35cf0e9854
Change-Id: I3cf09b9d91045f4d9c558b4aace482a7b0bbd3d8
3355 lines
125 KiB
C++
3355 lines
125 KiB
C++
//
|
|
// Copyright 2010 The Android Open Source Project
|
|
//
|
|
// The input dispatcher.
|
|
//
|
|
#define LOG_TAG "InputDispatcher"
|
|
|
|
//#define LOG_NDEBUG 0
|
|
|
|
// Log detailed debug messages about each inbound event notification to the dispatcher.
|
|
#define DEBUG_INBOUND_EVENT_DETAILS 0
|
|
|
|
// Log detailed debug messages about each outbound event processed by the dispatcher.
|
|
#define DEBUG_OUTBOUND_EVENT_DETAILS 0
|
|
|
|
// Log debug messages about batching.
|
|
#define DEBUG_BATCHING 0
|
|
|
|
// Log debug messages about the dispatch cycle.
|
|
#define DEBUG_DISPATCH_CYCLE 0
|
|
|
|
// Log debug messages about registrations.
|
|
#define DEBUG_REGISTRATION 0
|
|
|
|
// Log debug messages about performance statistics.
|
|
#define DEBUG_PERFORMANCE_STATISTICS 0
|
|
|
|
// Log debug messages about input event injection.
|
|
#define DEBUG_INJECTION 0
|
|
|
|
// Log debug messages about input event throttling.
|
|
#define DEBUG_THROTTLING 0
|
|
|
|
// Log debug messages about input focus tracking.
|
|
#define DEBUG_FOCUS 0
|
|
|
|
// Log debug messages about the app switch latency optimization.
|
|
#define DEBUG_APP_SWITCH 0
|
|
|
|
#include <cutils/log.h>
|
|
#include <ui/InputDispatcher.h>
|
|
#include <ui/PowerManager.h>
|
|
|
|
#include <stddef.h>
|
|
#include <unistd.h>
|
|
#include <errno.h>
|
|
#include <limits.h>
|
|
|
|
#define INDENT " "
|
|
#define INDENT2 " "
|
|
|
|
namespace android {
|
|
|
|
// Delay between reporting long touch events to the power manager.
|
|
const nsecs_t EVENT_IGNORE_DURATION = 300 * 1000000LL; // 300 ms
|
|
|
|
// Default input dispatching timeout if there is no focused application or paused window
|
|
// from which to determine an appropriate dispatching timeout.
|
|
const nsecs_t DEFAULT_INPUT_DISPATCHING_TIMEOUT = 5000 * 1000000LL; // 5 sec
|
|
|
|
// Amount of time to allow for all pending events to be processed when an app switch
|
|
// key is on the way. This is used to preempt input dispatch and drop input events
|
|
// when an application takes too long to respond and the user has pressed an app switch key.
|
|
const nsecs_t APP_SWITCH_TIMEOUT = 500 * 1000000LL; // 0.5sec
|
|
|
|
|
|
static inline nsecs_t now() {
|
|
return systemTime(SYSTEM_TIME_MONOTONIC);
|
|
}
|
|
|
|
static inline const char* toString(bool value) {
|
|
return value ? "true" : "false";
|
|
}
|
|
|
|
static inline int32_t getMotionEventActionPointerIndex(int32_t action) {
|
|
return (action & AMOTION_EVENT_ACTION_POINTER_INDEX_MASK)
|
|
>> AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT;
|
|
}
|
|
|
|
static bool isValidKeyAction(int32_t action) {
|
|
switch (action) {
|
|
case AKEY_EVENT_ACTION_DOWN:
|
|
case AKEY_EVENT_ACTION_UP:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool validateKeyEvent(int32_t action) {
|
|
if (! isValidKeyAction(action)) {
|
|
LOGE("Key event has invalid action code 0x%x", action);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool isValidMotionAction(int32_t action) {
|
|
switch (action & AMOTION_EVENT_ACTION_MASK) {
|
|
case AMOTION_EVENT_ACTION_DOWN:
|
|
case AMOTION_EVENT_ACTION_UP:
|
|
case AMOTION_EVENT_ACTION_CANCEL:
|
|
case AMOTION_EVENT_ACTION_MOVE:
|
|
case AMOTION_EVENT_ACTION_POINTER_DOWN:
|
|
case AMOTION_EVENT_ACTION_POINTER_UP:
|
|
case AMOTION_EVENT_ACTION_OUTSIDE:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool validateMotionEvent(int32_t action, size_t pointerCount,
|
|
const int32_t* pointerIds) {
|
|
if (! isValidMotionAction(action)) {
|
|
LOGE("Motion event has invalid action code 0x%x", action);
|
|
return false;
|
|
}
|
|
if (pointerCount < 1 || pointerCount > MAX_POINTERS) {
|
|
LOGE("Motion event has invalid pointer count %d; value must be between 1 and %d.",
|
|
pointerCount, MAX_POINTERS);
|
|
return false;
|
|
}
|
|
for (size_t i = 0; i < pointerCount; i++) {
|
|
if (pointerIds[i] < 0 || pointerIds[i] > MAX_POINTER_ID) {
|
|
LOGE("Motion event has invalid pointer id %d; value must be between 0 and %d",
|
|
pointerIds[i], MAX_POINTER_ID);
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
// --- InputWindow ---
|
|
|
|
bool InputWindow::touchableAreaContainsPoint(int32_t x, int32_t y) const {
|
|
return x >= touchableAreaLeft && x <= touchableAreaRight
|
|
&& y >= touchableAreaTop && y <= touchableAreaBottom;
|
|
}
|
|
|
|
bool InputWindow::frameContainsPoint(int32_t x, int32_t y) const {
|
|
return x >= frameLeft && x <= frameRight
|
|
&& y >= frameTop && y <= frameBottom;
|
|
}
|
|
|
|
bool InputWindow::isTrustedOverlay() const {
|
|
return layoutParamsType == TYPE_INPUT_METHOD
|
|
|| layoutParamsType == TYPE_INPUT_METHOD_DIALOG;
|
|
}
|
|
|
|
|
|
// --- InputDispatcher ---
|
|
|
|
InputDispatcher::InputDispatcher(const sp<InputDispatcherPolicyInterface>& policy) :
|
|
mPolicy(policy),
|
|
mPendingEvent(NULL), mAppSwitchDueTime(LONG_LONG_MAX),
|
|
mDispatchEnabled(true), mDispatchFrozen(false),
|
|
mFocusedWindow(NULL),
|
|
mFocusedApplication(NULL),
|
|
mCurrentInputTargetsValid(false),
|
|
mInputTargetWaitCause(INPUT_TARGET_WAIT_CAUSE_NONE) {
|
|
mLooper = new Looper(false);
|
|
|
|
mInboundQueue.headSentinel.refCount = -1;
|
|
mInboundQueue.headSentinel.type = EventEntry::TYPE_SENTINEL;
|
|
mInboundQueue.headSentinel.eventTime = LONG_LONG_MIN;
|
|
|
|
mInboundQueue.tailSentinel.refCount = -1;
|
|
mInboundQueue.tailSentinel.type = EventEntry::TYPE_SENTINEL;
|
|
mInboundQueue.tailSentinel.eventTime = LONG_LONG_MAX;
|
|
|
|
mKeyRepeatState.lastKeyEntry = NULL;
|
|
|
|
int32_t maxEventsPerSecond = policy->getMaxEventsPerSecond();
|
|
mThrottleState.minTimeBetweenEvents = 1000000000LL / maxEventsPerSecond;
|
|
mThrottleState.lastDeviceId = -1;
|
|
|
|
#if DEBUG_THROTTLING
|
|
mThrottleState.originalSampleCount = 0;
|
|
LOGD("Throttling - Max events per second = %d", maxEventsPerSecond);
|
|
#endif
|
|
}
|
|
|
|
InputDispatcher::~InputDispatcher() {
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
resetKeyRepeatLocked();
|
|
releasePendingEventLocked();
|
|
drainInboundQueueLocked();
|
|
}
|
|
|
|
while (mConnectionsByReceiveFd.size() != 0) {
|
|
unregisterInputChannel(mConnectionsByReceiveFd.valueAt(0)->inputChannel);
|
|
}
|
|
}
|
|
|
|
void InputDispatcher::dispatchOnce() {
|
|
nsecs_t keyRepeatTimeout = mPolicy->getKeyRepeatTimeout();
|
|
nsecs_t keyRepeatDelay = mPolicy->getKeyRepeatDelay();
|
|
|
|
nsecs_t nextWakeupTime = LONG_LONG_MAX;
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
dispatchOnceInnerLocked(keyRepeatTimeout, keyRepeatDelay, & nextWakeupTime);
|
|
|
|
if (runCommandsLockedInterruptible()) {
|
|
nextWakeupTime = LONG_LONG_MIN; // force next poll to wake up immediately
|
|
}
|
|
} // release lock
|
|
|
|
// Wait for callback or timeout or wake. (make sure we round up, not down)
|
|
nsecs_t currentTime = now();
|
|
int32_t timeoutMillis;
|
|
if (nextWakeupTime > currentTime) {
|
|
uint64_t timeout = uint64_t(nextWakeupTime - currentTime);
|
|
timeout = (timeout + 999999LL) / 1000000LL;
|
|
timeoutMillis = timeout > INT_MAX ? -1 : int32_t(timeout);
|
|
} else {
|
|
timeoutMillis = 0;
|
|
}
|
|
|
|
mLooper->pollOnce(timeoutMillis);
|
|
}
|
|
|
|
void InputDispatcher::dispatchOnceInnerLocked(nsecs_t keyRepeatTimeout,
|
|
nsecs_t keyRepeatDelay, nsecs_t* nextWakeupTime) {
|
|
nsecs_t currentTime = now();
|
|
|
|
// Reset the key repeat timer whenever we disallow key events, even if the next event
|
|
// is not a key. This is to ensure that we abort a key repeat if the device is just coming
|
|
// out of sleep.
|
|
if (keyRepeatTimeout < 0) {
|
|
resetKeyRepeatLocked();
|
|
}
|
|
|
|
// If dispatching is disabled, drop all events in the queue.
|
|
if (! mDispatchEnabled) {
|
|
if (mPendingEvent || ! mInboundQueue.isEmpty()) {
|
|
LOGI("Dropping pending events because input dispatch is disabled.");
|
|
releasePendingEventLocked();
|
|
drainInboundQueueLocked();
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If dispatching is frozen, do not process timeouts or try to deliver any new events.
|
|
if (mDispatchFrozen) {
|
|
#if DEBUG_FOCUS
|
|
LOGD("Dispatch frozen. Waiting some more.");
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
// Optimize latency of app switches.
|
|
// Essentially we start a short timeout when an app switch key (HOME / ENDCALL) has
|
|
// been pressed. When it expires, we preempt dispatch and drop all other pending events.
|
|
bool isAppSwitchDue = mAppSwitchDueTime <= currentTime;
|
|
if (mAppSwitchDueTime < *nextWakeupTime) {
|
|
*nextWakeupTime = mAppSwitchDueTime;
|
|
}
|
|
|
|
// Ready to start a new event.
|
|
// If we don't already have a pending event, go grab one.
|
|
if (! mPendingEvent) {
|
|
if (mInboundQueue.isEmpty()) {
|
|
if (isAppSwitchDue) {
|
|
// The inbound queue is empty so the app switch key we were waiting
|
|
// for will never arrive. Stop waiting for it.
|
|
resetPendingAppSwitchLocked(false);
|
|
isAppSwitchDue = false;
|
|
}
|
|
|
|
// Synthesize a key repeat if appropriate.
