%" PRIu64 " buffer=%p }",
item->mSlot, item->mFrameNumber,
(item->mGraphicBuffer.get() ? item->mGraphicBuffer->handle : 0),
item->mSlot, slot.mFrameNumber,
(slot.mGraphicBuffer.get() ? slot.mGraphicBuffer->handle : 0));
// Compare item with its original buffer slot. We can check the slot as
// the buffer would not be moved to a different slot by the producer.
return (slot.mGraphicBuffer != NULL) &&
(item->mGraphicBuffer->handle == slot.mGraphicBuffer->handle);
}
void BufferQueueCore::waitWhileAllocatingLocked() const {
ATRACE_CALL();
while (mIsAllocating) {
mIsAllocatingCondition.wait(mMutex);
}
}
void BufferQueueCore::validateConsistencyLocked() const {
static const useconds_t PAUSE_TIME = 0;
for (int slot = 0; slot < BufferQueueDefs::NUM_BUFFER_SLOTS; ++slot) {
bool isInFreeSlots = mFreeSlots.count(slot) != 0;
bool isInFreeBuffers =
std::find(mFreeBuffers.cbegin(), mFreeBuffers.cend(), slot) !=
mFreeBuffers.cend();
if (mSlots[slot].mBufferState == BufferSlot::FREE) {
if (mSlots[slot].mGraphicBuffer == NULL) {
if (!isInFreeSlots) {
BQ_LOGE("Slot %d is FREE but is not in mFreeSlots", slot);
usleep(PAUSE_TIME);
}
if (isInFreeBuffers) {
BQ_LOGE("Slot %d is in mFreeSlots "
"but is also in mFreeBuffers", slot);
usleep(PAUSE_TIME);
}
} else {
if (!isInFreeBuffers) {
BQ_LOGE("Slot %d is FREE but is not in mFreeBuffers", slot);
usleep(PAUSE_TIME);
}
if (isInFreeSlots) {
BQ_LOGE("Slot %d is in mFreeBuffers "
"but is also in mFreeSlots", slot);
usleep(PAUSE_TIME);
}
}
} else {
if (isInFreeSlots) {
BQ_LOGE("Slot %d is in mFreeSlots but is not FREE (%d)",
slot, mSlots[slot].mBufferState);
usleep(PAUSE_TIME);
}
if (isInFreeBuffers) {
BQ_LOGE("Slot %d is in mFreeBuffers but is not FREE (%d)",
slot, mSlots[slot].mBufferState);
usleep(PAUSE_TIME);
}
}
}
}
} // namespace android