|
|
if (mKeyRepeatState.lastKeyEntry) {
|
|
if (currentTime >= mKeyRepeatState.nextRepeatTime) {
|
|
mPendingEvent = synthesizeKeyRepeatLocked(currentTime, keyRepeatDelay);
|
|
} else {
|
|
if (mKeyRepeatState.nextRepeatTime < *nextWakeupTime) {
|
|
*nextWakeupTime = mKeyRepeatState.nextRepeatTime;
|
|
}
|
|
}
|
|
}
|
|
if (! mPendingEvent) {
|
|
return;
|
|
}
|
|
} else {
|
|
// Inbound queue has at least one entry.
|
|
EventEntry* entry = mInboundQueue.headSentinel.next;
|
|
|
|
// Throttle the entry if it is a move event and there are no
|
|
// other events behind it in the queue. Due to movement batching, additional
|
|
// samples may be appended to this event by the time the throttling timeout
|
|
// expires.
|
|
// TODO Make this smarter and consider throttling per device independently.
|
|
if (entry->type == EventEntry::TYPE_MOTION) {
|
|
MotionEntry* motionEntry = static_cast<MotionEntry*>(entry);
|
|
int32_t deviceId = motionEntry->deviceId;
|
|
uint32_t source = motionEntry->source;
|
|
if (! isAppSwitchDue
|
|
&& motionEntry->next == & mInboundQueue.tailSentinel // exactly one event
|
|
&& motionEntry->action == AMOTION_EVENT_ACTION_MOVE
|
|
&& deviceId == mThrottleState.lastDeviceId
|
|
&& source == mThrottleState.lastSource) {
|
|
nsecs_t nextTime = mThrottleState.lastEventTime
|
|
+ mThrottleState.minTimeBetweenEvents;
|
|
if (currentTime < nextTime) {
|
|
// Throttle it!
|
|
#if DEBUG_THROTTLING
|
|
LOGD("Throttling - Delaying motion event for "
|
|
"device 0x%x, source 0x%08x by up to %0.3fms.",
|
|
deviceId, source, (nextTime - currentTime) * 0.000001);
|
|
#endif
|
|
if (nextTime < *nextWakeupTime) {
|
|
*nextWakeupTime = nextTime;
|
|
}
|
|
if (mThrottleState.originalSampleCount == 0) {
|
|
mThrottleState.originalSampleCount =
|
|
motionEntry->countSamples();
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
#if DEBUG_THROTTLING
|
|
if (mThrottleState.originalSampleCount != 0) {
|
|
uint32_t count = motionEntry->countSamples();
|
|
LOGD("Throttling - Motion event sample count grew by %d from %d to %d.",
|
|
count - mThrottleState.originalSampleCount,
|
|
mThrottleState.originalSampleCount, count);
|
|
mThrottleState.originalSampleCount = 0;
|
|
}
|
|
#endif
|
|
|
|
mThrottleState.lastEventTime = entry->eventTime < currentTime
|
|
? entry->eventTime : currentTime;
|
|
mThrottleState.lastDeviceId = deviceId;
|
|
mThrottleState.lastSource = source;
|
|
}
|
|
|
|
mInboundQueue.dequeue(entry);
|
|
mPendingEvent = entry;
|
|
}
|
|
}
|
|
|
|
// Now we have an event to dispatch.
|
|
assert(mPendingEvent != NULL);
|
|
bool done = false;
|
|
switch (mPendingEvent->type) {
|
|
case EventEntry::TYPE_CONFIGURATION_CHANGED: {
|
|
ConfigurationChangedEntry* typedEntry =
|
|
static_cast<ConfigurationChangedEntry*>(mPendingEvent);
|
|
done = dispatchConfigurationChangedLocked(currentTime, typedEntry);
|
|
break;
|
|
}
|
|
|
|
case EventEntry::TYPE_KEY: {
|
|
KeyEntry* typedEntry = static_cast<KeyEntry*>(mPendingEvent);
|
|
bool appSwitchKey = isAppSwitchKey(typedEntry->keyCode);
|
|
bool dropEvent = isAppSwitchDue && ! appSwitchKey;
|
|
done = dispatchKeyLocked(currentTime, typedEntry, keyRepeatTimeout, dropEvent,
|
|
nextWakeupTime);
|
|
if (done) {
|
|
if (dropEvent) {
|
|
LOGI("Dropped key because of pending overdue app switch.");
|
|
} else if (appSwitchKey) {
|
|
resetPendingAppSwitchLocked(true);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case EventEntry::TYPE_MOTION: {
|
|
MotionEntry* typedEntry = static_cast<MotionEntry*>(mPendingEvent);
|
|
bool dropEvent = isAppSwitchDue;
|
|
done = dispatchMotionLocked(currentTime, typedEntry, dropEvent, nextWakeupTime);
|
|
if (done) {
|
|
if (dropEvent) {
|
|
LOGI("Dropped motion because of pending overdue app switch.");
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
assert(false);
|
|
break;
|
|
}
|
|
|
|
if (done) {
|
|
releasePendingEventLocked();
|
|
*nextWakeupTime = LONG_LONG_MIN; // force next poll to wake up immediately
|
|
}
|
|
}
|
|
|
|
bool InputDispatcher::enqueueInboundEventLocked(EventEntry* entry) {
|
|
bool needWake = mInboundQueue.isEmpty();
|
|
mInboundQueue.enqueueAtTail(entry);
|
|
|
|
switch (entry->type) {
|
|
case EventEntry::TYPE_KEY:
|
|
needWake |= detectPendingAppSwitchLocked(static_cast<KeyEntry*>(entry));
|
|
break;
|
|
}
|
|
|
|
return needWake;
|
|
}
|
|
|
|
bool InputDispatcher::isAppSwitchKey(int32_t keyCode) {
|
|
return keyCode == AKEYCODE_HOME || keyCode == AKEYCODE_ENDCALL;
|
|
}
|
|
|
|
bool InputDispatcher::isAppSwitchPendingLocked() {
|
|
return mAppSwitchDueTime != LONG_LONG_MAX;
|
|
}
|
|
|
|
bool InputDispatcher::detectPendingAppSwitchLocked(KeyEntry* inboundKeyEntry) {
|
|
if (inboundKeyEntry->action == AKEY_EVENT_ACTION_UP
|
|
&& ! (inboundKeyEntry->flags & AKEY_EVENT_FLAG_CANCELED)
|
|
&& isAppSwitchKey(inboundKeyEntry->keyCode)
|
|
&& isEventFromReliableSourceLocked(inboundKeyEntry)) {
|
|
#if DEBUG_APP_SWITCH
|
|
LOGD("App switch is pending!");
|
|
#endif
|
|
mAppSwitchDueTime = inboundKeyEntry->eventTime + APP_SWITCH_TIMEOUT;
|
|
return true; // need wake
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void InputDispatcher::resetPendingAppSwitchLocked(bool handled) {
|
|
mAppSwitchDueTime = LONG_LONG_MAX;
|
|
|
|
#if DEBUG_APP_SWITCH
|
|
if (handled) {
|
|
LOGD("App switch has arrived.");
|
|
} else {
|
|
LOGD("App switch was abandoned.");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
bool InputDispatcher::runCommandsLockedInterruptible() {
|
|
if (mCommandQueue.isEmpty()) {
|
|
return false;
|
|
}
|
|
|
|
do {
|
|
CommandEntry* commandEntry = mCommandQueue.dequeueAtHead();
|
|
|
|
Command command = commandEntry->command;
|
|
(this->*command)(commandEntry); // commands are implicitly 'LockedInterruptible'
|
|
|
|
commandEntry->connection.clear();
|
|
mAllocator.releaseCommandEntry(commandEntry);
|
|
} while (! mCommandQueue.isEmpty());
|
|
return true;
|
|
}
|
|
|
|
InputDispatcher::CommandEntry* InputDispatcher::postCommandLocked(Command command) {
|
|
CommandEntry* commandEntry = mAllocator.obtainCommandEntry(command);
|
|
mCommandQueue.enqueueAtTail(commandEntry);
|
|
return commandEntry;
|
|
}
|
|
|
|
void InputDispatcher::drainInboundQueueLocked() {
|
|
while (! mInboundQueue.isEmpty()) {
|
|
EventEntry* entry = mInboundQueue.dequeueAtHead();
|
|
releaseInboundEventLocked(entry);
|
|
}
|
|
}
|
|
|
|
void InputDispatcher::releasePendingEventLocked() {
|
|
if (mPendingEvent) {
|
|
releaseInboundEventLocked(mPendingEvent);
|
|
mPendingEvent = NULL;
|
|
}
|
|
}
|
|
|
|
void InputDispatcher::releaseInboundEventLocked(EventEntry* entry) {
|
|
InjectionState* injectionState = entry->injectionState;
|
|
if (injectionState && injectionState->injectionResult == INPUT_EVENT_INJECTION_PENDING) {
|
|
#if DEBUG_DISPATCH_CYCLE
|
|
LOGD("Injected inbound event was dropped.");
|
|
#endif
|
|
setInjectionResultLocked(entry, INPUT_EVENT_INJECTION_FAILED);
|
|
}
|
|
mAllocator.releaseEventEntry(entry);
|
|
}
|
|
|
|
bool InputDispatcher::isEventFromReliableSourceLocked(EventEntry* entry) {
|
|
InjectionState* injectionState = entry->injectionState;
|
|
return ! injectionState
|
|
|| injectionState->injectorUid == 0
|
|
|| mPolicy->checkInjectEventsPermissionNonReentrant(
|
|
injectionState->injectorPid, injectionState->injectorUid);
|
|
}
|
|
|
|
void InputDispatcher::resetKeyRepeatLocked() {
|
|
if (mKeyRepeatState.lastKeyEntry) {
|
|
mAllocator.releaseKeyEntry(mKeyRepeatState.lastKeyEntry);
|
|
mKeyRepeatState.lastKeyEntry = NULL;
|
|
}
|
|
}
|
|
|
|
InputDispatcher::KeyEntry* InputDispatcher::synthesizeKeyRepeatLocked(
|
|
nsecs_t currentTime, nsecs_t keyRepeatDelay) {
|
|
KeyEntry* entry = mKeyRepeatState.lastKeyEntry;
|
|
|
|
// Reuse the repeated key entry if it is otherwise unreferenced.
|
|
uint32_t policyFlags = entry->policyFlags & POLICY_FLAG_RAW_MASK;
|
|
if (entry->refCount == 1) {
|
|
mAllocator.recycleKeyEntry(entry);
|
|
entry->eventTime = currentTime;
|
|
entry->policyFlags = policyFlags;
|
|
entry->repeatCount += 1;
|
|
} else {
|
|
KeyEntry* newEntry = mAllocator.obtainKeyEntry(currentTime,
|
|
entry->deviceId, entry->source, policyFlags,
|
|
entry->action, entry->flags, entry->keyCode, entry->scanCode,
|
|
entry->metaState, entry->repeatCount + 1, entry->downTime);
|
|
|
|
mKeyRepeatState.lastKeyEntry = newEntry;
|
|
mAllocator.releaseKeyEntry(entry);
|
|
|
|
entry = newEntry;
|
|
}
|
|
entry->syntheticRepeat = true;
|
|
|
|
// Increment reference count since we keep a reference to the event in
|
|
// mKeyRepeatState.lastKeyEntry in addition to the one we return.
|
|
entry->refCount += 1;
|
|
|
|
if (entry->repeatCount == 1) {
|
|
entry->flags |= AKEY_EVENT_FLAG_LONG_PRESS;
|
|
}
|
|
|
|
mKeyRepeatState.nextRepeatTime = currentTime + keyRepeatDelay;
|
|
return entry;
|
|
}
|
|
|
|
bool InputDispatcher::dispatchConfigurationChangedLocked(
|
|
nsecs_t currentTime, ConfigurationChangedEntry* entry) {
|
|
#if DEBUG_OUTBOUND_EVENT_DETAILS
|
|
LOGD("dispatchConfigurationChanged - eventTime=%lld", entry->eventTime);
|
|
#endif
|
|
|
|
// Reset key repeating in case a keyboard device was added or removed or something.
|
|
resetKeyRepeatLocked();
|
|
|
|
// Enqueue a command to run outside the lock to tell the policy that the configuration changed.
|
|
CommandEntry* commandEntry = postCommandLocked(
|
|
& InputDispatcher::doNotifyConfigurationChangedInterruptible);
|
|
commandEntry->eventTime = entry->eventTime;
|
|
return true;
|
|
}
|
|
|
|
bool InputDispatcher::dispatchKeyLocked(
|
|
nsecs_t currentTime, KeyEntry* entry, nsecs_t keyRepeatTimeout,
|
|
bool dropEvent, nsecs_t* nextWakeupTime) {
|
|
// Give the policy a chance to intercept the key.
|
|
if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN) {
|
|
bool trusted;
|
|
if (! dropEvent && mFocusedWindow) {
|
|
trusted = checkInjectionPermission(mFocusedWindow, entry->injectionState);
|
|
} else {
|
|
trusted = isEventFromReliableSourceLocked(entry);
|
|
}
|
|
if (trusted) {
|
|
CommandEntry* commandEntry = postCommandLocked(
|
|
& InputDispatcher::doInterceptKeyBeforeDispatchingLockedInterruptible);
|
|
if (! dropEvent && mFocusedWindow) {
|
|
commandEntry->inputChannel = mFocusedWindow->inputChannel;
|
|
}
|
|
commandEntry->keyEntry = entry;
|
|
entry->refCount += 1;
|
|
return false; // wait for the command to run
|
|
} else {
|
|
entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_CONTINUE;
|
|
}
|
|
} else if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_SKIP) {
|
|
resetTargetsLocked();
|
|
setInjectionResultLocked(entry, INPUT_EVENT_INJECTION_SUCCEEDED);
|
|
return true;
|
|
}
|
|
|
|
// Clean up if dropping the event.
|
|
if (dropEvent) {
|
|
resetTargetsLocked();
|
|
setInjectionResultLocked(entry, INPUT_EVENT_INJECTION_FAILED);
|
|
return true;
|
|
}
|
|
|
|
// Preprocessing.
|
|
if (! entry->dispatchInProgress) {
|
|
logOutboundKeyDetailsLocked("dispatchKey - ", entry);
|
|
|
|
if (entry->repeatCount == 0
|
|
&& entry->action == AKEY_EVENT_ACTION_DOWN
|
|
&& ! entry->isInjected()) {
|
|
if (mKeyRepeatState.lastKeyEntry
|
|
&& mKeyRepeatState.lastKeyEntry->keyCode == entry->keyCode) {
|
|
// We have seen two identical key downs in a row which indicates that the device
|
|
// driver is automatically generating key repeats itself. We take note of the
|
|
// repeat here, but we disable our own next key repeat timer since it is clear that
|
|
// we will not need to synthesize key repeats ourselves.
|
|
entry->repeatCount = mKeyRepeatState.lastKeyEntry->repeatCount + 1;
|
|
resetKeyRepeatLocked();
|
|
mKeyRepeatState.nextRepeatTime = LONG_LONG_MAX; // don't generate repeats ourselves
|
|
} else {
|
|
// Not a repeat. Save key down state in case we do see a repeat later.
|
|
resetKeyRepeatLocked();
|
|
mKeyRepeatState.nextRepeatTime = entry->eventTime + keyRepeatTimeout;
|
|
}
|
|
mKeyRepeatState.lastKeyEntry = entry;
|
|
entry->refCount += 1;
|
|
} else if (! entry->syntheticRepeat) {
|
|
resetKeyRepeatLocked();
|
|
}
|
|
|
|
entry->dispatchInProgress = true;
|
|
resetTargetsLocked();
|
|
}
|
|
|
|
// Identify targets.
|
|
if (! mCurrentInputTargetsValid) {
|
|
int32_t injectionResult = findFocusedWindowTargetsLocked(currentTime,
|
|
entry, nextWakeupTime);
|
|
if (injectionResult == INPUT_EVENT_INJECTION_PENDING) {
|
|
return false;
|
|
}
|
|
|
|
setInjectionResultLocked(entry, injectionResult);
|
|
if (injectionResult != INPUT_EVENT_INJECTION_SUCCEEDED) {
|
|
return true;
|
|
}
|
|
|
|
addMonitoringTargetsLocked();
|
|
commitTargetsLocked();
|
|
}
|
|
|
|
// Dispatch the key.
|
|
dispatchEventToCurrentInputTargetsLocked(currentTime, entry, false);
|
|
|
|
// Poke user activity.
|
|
if (shouldPokeUserActivityForCurrentInputTargetsLocked()) {
|
|
pokeUserActivityLocked(entry->eventTime, POWER_MANAGER_BUTTON_EVENT);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void InputDispatcher::logOutboundKeyDetailsLocked(const char* prefix, const KeyEntry* entry) {
|
|
#if DEBUG_OUTBOUND_EVENT_DETAILS
|
|
LOGD("%seventTime=%lld, deviceId=0x%x, source=0x%x, policyFlags=0x%x, "
|
|
"action=0x%x, flags=0x%x, keyCode=0x%x, scanCode=0x%x, metaState=0x%x, "
|
|
"downTime=%lld",
|
|
prefix,
|
|
entry->eventTime, entry->deviceId, entry->source, entry->policyFlags,
|
|
entry->action, entry->flags, entry->keyCode, entry->scanCode, entry->metaState,
|
|
entry->downTime);
|
|
#endif
|
|
}
|
|
|
|
bool InputDispatcher::dispatchMotionLocked(
|
|
nsecs_t currentTime, MotionEntry* entry, bool dropEvent, nsecs_t* nextWakeupTime) {
|
|
// Clean up if dropping the event.
|
|
if (dropEvent) {
|
|
resetTargetsLocked();
|
|
setInjectionResultLocked(entry, INPUT_EVENT_INJECTION_FAILED);
|
|
return true;
|
|
}
|
|
|
|
// Preprocessing.
|
|
if (! entry->dispatchInProgress) {
|
|
logOutboundMotionDetailsLocked("dispatchMotion - ", entry);
|
|
|
|
entry->dispatchInProgress = true;
|
|
resetTargetsLocked();
|
|
}
|
|
|
|
bool isPointerEvent = entry->source & AINPUT_SOURCE_CLASS_POINTER;
|
|
|
|
// Identify targets.
|
|
if (! mCurrentInputTargetsValid) {
|
|
int32_t injectionResult;
|
|
if (isPointerEvent) {
|
|
// Pointer event. (eg. touchscreen)
|
|
injectionResult = findTouchedWindowTargetsLocked(currentTime,
|
|
entry, nextWakeupTime);
|
|
} else {
|
|
// Non touch event. (eg. trackball)
|
|
injectionResult = findFocusedWindowTargetsLocked(currentTime,
|
|
entry, nextWakeupTime);
|
|
}
|
|
if (injectionResult == INPUT_EVENT_INJECTION_PENDING) {
|
|
return false;
|
|
}
|
|
|
|
setInjectionResultLocked(entry, injectionResult);
|
|
if (injectionResult != INPUT_EVENT_INJECTION_SUCCEEDED) {
|
|
return true;
|
|
}
|
|
|
|
addMonitoringTargetsLocked();
|
|
commitTargetsLocked();
|
|
}
|
|
|
|
// Dispatch the motion.
|
|
dispatchEventToCurrentInputTargetsLocked(currentTime, entry, false);
|
|
|
|
// Poke user activity.
|
|
if (shouldPokeUserActivityForCurrentInputTargetsLocked()) {
|
|
int32_t eventType;
|
|
if (isPointerEvent) {
|
|
switch (entry->action) {
|
|
case AMOTION_EVENT_ACTION_DOWN:
|
|
eventType = POWER_MANAGER_TOUCH_EVENT;
|
|
break;
|
|
case AMOTION_EVENT_ACTION_UP:
|
|
eventType = POWER_MANAGER_TOUCH_UP_EVENT;
|
|
break;
|
|
default:
|
|
if (entry->eventTime - entry->downTime >= EVENT_IGNORE_DURATION) {
|
|
eventType = POWER_MANAGER_TOUCH_EVENT;
|
|
} else {
|
|
eventType = POWER_MANAGER_LONG_TOUCH_EVENT;
|
|
}
|
|
break;
|
|
}
|
|
} else {
|
|
eventType = POWER_MANAGER_BUTTON_EVENT;
|
|
}
|
|
pokeUserActivityLocked(entry->eventTime, eventType);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
void InputDispatcher::logOutboundMotionDetailsLocked(const char* prefix, const MotionEntry* entry) {
|
|
#if DEBUG_OUTBOUND_EVENT_DETAILS
|
|
LOGD("%seventTime=%lld, deviceId=0x%x, source=0x%x, policyFlags=0x%x, "
|
|
"action=0x%x, flags=0x%x, "
|
|
"metaState=0x%x, edgeFlags=0x%x, xPrecision=%f, yPrecision=%f, downTime=%lld",
|
|
prefix,
|
|
entry->eventTime, entry->deviceId, entry->source, entry->policyFlags,
|
|
entry->action, entry->flags,
|
|
entry->metaState, entry->edgeFlags, entry->xPrecision, entry->yPrecision,
|
|
entry->downTime);
|
|
|
|
// Print the most recent sample that we have available, this may change due to batching.
|
|
size_t sampleCount = 1;
|
|
const MotionSample* sample = & entry->firstSample;
|
|
for (; sample->next != NULL; sample = sample->next) {
|
|
sampleCount += 1;
|
|
}
|
|
for (uint32_t i = 0; i < entry->pointerCount; i++) {
|
|
LOGD(" Pointer %d: id=%d, x=%f, y=%f, pressure=%f, size=%f, "
|
|
"touchMajor=%f, touchMinor=%f, toolMajor=%f, toolMinor=%f, "
|
|
"orientation=%f",
|
|
i, entry->pointerIds[i],
|
|
sample->pointerCoords[i].x, sample->pointerCoords[i].y,
|
|
sample->pointerCoords[i].pressure, sample->pointerCoords[i].size,
|
|
sample->pointerCoords[i].touchMajor, sample->pointerCoords[i].touchMinor,
|
|
sample->pointerCoords[i].toolMajor, sample->pointerCoords[i].toolMinor,
|
|
sample->pointerCoords[i].orientation);
|
|
}
|
|
|
|
// Keep in mind that due to batching, it is possible for the number of samples actually
|
|
// dispatched to change before the application finally consumed them.
|
|
if (entry->action == AMOTION_EVENT_ACTION_MOVE) {
|
|
LOGD(" ... Total movement samples currently batched %d ...", sampleCount);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void InputDispatcher::dispatchEventToCurrentInputTargetsLocked(nsecs_t currentTime,
|
|
EventEntry* eventEntry, bool resumeWithAppendedMotionSample) {
|
|
#if DEBUG_DISPATCH_CYCLE
|
|
LOGD("dispatchEventToCurrentInputTargets - "
|
|
"resumeWithAppendedMotionSample=%s",
|
|
toString(resumeWithAppendedMotionSample));
|
|
#endif
|
|
|
|
assert(eventEntry->dispatchInProgress); // should already have been set to true
|
|
|
|
for (size_t i = 0; i < mCurrentInputTargets.size(); i++) {
|
|
const InputTarget& inputTarget = mCurrentInputTargets.itemAt(i);
|
|
|
|
ssize_t connectionIndex = getConnectionIndexLocked(inputTarget.inputChannel);
|
|
if (connectionIndex >= 0) {
|
|
sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex);
|
|
prepareDispatchCycleLocked(currentTime, connection, eventEntry, & inputTarget,
|
|
resumeWithAppendedMotionSample);
|
|
} else {
|
|
LOGW("Framework requested delivery of an input event to channel '%s' but it "
|
|
"is not registered with the input dispatcher.",
|
|
inputTarget.inputChannel->getName().string());
|
|
}
|
|
}
|
|
}
|
|
|
|
void InputDispatcher::resetTargetsLocked() {
|
|
mCurrentInputTargetsValid = false;
|
|
mCurrentInputTargets.clear();
|
|
mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_NONE;
|
|
}
|
|
|
|
void InputDispatcher::commitTargetsLocked() {
|
|
mCurrentInputTargetsValid = true;
|
|
}
|
|
|
|
int32_t InputDispatcher::handleTargetsNotReadyLocked(nsecs_t currentTime,
|
|
const EventEntry* entry, const InputApplication* application, const InputWindow* window,
|
|
nsecs_t* nextWakeupTime) {
|
|
if (application == NULL && window == NULL) {
|
|
if (mInputTargetWaitCause != INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY) {
|
|
#if DEBUG_FOCUS
|
|
LOGD("Waiting for system to become ready for input.");
|
|
#endif
|
|
mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY;
|
|
mInputTargetWaitStartTime = currentTime;
|
|
mInputTargetWaitTimeoutTime = LONG_LONG_MAX;
|
|
mInputTargetWaitTimeoutExpired = false;
|
|
}
|
|
} else {
|
|
if (mInputTargetWaitCause != INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY) {
|
|
#if DEBUG_FOCUS
|
|
LOGD("Waiting for application to become ready for input: %s",
|
|
getApplicationWindowLabelLocked(application, window).string());
|
|
#endif
|
|
nsecs_t timeout = window ? window->dispatchingTimeout :
|
|
application ? application->dispatchingTimeout : DEFAULT_INPUT_DISPATCHING_TIMEOUT;
|
|
|
|
mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY;
|
|
mInputTargetWaitStartTime = currentTime;
|
|
mInputTargetWaitTimeoutTime = currentTime + timeout;
|
|
mInputTargetWaitTimeoutExpired = false;
|
|
}
|
|
}
|
|
|
|
if (mInputTargetWaitTimeoutExpired) {
|
|
return INPUT_EVENT_INJECTION_TIMED_OUT;
|
|
}
|
|
|
|
if (currentTime >= mInputTargetWaitTimeoutTime) {
|
|
onANRLocked(currentTime, application, window, entry->eventTime, mInputTargetWaitStartTime);
|
|
|
|
// Force poll loop to wake up immediately on next iteration once we get the
|
|
// ANR response back from the policy.
|
|
*nextWakeupTime = LONG_LONG_MIN;
|
|
return INPUT_EVENT_INJECTION_PENDING;
|
|
} else {
|
|
// Force poll loop to wake up when timeout is due.
|
|
if (mInputTargetWaitTimeoutTime < *nextWakeupTime) {
|
|
*nextWakeupTime = mInputTargetWaitTimeoutTime;
|
|
}
|
|
return INPUT_EVENT_INJECTION_PENDING;
|
|
}
|
|
}
|
|
|
|
void InputDispatcher::resumeAfterTargetsNotReadyTimeoutLocked(nsecs_t newTimeout,
|
|
const sp<InputChannel>& inputChannel) {
|
|
if (newTimeout > 0) {
|
|
// Extend the timeout.
|
|
mInputTargetWaitTimeoutTime = now() + newTimeout;
|
|
} else {
|
|
// Give up.
|
|
mInputTargetWaitTimeoutExpired = true;
|
|
|
|
// Release the touch targets.
|
|
mTouchState.reset();
|
|
|
|
// Input state will not be realistic. Mark it out of sync.
|
|
if (inputChannel.get()) {
|
|
ssize_t connectionIndex = getConnectionIndexLocked(inputChannel);
|
|
if (connectionIndex >= 0) {
|
|
sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex);
|
|
connection->inputState.setOutOfSync();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
nsecs_t InputDispatcher::getTimeSpentWaitingForApplicationLocked(
|
|
nsecs_t currentTime) {
|
|
if (mInputTargetWaitCause == INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY) {
|
|
return currentTime - mInputTargetWaitStartTime;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void InputDispatcher::resetANRTimeoutsLocked() {
|
|
#if DEBUG_FOCUS
|
|
LOGD("Resetting ANR timeouts.");
|
|
#endif
|
|
|
|
// Reset input target wait timeout.
|
|
mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_NONE;
|
|
}
|
|
|
|
int32_t InputDispatcher::findFocusedWindowTargetsLocked(nsecs_t currentTime,
|
|
const EventEntry* entry, nsecs_t* nextWakeupTime) {
|
|
mCurrentInputTargets.clear();
|
|
|
|
int32_t injectionResult;
|
|
|
|
// If there is no currently focused window and no focused application
|
|
// then drop the event.
|
|
if (! mFocusedWindow) {
|
|
if (mFocusedApplication) {
|
|
#if DEBUG_FOCUS
|
|
LOGD("Waiting because there is no focused window but there is a "
|
|
"focused application that may eventually add a window: %s.",
|
|
getApplicationWindowLabelLocked(mFocusedApplication, NULL).string());
|
|
#endif
|
|
injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
|
|
mFocusedApplication, NULL, nextWakeupTime);
|
|
goto Unresponsive;
|
|
}
|
|
|
|
LOGI("Dropping event because there is no focused window or focused application.");
|
|
injectionResult = INPUT_EVENT_INJECTION_FAILED;
|
|
goto Failed;
|
|
}
|
|
|
|
// Check permissions.
|
|
if (! checkInjectionPermission(mFocusedWindow, entry->injectionState)) {
|
|
injectionResult = INPUT_EVENT_INJECTION_PERMISSION_DENIED;
|
|
goto Failed;
|
|
}
|
|
|
|
// If the currently focused window is paused then keep waiting.
|
|
if (mFocusedWindow->paused) {
|
|
#if DEBUG_FOCUS
|
|
LOGD("Waiting because focused window is paused.");
|
|
#endif
|
|
injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
|
|
mFocusedApplication, mFocusedWindow, nextWakeupTime);
|
|
goto Unresponsive;
|
|
}
|
|
|
|
// If the currently focused window is still working on previous events then keep waiting.
|
|
if (! isWindowFinishedWithPreviousInputLocked(mFocusedWindow)) {
|
|
#if DEBUG_FOCUS
|
|
LOGD("Waiting because focused window still processing previous input.");
|
|
#endif
|
|
injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
|
|
mFocusedApplication, mFocusedWindow, nextWakeupTime);
|
|
goto Unresponsive;
|
|
}
|
|
|
|
// Success! Output targets.
|
|
injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED;
|
|
addWindowTargetLocked(mFocusedWindow, InputTarget::FLAG_FOREGROUND, BitSet32(0));
|
|
|
|
// Done.
|
|
Failed:
|
|
Unresponsive:
|
|
nsecs_t timeSpentWaitingForApplication = getTimeSpentWaitingForApplicationLocked(currentTime);
|
|
updateDispatchStatisticsLocked(currentTime, entry,
|
|
injectionResult, timeSpentWaitingForApplication);
|
|
#if DEBUG_FOCUS
|
|
LOGD("findFocusedWindow finished: injectionResult=%d, "
|
|
"timeSpendWaitingForApplication=%0.1fms",
|
|
injectionResult, timeSpentWaitingForApplication / 1000000.0);
|
|
#endif
|
|
return injectionResult;
|
|
}
|
|
|
|
int32_t InputDispatcher::findTouchedWindowTargetsLocked(nsecs_t currentTime,
|
|
const MotionEntry* entry, nsecs_t* nextWakeupTime) {
|
|
enum InjectionPermission {
|
|
INJECTION_PERMISSION_UNKNOWN,
|
|
INJECTION_PERMISSION_GRANTED,
|
|
INJECTION_PERMISSION_DENIED
|
|
};
|
|
|
|
mCurrentInputTargets.clear();
|
|
|
|
nsecs_t startTime = now();
|
|
|
|
// For security reasons, we defer updating the touch state until we are sure that
|
|
// event injection will be allowed.
|
|
//
|
|
// FIXME In the original code, screenWasOff could never be set to true.
|
|
// The reason is that the POLICY_FLAG_WOKE_HERE
|
|
// and POLICY_FLAG_BRIGHT_HERE flags were set only when preprocessing raw
|
|
// EV_KEY, EV_REL and EV_ABS events. As it happens, the touch event was
|
|
// actually enqueued using the policyFlags that appeared in the final EV_SYN
|
|
// events upon which no preprocessing took place. So policyFlags was always 0.
|
|
// In the new native input dispatcher we're a bit more careful about event
|
|
// preprocessing so the touches we receive can actually have non-zero policyFlags.
|
|
// Unfortunately we obtain undesirable behavior.
|
|
//
|
|
// Here's what happens:
|
|
//
|
|
// When the device dims in anticipation of going to sleep, touches
|
|
// in windows which have FLAG_TOUCHABLE_WHEN_WAKING cause
|
|
// the device to brighten and reset the user activity timer.
|
|
// Touches on other windows (such as the launcher window)
|
|
// are dropped. Then after a moment, the device goes to sleep. Oops.
|
|
//
|
|
// Also notice how screenWasOff was being initialized using POLICY_FLAG_BRIGHT_HERE
|
|
// instead of POLICY_FLAG_WOKE_HERE...
|
|
//
|
|
bool screenWasOff = false; // original policy: policyFlags & POLICY_FLAG_BRIGHT_HERE;
|
|
|
|
int32_t action = entry->action;
|
|
int32_t maskedAction = action & AMOTION_EVENT_ACTION_MASK;
|
|
|
|
// Update the touch state as needed based on the properties of the touch event.
|
|
int32_t injectionResult = INPUT_EVENT_INJECTION_PENDING;
|
|
InjectionPermission injectionPermission = INJECTION_PERMISSION_UNKNOWN;
|
|
if (maskedAction == AMOTION_EVENT_ACTION_DOWN) {
|
|
mTempTouchState.reset();
|
|
mTempTouchState.down = true;
|
|
} else {
|
|
mTempTouchState.copyFrom(mTouchState);
|
|
}
|
|
|
|
bool isSplit = mTempTouchState.split && mTempTouchState.down;
|
|
if (maskedAction == AMOTION_EVENT_ACTION_DOWN
|
|
|| (isSplit && maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN)) {
|
|
/* Case 1: New splittable pointer going down. */
|
|
|
|
int32_t pointerIndex = getMotionEventActionPointerIndex(action);
|
|
int32_t x = int32_t(entry->firstSample.pointerCoords[pointerIndex].x);
|
|
int32_t y = int32_t(entry->firstSample.pointerCoords[pointerIndex].y);
|
|
const InputWindow* newTouchedWindow = NULL;
|
|
const InputWindow* topErrorWindow = NULL;
|
|
|
|
// Traverse windows from front to back to find touched window and outside targets.
|
|
size_t numWindows = mWindows.size();
|
|
for (size_t i = 0; i < numWindows; i++) {
|
|
const InputWindow* window = & mWindows.editItemAt(i);
|
|
int32_t flags = window->layoutParamsFlags;
|
|
|
|
if (flags & InputWindow::FLAG_SYSTEM_ERROR) {
|
|
if (! topErrorWindow) {
|
|
topErrorWindow = window;
|
|
}
|
|
}
|
|
|
|
if (window->visible) {
|
|
if (! (flags & InputWindow::FLAG_NOT_TOUCHABLE)) {
|
|
bool isTouchModal = (flags & (InputWindow::FLAG_NOT_FOCUSABLE
|
|
| InputWindow::FLAG_NOT_TOUCH_MODAL)) == 0;
|
|
if (isTouchModal || window->touchableAreaContainsPoint(x, y)) {
|
|
if (! screenWasOff || flags & InputWindow::FLAG_TOUCHABLE_WHEN_WAKING) {
|
|
newTouchedWindow = window;
|
|
}
|
|
break; // found touched window, exit window loop
|
|
}
|
|
}
|
|
|
|
if (maskedAction == AMOTION_EVENT_ACTION_DOWN
|
|
&& (flags & InputWindow::FLAG_WATCH_OUTSIDE_TOUCH)) {
|
|
int32_t outsideTargetFlags = InputTarget::FLAG_OUTSIDE;
|
|
if (isWindowObscuredAtPointLocked(window, x, y)) {
|
|
outsideTargetFlags |= InputTarget::FLAG_WINDOW_IS_OBSCURED;
|
|
}
|
|
|
|
mTempTouchState.addOrUpdateWindow(window, outsideTargetFlags, BitSet32(0));
|
|
}
|
|
}
|
|
}
|
|
|
|
// If there is an error window but it is not taking focus (typically because
|
|
// it is invisible) then wait for it. Any other focused window may in
|
|
// fact be in ANR state.
|
|
if (topErrorWindow && newTouchedWindow != topErrorWindow) {
|
|
#if DEBUG_FOCUS
|
|
LOGD("Waiting because system error window is pending.");
|
|
#endif
|
|
injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
|
|
NULL, NULL, nextWakeupTime);
|
|
injectionPermission = INJECTION_PERMISSION_UNKNOWN;
|
|
goto Unresponsive;
|
|
}
|
|
|
|
// Figure out whether splitting will be allowed for this window.
|
|
if (newTouchedWindow
|
|
&& (newTouchedWindow->layoutParamsFlags & InputWindow::FLAG_SPLIT_TOUCH)) {
|
|
// New window supports splitting.
|
|
isSplit = true;
|
|
} else if (isSplit) {
|
|
// New window does not support splitting but we have already split events.
|
|
// Assign the pointer to the first foreground window we find.
|
|
// (May be NULL which is why we put this code block before the next check.)
|
|
newTouchedWindow = mTempTouchState.getFirstForegroundWindow();
|
|
}
|
|
|
|
// If we did not find a touched window then fail.
|
|
if (! newTouchedWindow) {
|
|
if (mFocusedApplication) {
|
|
#if DEBUG_FOCUS
|
|
LOGD("Waiting because there is no touched window but there is a "
|
|
"focused application that may eventually add a new window: %s.",
|
|
getApplicationWindowLabelLocked(mFocusedApplication, NULL).string());
|
|
#endif
|
|
injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
|
|
mFocusedApplication, NULL, nextWakeupTime);
|
|
goto Unresponsive;
|
|
}
|
|
|
|
LOGI("Dropping event because there is no touched window or focused application.");
|
|
injectionResult = INPUT_EVENT_INJECTION_FAILED;
|
|
goto Failed;
|
|
}
|
|
|
|
// Set target flags.
|
|
int32_t targetFlags = InputTarget::FLAG_FOREGROUND;
|
|
if (isSplit) {
|
|
targetFlags |= InputTarget::FLAG_SPLIT;
|
|
}
|
|
if (isWindowObscuredAtPointLocked(newTouchedWindow, x, y)) {
|
|
targetFlags |= InputTarget::FLAG_WINDOW_IS_OBSCURED;
|
|
}
|
|
|
|
// Update the temporary touch state.
|
|
BitSet32 pointerIds;
|
|
if (isSplit) {
|
|
uint32_t pointerId = entry->pointerIds[pointerIndex];
|
|
pointerIds.markBit(pointerId);
|
|
}
|
|
mTempTouchState.addOrUpdateWindow(newTouchedWindow, targetFlags, pointerIds);
|
|
} else {
|
|
/* Case 2: Pointer move, up, cancel or non-splittable pointer down. */
|
|
|
|
// If the pointer is not currently down, then ignore the event.
|
|
if (! mTempTouchState.down) {
|
|
LOGI("Dropping event because the pointer is not down.");
|
|
injectionResult = INPUT_EVENT_INJECTION_FAILED;
|
|
goto Failed;
|
|
}
|
|
}
|
|
|
|
// Check permission to inject into all touched foreground windows and ensure there
|
|
// is at least one touched foreground window.
|
|
{
|
|
bool haveForegroundWindow = false;
|
|
for (size_t i = 0; i < mTempTouchState.windows.size(); i++) {
|
|
const TouchedWindow& touchedWindow = mTempTouchState.windows[i];
|
|
if (touchedWindow.targetFlags & InputTarget::FLAG_FOREGROUND) {
|
|
haveForegroundWindow = true;
|
|
if (! checkInjectionPermission(touchedWindow.window, entry->injectionState)) {
|
|
injectionResult = INPUT_EVENT_INJECTION_PERMISSION_DENIED;
|
|
injectionPermission = INJECTION_PERMISSION_DENIED;
|
|
goto Failed;
|
|
}
|
|
}
|
|
}
|
|
if (! haveForegroundWindow) {
|
|
#if DEBUG_INPUT_DISPATCHER_POLICY
|
|
LOGD("Dropping event because there is no touched foreground window to receive it.");
|
|
#endif
|
|
injectionResult = INPUT_EVENT_INJECTION_FAILED;
|
|
goto Failed;
|
|
}
|
|
|
|
// Permission granted to injection into all touched foreground windows.
|
|
injectionPermission = INJECTION_PERMISSION_GRANTED;
|
|
}
|
|
|
|
// Ensure all touched foreground windows are ready for new input.
|
|
for (size_t i = 0; i < mTempTouchState.windows.size(); i++) {
|
|
const TouchedWindow& touchedWindow = mTempTouchState.windows[i];
|
|
if (touchedWindow.targetFlags & InputTarget::FLAG_FOREGROUND) {
|
|
// If the touched window is paused then keep waiting.
|
|
if (touchedWindow.window->paused) {
|
|
#if DEBUG_INPUT_DISPATCHER_POLICY
|
|
LOGD("Waiting because touched window is paused.");
|
|
#endif
|
|
injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
|
|
NULL, touchedWindow.window, nextWakeupTime);
|
|
goto Unresponsive;
|
|
}
|
|
|
|
// If the touched window is still working on previous events then keep waiting.
|
|
if (! isWindowFinishedWithPreviousInputLocked(touchedWindow.window)) {
|
|
#if DEBUG_FOCUS
|
|
LOGD("Waiting because touched window still processing previous input.");
|
|
#endif
|
|
injectionResult = handleTargetsNotReadyLocked(currentTime, entry,
|
|
NULL, touchedWindow.window, nextWakeupTime);
|
|
goto Unresponsive;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this is the first pointer going down and the touched window has a wallpaper
|
|
// then also add the touched wallpaper windows so they are locked in for the duration
|
|
// of the touch gesture.
|
|
if (maskedAction == AMOTION_EVENT_ACTION_DOWN) {
|
|
const InputWindow* foregroundWindow = mTempTouchState.getFirstForegroundWindow();
|
|
if (foregroundWindow->hasWallpaper) {
|
|
for (size_t i = 0; i < mWindows.size(); i++) {
|
|
const InputWindow* window = & mWindows[i];
|
|
if (window->layoutParamsType == InputWindow::TYPE_WALLPAPER) {
|
|
mTempTouchState.addOrUpdateWindow(window,
|
|
InputTarget::FLAG_WINDOW_IS_OBSCURED, BitSet32(0));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Success! Output targets.
|
|
injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED;
|
|
|
|
for (size_t i = 0; i < mTempTouchState.windows.size(); i++) {
|
|
const TouchedWindow& touchedWindow = mTempTouchState.windows.itemAt(i);
|
|
addWindowTargetLocked(touchedWindow.window, touchedWindow.targetFlags,
|
|
touchedWindow.pointerIds);
|
|
}
|
|
|
|
// Drop the outside touch window since we will not care about them in the next iteration.
|
|
mTempTouchState.removeOutsideTouchWindows();
|
|
|
|
Failed:
|
|
// Check injection permission once and for all.
|
|
if (injectionPermission == INJECTION_PERMISSION_UNKNOWN) {
|
|
if (checkInjectionPermission(NULL, entry->injectionState)) {
|
|
injectionPermission = INJECTION_PERMISSION_GRANTED;
|
|
} else {
|
|
injectionPermission = INJECTION_PERMISSION_DENIED;
|
|
}
|
|
}
|
|
|
|
// Update final pieces of touch state if the injector had permission.
|
|
if (injectionPermission == INJECTION_PERMISSION_GRANTED) {
|
|
if (maskedAction == AMOTION_EVENT_ACTION_UP
|
|
|| maskedAction == AMOTION_EVENT_ACTION_CANCEL) {
|
|
// All pointers up or canceled.
|
|
mTempTouchState.reset();
|
|
} else if (maskedAction == AMOTION_EVENT_ACTION_DOWN) {
|
|
// First pointer went down.
|
|
if (mTouchState.down) {
|
|
LOGW("Pointer down received while already down.");
|
|
}
|
|
} else if (maskedAction == AMOTION_EVENT_ACTION_POINTER_UP) {
|
|
// One pointer went up.
|
|
if (isSplit) {
|
|
int32_t pointerIndex = getMotionEventActionPointerIndex(action);
|
|
uint32_t pointerId = entry->pointerIds[pointerIndex];
|
|
|
|
for (size_t i = 0; i < mTempTouchState.windows.size(); ) {
|
|
TouchedWindow& touchedWindow = mTempTouchState.windows.editItemAt(i);
|
|
if (touchedWindow.targetFlags & InputTarget::FLAG_SPLIT) {
|
|
touchedWindow.pointerIds.clearBit(pointerId);
|
|
if (touchedWindow.pointerIds.isEmpty()) {
|
|
mTempTouchState.windows.removeAt(i);
|
|
continue;
|
|
}
|
|
}
|
|
i += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Save changes to touch state.
|
|
mTouchState.copyFrom(mTempTouchState);
|
|
} else {
|
|
#if DEBUG_FOCUS
|
|
LOGD("Not updating touch focus because injection was denied.");
|
|
#endif
|
|
}
|
|
|
|
Unresponsive:
|
|
nsecs_t timeSpentWaitingForApplication = getTimeSpentWaitingForApplicationLocked(currentTime);
|
|
updateDispatchStatisticsLocked(currentTime, entry,
|
|
injectionResult, timeSpentWaitingForApplication);
|
|
#if DEBUG_FOCUS
|
|
LOGD("findTouchedWindow finished: injectionResult=%d, injectionPermission=%d, "
|
|
"timeSpentWaitingForApplication=%0.1fms",
|
|
injectionResult, injectionPermission, timeSpentWaitingForApplication / 1000000.0);
|
|
#endif
|
|
return injectionResult;
|
|
}
|
|
|
|
void InputDispatcher::addWindowTargetLocked(const InputWindow* window, int32_t targetFlags,
|
|
BitSet32 pointerIds) {
|
|
mCurrentInputTargets.push();
|
|
|
|
InputTarget& target = mCurrentInputTargets.editTop();
|
|
target.inputChannel = window->inputChannel;
|
|
target.flags = targetFlags;
|
|
target.xOffset = - window->frameLeft;
|
|
target.yOffset = - window->frameTop;
|
|
target.windowType = window->layoutParamsType;
|
|
target.pointerIds = pointerIds;
|
|
}
|
|
|
|
void InputDispatcher::addMonitoringTargetsLocked() {
|
|
for (size_t i = 0; i < mMonitoringChannels.size(); i++) {
|
|
mCurrentInputTargets.push();
|
|
|
|
InputTarget& target = mCurrentInputTargets.editTop();
|
|
target.inputChannel = mMonitoringChannels[i];
|
|
target.flags = 0;
|
|
target.xOffset = 0;
|
|
target.yOffset = 0;
|
|
target.windowType = InputWindow::TYPE_SYSTEM_OVERLAY;
|
|
}
|
|
}
|
|
|
|
bool InputDispatcher::checkInjectionPermission(const InputWindow* window,
|
|
const InjectionState* injectionState) {
|
|
if (injectionState
|
|
&& injectionState->injectorUid > 0
|
|
&& (window == NULL || window->ownerUid != injectionState->injectorUid)) {
|
|
bool result = mPolicy->checkInjectEventsPermissionNonReentrant(
|
|
injectionState->injectorPid, injectionState->injectorUid);
|
|
if (! result) {
|
|
if (window) {
|
|
LOGW("Permission denied: injecting event from pid %d uid %d to window "
|
|
"with input channel %s owned by uid %d",
|
|
injectionState->injectorPid, injectionState->injectorUid,
|
|
window->inputChannel->getName().string(),
|
|
window->ownerUid);
|
|
} else {
|
|
LOGW("Permission denied: injecting event from pid %d uid %d",
|
|
injectionState->injectorPid, injectionState->injectorUid);
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool InputDispatcher::isWindowObscuredAtPointLocked(
|
|
const InputWindow* window, int32_t x, int32_t y) const {
|
|
size_t numWindows = mWindows.size();
|
|
for (size_t i = 0; i < numWindows; i++) {
|
|
const InputWindow* other = & mWindows.itemAt(i);
|
|
if (other == window) {
|
|
break;
|
|
}
|
|
if (other->visible && ! other->isTrustedOverlay() && other->frameContainsPoint(x, y)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool InputDispatcher::isWindowFinishedWithPreviousInputLocked(const InputWindow* window) {
|
|
ssize_t connectionIndex = getConnectionIndexLocked(window->inputChannel);
|
|
if (connectionIndex >= 0) {
|
|
sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex);
|
|
return connection->outboundQueue.isEmpty();
|
|
} else {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
String8 InputDispatcher::getApplicationWindowLabelLocked(const InputApplication* application,
|
|
const InputWindow* window) {
|
|
if (application) {
|
|
if (window) {
|
|
String8 label(application->name);
|
|
label.append(" - ");
|
|
label.append(window->name);
|
|
return label;
|
|
} else {
|
|
return application->name;
|
|
}
|
|
} else if (window) {
|
|
return window->name;
|
|
} else {
|
|
return String8("<unknown application or window>");
|
|
}
|
|
}
|
|
|
|
bool InputDispatcher::shouldPokeUserActivityForCurrentInputTargetsLocked() {
|
|
for (size_t i = 0; i < mCurrentInputTargets.size(); i++) {
|
|
if (mCurrentInputTargets[i].windowType == InputWindow::TYPE_KEYGUARD) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void InputDispatcher::pokeUserActivityLocked(nsecs_t eventTime, int32_t eventType) {
|
|
CommandEntry* commandEntry = postCommandLocked(
|
|
& InputDispatcher::doPokeUserActivityLockedInterruptible);
|
|
commandEntry->eventTime = eventTime;
|
|
commandEntry->userActivityEventType = eventType;
|
|
}
|
|
|
|
void InputDispatcher::prepareDispatchCycleLocked(nsecs_t currentTime,
|
|
const sp<Connection>& connection, EventEntry* eventEntry, const InputTarget* inputTarget,
|
|
bool resumeWithAppendedMotionSample) {
|
|
#if DEBUG_DISPATCH_CYCLE
|
|
LOGD("channel '%s' ~ prepareDispatchCycle - flags=%d, "
|
|
"xOffset=%f, yOffset=%f, "
|
|
"windowType=%d, pointerIds=0x%x, "
|
|
"resumeWithAppendedMotionSample=%s",
|
|
connection->getInputChannelName(), inputTarget->flags,
|
|
inputTarget->xOffset, inputTarget->yOffset,
|
|
inputTarget->windowType, inputTarget->pointerIds.value,
|
|
toString(resumeWithAppendedMotionSample));
|
|
#endif
|
|
|
|
// Make sure we are never called for streaming when splitting across multiple windows.
|
|
bool isSplit = inputTarget->flags & InputTarget::FLAG_SPLIT;
|
|
assert(! (resumeWithAppendedMotionSample && isSplit));
|
|
|
|
// Skip this event if the connection status is not normal.
|
|
// We don't want to enqueue additional outbound events if the connection is broken.
|
|
if (connection->status != Connection::STATUS_NORMAL) {
|
|
LOGW("channel '%s' ~ Dropping event because the channel status is %s",
|
|
connection->getInputChannelName(), connection->getStatusLabel());
|
|
return;
|
|
}
|
|
|
|
// Split a motion event if needed.
|
|
if (isSplit) {
|
|
assert(eventEntry->type == EventEntry::TYPE_MOTION);
|
|
|
|
MotionEntry* originalMotionEntry = static_cast<MotionEntry*>(eventEntry);
|
|
if (inputTarget->pointerIds.count() != originalMotionEntry->pointerCount) {
|
|
MotionEntry* splitMotionEntry = splitMotionEvent(
|
|
originalMotionEntry, inputTarget->pointerIds);
|
|
#if DEBUG_FOCUS
|
|
LOGD("channel '%s' ~ Split motion event.",
|
|
connection->getInputChannelName());
|
|
logOutboundMotionDetailsLocked(" ", splitMotionEntry);
|
|
#endif
|
|
eventEntry = splitMotionEntry;
|
|
}
|
|
}
|
|
|
|
// Resume the dispatch cycle with a freshly appended motion sample.
|
|
// First we check that the last dispatch entry in the outbound queue is for the same
|
|
// motion event to which we appended the motion sample. If we find such a dispatch
|
|
// entry, and if it is currently in progress then we try to stream the new sample.
|
|
bool wasEmpty = connection->outboundQueue.isEmpty();
|
|
|
|
if (! wasEmpty && resumeWithAppendedMotionSample) {
|
|
DispatchEntry* motionEventDispatchEntry =
|
|
connection->findQueuedDispatchEntryForEvent(eventEntry);
|
|
if (motionEventDispatchEntry) {
|
|
// If the dispatch entry is not in progress, then we must be busy dispatching an
|
|
// earlier event. Not a problem, the motion event is on the outbound queue and will
|
|
// be dispatched later.
|
|
if (! motionEventDispatchEntry->inProgress) {
|
|
#if DEBUG_BATCHING
|
|
LOGD("channel '%s' ~ Not streaming because the motion event has "
|
|
"not yet been dispatched. "
|
|
"(Waiting for earlier events to be consumed.)",
|
|
connection->getInputChannelName());
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
// If the dispatch entry is in progress but it already has a tail of pending
|
|
// motion samples, then it must mean that the shared memory buffer filled up.
|
|
// Not a problem, when this dispatch cycle is finished, we will eventually start
|
|
// a new dispatch cycle to process the tail and that tail includes the newly
|
|
// appended motion sample.
|
|
if (motionEventDispatchEntry->tailMotionSample) {
|
|
#if DEBUG_BATCHING
|
|
LOGD("channel '%s' ~ Not streaming because no new samples can "
|
|
"be appended to the motion event in this dispatch cycle. "
|
|
"(Waiting for next dispatch cycle to start.)",
|
|
connection->getInputChannelName());
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
// The dispatch entry is in progress and is still potentially open for streaming.
|
|
// Try to stream the new motion sample. This might fail if the consumer has already
|
|
// consumed the motion event (or if the channel is broken).
|
|
MotionEntry* motionEntry = static_cast<MotionEntry*>(eventEntry);
|
|
MotionSample* appendedMotionSample = motionEntry->lastSample;
|
|
status_t status = connection->inputPublisher.appendMotionSample(
|
|
appendedMotionSample->eventTime, appendedMotionSample->pointerCoords);
|
|
if (status == OK) {
|
|
#if DEBUG_BATCHING
|
|
LOGD("channel '%s' ~ Successfully streamed new motion sample.",
|
|
connection->getInputChannelName());
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
#if DEBUG_BATCHING
|
|
if (status == NO_MEMORY) {
|
|
LOGD("channel '%s' ~ Could not append motion sample to currently "
|
|
"dispatched move event because the shared memory buffer is full. "
|
|
"(Waiting for next dispatch cycle to start.)",
|
|
connection->getInputChannelName());
|
|
} else if (status == status_t(FAILED_TRANSACTION)) {
|
|
LOGD("channel '%s' ~ Could not append motion sample to currently "
|
|
"dispatched move event because the event has already been consumed. "
|
|
"(Waiting for next dispatch cycle to start.)",
|
|
connection->getInputChannelName());
|
|
} else {
|
|
LOGD("channel '%s' ~ Could not append motion sample to currently "
|
|
"dispatched move event due to an error, status=%d. "
|
|
"(Waiting for next dispatch cycle to start.)",
|
|
connection->getInputChannelName(), status);
|
|
}
|
|
#endif
|
|
// Failed to stream. Start a new tail of pending motion samples to dispatch
|
|
// in the next cycle.
|
|
motionEventDispatchEntry->tailMotionSample = appendedMotionSample;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Bring the input state back in line with reality in case it drifted off during an ANR.
|
|
if (connection->inputState.isOutOfSync()) {
|
|
mTempCancelationEvents.clear();
|
|
connection->inputState.synthesizeCancelationEvents(& mAllocator, mTempCancelationEvents);
|
|
connection->inputState.resetOutOfSync();
|
|
|
|
if (! mTempCancelationEvents.isEmpty()) {
|
|
LOGI("channel '%s' ~ Generated %d cancelation events to bring channel back in sync "
|
|
"with reality.",
|
|
connection->getInputChannelName(), mTempCancelationEvents.size());
|
|
|
|
for (size_t i = 0; i < mTempCancelationEvents.size(); i++) {
|
|
EventEntry* cancelationEventEntry = mTempCancelationEvents.itemAt(i);
|
|
switch (cancelationEventEntry->type) {
|
|
case EventEntry::TYPE_KEY:
|
|
logOutboundKeyDetailsLocked(" ",
|
|
static_cast<KeyEntry*>(cancelationEventEntry));
|
|
break;
|
|
case EventEntry::TYPE_MOTION:
|
|
logOutboundMotionDetailsLocked(" ",
|
|
static_cast<MotionEntry*>(cancelationEventEntry));
|
|
break;
|
|
}
|
|
|
|
DispatchEntry* cancelationDispatchEntry =
|
|
mAllocator.obtainDispatchEntry(cancelationEventEntry,
|
|
0, inputTarget->xOffset, inputTarget->yOffset); // increments ref
|
|
connection->outboundQueue.enqueueAtTail(cancelationDispatchEntry);
|
|
|
|
mAllocator.releaseEventEntry(cancelationEventEntry);
|
|
}
|
|
}
|
|
}
|
|
|
|
// This is a new event.
|
|
// Enqueue a new dispatch entry onto the outbound queue for this connection.
|
|
DispatchEntry* dispatchEntry = mAllocator.obtainDispatchEntry(eventEntry, // increments ref
|
|
inputTarget->flags, inputTarget->xOffset, inputTarget->yOffset);
|
|
if (dispatchEntry->hasForegroundTarget()) {
|
|
incrementPendingForegroundDispatchesLocked(eventEntry);
|
|
}
|
|
|
|
// Handle the case where we could not stream a new motion sample because the consumer has
|
|
// already consumed the motion event (otherwise the corresponding dispatch entry would
|
|
// still be in the outbound queue for this connection). We set the head motion sample
|
|
// to the list starting with the newly appended motion sample.
|
|
if (resumeWithAppendedMotionSample) {
|
|
#if DEBUG_BATCHING
|
|
LOGD("channel '%s' ~ Preparing a new dispatch cycle for additional motion samples "
|
|
"that cannot be streamed because the motion event has already been consumed.",
|
|
connection->getInputChannelName());
|
|
#endif
|
|
MotionSample* appendedMotionSample = static_cast<MotionEntry*>(eventEntry)->lastSample;
|
|
dispatchEntry->headMotionSample = appendedMotionSample;
|
|
}
|
|
|
|
// Enqueue the dispatch entry.
|
|
connection->outboundQueue.enqueueAtTail(dispatchEntry);
|
|
|
|
// If the outbound queue was previously empty, start the dispatch cycle going.
|
|
if (wasEmpty) {
|
|
activateConnectionLocked(connection.get());
|
|
startDispatchCycleLocked(currentTime, connection);
|
|
}
|
|
}
|
|
|
|
void InputDispatcher::startDispatchCycleLocked(nsecs_t currentTime,
|
|
const sp<Connection>& connection) {
|
|
#if DEBUG_DISPATCH_CYCLE
|
|
LOGD("channel '%s' ~ startDispatchCycle",
|
|
connection->getInputChannelName());
|
|
#endif
|
|
|
|
assert(connection->status == Connection::STATUS_NORMAL);
|
|
assert(! connection->outboundQueue.isEmpty());
|
|
|
|
DispatchEntry* dispatchEntry = connection->outboundQueue.headSentinel.next;
|
|
assert(! dispatchEntry->inProgress);
|
|
|
|
// Mark the dispatch entry as in progress.
|
|
dispatchEntry->inProgress = true;
|
|
|
|
// Update the connection's input state.
|
|
EventEntry* eventEntry = dispatchEntry->eventEntry;
|
|
InputState::Consistency consistency = connection->inputState.trackEvent(eventEntry);
|
|
|
|
#if FILTER_INPUT_EVENTS
|
|
// Filter out inconsistent sequences of input events.
|
|
// The input system may drop or inject events in a way that could violate implicit
|
|
// invariants on input state and potentially cause an application to crash
|
|
// or think that a key or pointer is stuck down. Technically we make no guarantees
|
|
// of consistency but it would be nice to improve on this where possible.
|
|
// XXX: This code is a proof of concept only. Not ready for prime time.
|
|
if (consistency == InputState::TOLERABLE) {
|
|
#if DEBUG_DISPATCH_CYCLE
|
|
LOGD("channel '%s' ~ Sending an event that is inconsistent with the connection's "
|
|
"current input state but that is likely to be tolerated by the application.",
|
|
connection->getInputChannelName());
|
|
#endif
|
|
} else if (consistency == InputState::BROKEN) {
|
|
LOGI("channel '%s' ~ Dropping an event that is inconsistent with the connection's "
|
|
"current input state and that is likely to cause the application to crash.",
|
|
connection->getInputChannelName());
|
|
startNextDispatchCycleLocked(currentTime, connection);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
// Publish the event.
|
|
status_t status;
|
|
switch (eventEntry->type) {
|
|
case EventEntry::TYPE_KEY: {
|
|
KeyEntry* keyEntry = static_cast<KeyEntry*>(eventEntry);
|
|
|
|
// Apply target flags.
|
|
int32_t action = keyEntry->action;
|
|
int32_t flags = keyEntry->flags;
|
|
|
|
// Publish the key event.
|
|
status = connection->inputPublisher.publishKeyEvent(keyEntry->deviceId, keyEntry->source,
|
|
action, flags, keyEntry->keyCode, keyEntry->scanCode,
|
|
keyEntry->metaState, keyEntry->repeatCount, keyEntry->downTime,
|
|
keyEntry->eventTime);
|
|
|
|
if (status) {
|
|
LOGE("channel '%s' ~ Could not publish key event, "
|
|
"status=%d", connection->getInputChannelName(), status);
|
|
abortDispatchCycleLocked(currentTime, connection, true /*broken*/);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case EventEntry::TYPE_MOTION: {
|
|
MotionEntry* motionEntry = static_cast<MotionEntry*>(eventEntry);
|
|
|
|
// Apply target flags.
|
|
int32_t action = motionEntry->action;
|
|
int32_t flags = motionEntry->flags;
|
|
if (dispatchEntry->targetFlags & InputTarget::FLAG_OUTSIDE) {
|
|
action = AMOTION_EVENT_ACTION_OUTSIDE;
|
|
}
|
|
if (dispatchEntry->targetFlags & InputTarget::FLAG_WINDOW_IS_OBSCURED) {
|
|
flags |= AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED;
|
|
}
|
|
|
|
// If headMotionSample is non-NULL, then it points to the first new sample that we
|
|
// were unable to dispatch during the previous cycle so we resume dispatching from
|
|
// that point in the list of motion samples.
|
|
// Otherwise, we just start from the first sample of the motion event.
|
|
MotionSample* firstMotionSample = dispatchEntry->headMotionSample;
|
|
if (! firstMotionSample) {
|
|
firstMotionSample = & motionEntry->firstSample;
|
|
}
|
|
|
|
// Set the X and Y offset depending on the input source.
|
|
float xOffset, yOffset;
|
|
if (motionEntry->source & AINPUT_SOURCE_CLASS_POINTER) {
|
|
xOffset = dispatchEntry->xOffset;
|
|
yOffset = dispatchEntry->yOffset;
|
|
} else {
|
|
xOffset = 0.0f;
|
|
yOffset = 0.0f;
|
|
}
|
|
|
|
// Publish the motion event and the first motion sample.
|
|
status = connection->inputPublisher.publishMotionEvent(motionEntry->deviceId,
|
|
motionEntry->source, action, flags, motionEntry->edgeFlags, motionEntry->metaState,
|
|
xOffset, yOffset,
|
|
motionEntry->xPrecision, motionEntry->yPrecision,
|
|
motionEntry->downTime, firstMotionSample->eventTime,
|
|
motionEntry->pointerCount, motionEntry->pointerIds,
|
|
firstMotionSample->pointerCoords);
|
|
|
|
if (status) {
|
|
LOGE("channel '%s' ~ Could not publish motion event, "
|
|
"status=%d", connection->getInputChannelName(), status);
|
|
abortDispatchCycleLocked(currentTime, connection, true /*broken*/);
|
|
return;
|
|
}
|
|
|
|
// Append additional motion samples.
|
|
MotionSample* nextMotionSample = firstMotionSample->next;
|
|
for (; nextMotionSample != NULL; nextMotionSample = nextMotionSample->next) {
|
|
status = connection->inputPublisher.appendMotionSample(
|
|
nextMotionSample->eventTime, nextMotionSample->pointerCoords);
|
|
if (status == NO_MEMORY) {
|
|
#if DEBUG_DISPATCH_CYCLE
|
|
LOGD("channel '%s' ~ Shared memory buffer full. Some motion samples will "
|
|
"be sent in the next dispatch cycle.",
|
|
connection->getInputChannelName());
|
|
#endif
|
|
break;
|
|
}
|
|
if (status != OK) {
|
|
LOGE("channel '%s' ~ Could not append motion sample "
|
|
"for a reason other than out of memory, status=%d",
|
|
connection->getInputChannelName(), status);
|
|
abortDispatchCycleLocked(currentTime, connection, true /*broken*/);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Remember the next motion sample that we could not dispatch, in case we ran out
|
|
// of space in the shared memory buffer.
|
|
dispatchEntry->tailMotionSample = nextMotionSample;
|
|
break;
|
|
}
|
|
|
|
default: {
|
|
assert(false);
|
|
}
|
|
}
|
|
|
|
// Send the dispatch signal.
|
|
status = connection->inputPublisher.sendDispatchSignal();
|
|
if (status) {
|
|
LOGE("channel '%s' ~ Could not send dispatch signal, status=%d",
|
|
connection->getInputChannelName(), status);
|
|
abortDispatchCycleLocked(currentTime, connection, true /*broken*/);
|
|
return;
|
|
}
|
|
|
|
// Record information about the newly started dispatch cycle.
|
|
connection->lastEventTime = eventEntry->eventTime;
|
|
connection->lastDispatchTime = currentTime;
|
|
|
|
// Notify other system components.
|
|
onDispatchCycleStartedLocked(currentTime, connection);
|
|
}
|
|
|
|
void InputDispatcher::finishDispatchCycleLocked(nsecs_t currentTime,
|
|
const sp<Connection>& connection) {
|
|
#if DEBUG_DISPATCH_CYCLE
|
|
LOGD("channel '%s' ~ finishDispatchCycle - %01.1fms since event, "
|
|
"%01.1fms since dispatch",
|
|
connection->getInputChannelName(),
|
|
connection->getEventLatencyMillis(currentTime),
|
|
connection->getDispatchLatencyMillis(currentTime));
|
|
#endif
|
|
|
|
if (connection->status == Connection::STATUS_BROKEN
|
|
|| connection->status == Connection::STATUS_ZOMBIE) {
|
|
return;
|
|
}
|
|
|
|
// Notify other system components.
|
|
onDispatchCycleFinishedLocked(currentTime, connection);
|
|
|
|
// Reset the publisher since the event has been consumed.
|
|
// We do this now so that the publisher can release some of its internal resources
|
|
// while waiting for the next dispatch cycle to begin.
|
|
status_t status = connection->inputPublisher.reset();
|
|
if (status) {
|
|
LOGE("channel '%s' ~ Could not reset publisher, status=%d",
|
|
connection->getInputChannelName(), status);
|
|
abortDispatchCycleLocked(currentTime, connection, true /*broken*/);
|
|
return;
|
|
}
|
|
|
|
startNextDispatchCycleLocked(currentTime, connection);
|
|
}
|
|
|
|
void InputDispatcher::startNextDispatchCycleLocked(nsecs_t currentTime,
|
|
const sp<Connection>& connection) {
|
|
// Start the next dispatch cycle for this connection.
|
|
while (! connection->outboundQueue.isEmpty()) {
|
|
DispatchEntry* dispatchEntry = connection->outboundQueue.headSentinel.next;
|
|
if (dispatchEntry->inProgress) {
|
|
// Finish or resume current event in progress.
|
|
if (dispatchEntry->tailMotionSample) {
|
|
// We have a tail of undispatched motion samples.
|
|
// Reuse the same DispatchEntry and start a new cycle.
|
|
dispatchEntry->inProgress = false;
|
|
dispatchEntry->headMotionSample = dispatchEntry->tailMotionSample;
|
|
dispatchEntry->tailMotionSample = NULL;
|
|
startDispatchCycleLocked(currentTime, connection);
|
|
return;
|
|
}
|
|
// Finished.
|
|
connection->outboundQueue.dequeueAtHead();
|
|
if (dispatchEntry->hasForegroundTarget()) {
|
|
decrementPendingForegroundDispatchesLocked(dispatchEntry->eventEntry);
|
|
}
|
|
mAllocator.releaseDispatchEntry(dispatchEntry);
|
|
} else {
|
|
// If the head is not in progress, then we must have already dequeued the in
|
|
// progress event, which means we actually aborted it.
|
|
// So just start the next event for this connection.
|
|
startDispatchCycleLocked(currentTime, connection);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Outbound queue is empty, deactivate the connection.
|
|
deactivateConnectionLocked(connection.get());
|
|
}
|
|
|
|
void InputDispatcher::abortDispatchCycleLocked(nsecs_t currentTime,
|
|
const sp<Connection>& connection, bool broken) {
|
|
#if DEBUG_DISPATCH_CYCLE
|
|
LOGD("channel '%s' ~ abortDispatchCycle - broken=%s",
|
|
connection->getInputChannelName(), toString(broken));
|
|
#endif
|
|
|
|
// Input state will no longer be realistic.
|
|
connection->inputState.setOutOfSync();
|
|
|
|
// Clear the outbound queue.
|
|
drainOutboundQueueLocked(connection.get());
|
|
|
|
// Handle the case where the connection appears to be unrecoverably broken.
|
|
// Ignore already broken or zombie connections.
|
|
if (broken) {
|
|
if (connection->status == Connection::STATUS_NORMAL) {
|
|
connection->status = Connection::STATUS_BROKEN;
|
|
|
|
// Notify other system components.
|
|
onDispatchCycleBrokenLocked(currentTime, connection);
|
|
}
|
|
}
|
|
}
|
|
|
|
void InputDispatcher::drainOutboundQueueLocked(Connection* connection) {
|
|
while (! connection->outboundQueue.isEmpty()) {
|
|
DispatchEntry* dispatchEntry = connection->outboundQueue.dequeueAtHead();
|
|
if (dispatchEntry->hasForegroundTarget()) {
|
|
decrementPendingForegroundDispatchesLocked(dispatchEntry->eventEntry);
|
|
}
|
|
mAllocator.releaseDispatchEntry(dispatchEntry);
|
|
}
|
|
|
|
deactivateConnectionLocked(connection);
|
|
}
|
|
|
|
int InputDispatcher::handleReceiveCallback(int receiveFd, int events, void* data) {
|
|
InputDispatcher* d = static_cast<InputDispatcher*>(data);
|
|
|
|
{ // acquire lock
|
|
AutoMutex _l(d->mLock);
|
|
|
|
ssize_t connectionIndex = d->mConnectionsByReceiveFd.indexOfKey(receiveFd);
|
|
if (connectionIndex < 0) {
|
|
LOGE("Received spurious receive callback for unknown input channel. "
|
|
"fd=%d, events=0x%x", receiveFd, events);
|
|
return 0; // remove the callback
|
|
}
|
|
|
|
nsecs_t currentTime = now();
|
|
|
|
sp<Connection> connection = d->mConnectionsByReceiveFd.valueAt(connectionIndex);
|
|
if (events & (ALOOPER_EVENT_ERROR | ALOOPER_EVENT_HANGUP)) {
|
|
LOGE("channel '%s' ~ Consumer closed input channel or an error occurred. "
|
|
"events=0x%x", connection->getInputChannelName(), events);
|
|
d->abortDispatchCycleLocked(currentTime, connection, true /*broken*/);
|
|
d->runCommandsLockedInterruptible();
|
|
return 0; // remove the callback
|
|
}
|
|
|
|
if (! (events & ALOOPER_EVENT_INPUT)) {
|
|
LOGW("channel '%s' ~ Received spurious callback for unhandled poll event. "
|
|
"events=0x%x", connection->getInputChannelName(), events);
|
|
return 1;
|
|
}
|
|
|
|
status_t status = connection->inputPublisher.receiveFinishedSignal();
|
|
if (status) {
|
|
LOGE("channel '%s' ~ Failed to receive finished signal. status=%d",
|
|
connection->getInputChannelName(), status);
|
|
d->abortDispatchCycleLocked(currentTime, connection, true /*broken*/);
|
|
d->runCommandsLockedInterruptible();
|
|
return 0; // remove the callback
|
|
}
|
|
|
|
d->finishDispatchCycleLocked(currentTime, connection);
|
|
d->runCommandsLockedInterruptible();
|
|
return 1;
|
|
} // release lock
|
|
}
|
|
|
|
InputDispatcher::MotionEntry*
|
|
InputDispatcher::splitMotionEvent(const MotionEntry* originalMotionEntry, BitSet32 pointerIds) {
|
|
assert(pointerIds.value != 0);
|
|
|
|
uint32_t splitPointerIndexMap[MAX_POINTERS];
|
|
int32_t splitPointerIds[MAX_POINTERS];
|
|
PointerCoords splitPointerCoords[MAX_POINTERS];
|
|
|
|
uint32_t originalPointerCount = originalMotionEntry->pointerCount;
|
|
uint32_t splitPointerCount = 0;
|
|
|
|
for (uint32_t originalPointerIndex = 0; originalPointerIndex < originalPointerCount;
|
|
originalPointerIndex++) {
|
|
int32_t pointerId = uint32_t(originalMotionEntry->pointerIds[originalPointerIndex]);
|
|
if (pointerIds.hasBit(pointerId)) {
|
|
splitPointerIndexMap[splitPointerCount] = originalPointerIndex;
|
|
splitPointerIds[splitPointerCount] = pointerId;
|
|
splitPointerCoords[splitPointerCount] =
|
|
originalMotionEntry->firstSample.pointerCoords[originalPointerIndex];
|
|
splitPointerCount += 1;
|
|
}
|
|
}
|
|
assert(splitPointerCount == pointerIds.count());
|
|
|
|
int32_t action = originalMotionEntry->action;
|
|
int32_t maskedAction = action & AMOTION_EVENT_ACTION_MASK;
|
|
if (maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN
|
|
|| maskedAction == AMOTION_EVENT_ACTION_POINTER_UP) {
|
|
int32_t originalPointerIndex = getMotionEventActionPointerIndex(action);
|
|
int32_t pointerId = originalMotionEntry->pointerIds[originalPointerIndex];
|
|
if (pointerIds.hasBit(pointerId)) {
|
|
if (pointerIds.count() == 1) {
|
|
// The first/last pointer went down/up.
|
|
action = maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN
|
|
? AMOTION_EVENT_ACTION_DOWN : AMOTION_EVENT_ACTION_UP;
|
|
} else {
|
|
// A secondary pointer went down/up.
|
|
uint32_t splitPointerIndex = 0;
|
|
while (pointerId != splitPointerIds[splitPointerIndex]) {
|
|
splitPointerIndex += 1;
|
|
}
|
|
action = maskedAction | (splitPointerIndex
|
|
<< AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
|
|
}
|
|
} else {
|
|
// An unrelated pointer changed.
|
|
action = AMOTION_EVENT_ACTION_MOVE;
|
|
}
|
|
}
|
|
|
|
MotionEntry* splitMotionEntry = mAllocator.obtainMotionEntry(
|
|
originalMotionEntry->eventTime,
|
|
originalMotionEntry->deviceId,
|
|
originalMotionEntry->source,
|
|
originalMotionEntry->policyFlags,
|
|
action,
|
|
originalMotionEntry->flags,
|
|
originalMotionEntry->metaState,
|
|
originalMotionEntry->edgeFlags,
|
|
originalMotionEntry->xPrecision,
|
|
originalMotionEntry->yPrecision,
|
|
originalMotionEntry->downTime,
|
|
splitPointerCount, splitPointerIds, splitPointerCoords);
|
|
|
|
for (MotionSample* originalMotionSample = originalMotionEntry->firstSample.next;
|
|
originalMotionSample != NULL; originalMotionSample = originalMotionSample->next) {
|
|
for (uint32_t splitPointerIndex = 0; splitPointerIndex < splitPointerCount;
|
|
splitPointerIndex++) {
|
|
uint32_t originalPointerIndex = splitPointerIndexMap[splitPointerIndex];
|
|
splitPointerCoords[splitPointerIndex] =
|
|
originalMotionSample->pointerCoords[originalPointerIndex];
|
|
}
|
|
|
|
mAllocator.appendMotionSample(splitMotionEntry, originalMotionSample->eventTime,
|
|
splitPointerCoords);
|
|
}
|
|
|
|
return splitMotionEntry;
|
|
}
|
|
|
|
void InputDispatcher::notifyConfigurationChanged(nsecs_t eventTime) {
|
|
#if DEBUG_INBOUND_EVENT_DETAILS
|
|
LOGD("notifyConfigurationChanged - eventTime=%lld", eventTime);
|
|
#endif
|
|
|
|
bool needWake;
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
ConfigurationChangedEntry* newEntry = mAllocator.obtainConfigurationChangedEntry(eventTime);
|
|
needWake = enqueueInboundEventLocked(newEntry);
|
|
} // release lock
|
|
|
|
if (needWake) {
|
|
mLooper->wake();
|
|
}
|
|
}
|
|
|
|
void InputDispatcher::notifyKey(nsecs_t eventTime, int32_t deviceId, int32_t source,
|
|
uint32_t policyFlags, int32_t action, int32_t flags,
|
|
int32_t keyCode, int32_t scanCode, int32_t metaState, nsecs_t downTime) {
|
|
#if DEBUG_INBOUND_EVENT_DETAILS
|
|
LOGD("notifyKey - eventTime=%lld, deviceId=0x%x, source=0x%x, policyFlags=0x%x, action=0x%x, "
|
|
"flags=0x%x, keyCode=0x%x, scanCode=0x%x, metaState=0x%x, downTime=%lld",
|
|
eventTime, deviceId, source, policyFlags, action, flags,
|
|
keyCode, scanCode, metaState, downTime);
|
|
#endif
|
|
if (! validateKeyEvent(action)) {
|
|
return;
|
|
}
|
|
|
|
bool needWake;
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
int32_t repeatCount = 0;
|
|
KeyEntry* newEntry = mAllocator.obtainKeyEntry(eventTime,
|
|
deviceId, source, policyFlags, action, flags, keyCode, scanCode,
|
|
metaState, repeatCount, downTime);
|
|
|
|
needWake = enqueueInboundEventLocked(newEntry);
|
|
} // release lock
|
|
|
|
if (needWake) {
|
|
mLooper->wake();
|
|
}
|
|
}
|
|
|
|
void InputDispatcher::notifyMotion(nsecs_t eventTime, int32_t deviceId, int32_t source,
|
|
uint32_t policyFlags, int32_t action, int32_t flags, int32_t metaState, int32_t edgeFlags,
|
|
uint32_t pointerCount, const int32_t* pointerIds, const PointerCoords* pointerCoords,
|
|
float xPrecision, float yPrecision, nsecs_t downTime) {
|
|
#if DEBUG_INBOUND_EVENT_DETAILS
|
|
LOGD("notifyMotion - eventTime=%lld, deviceId=0x%x, source=0x%x, policyFlags=0x%x, "
|
|
"action=0x%x, flags=0x%x, metaState=0x%x, edgeFlags=0x%x, "
|
|
"xPrecision=%f, yPrecision=%f, downTime=%lld",
|
|
eventTime, deviceId, source, policyFlags, action, flags, metaState, edgeFlags,
|
|
xPrecision, yPrecision, downTime);
|
|
for (uint32_t i = 0; i < pointerCount; i++) {
|
|
LOGD(" Pointer %d: id=%d, x=%f, y=%f, pressure=%f, size=%f, "
|
|
"touchMajor=%f, touchMinor=%f, toolMajor=%f, toolMinor=%f, "
|
|
"orientation=%f",
|
|
i, pointerIds[i], pointerCoords[i].x, pointerCoords[i].y,
|
|
pointerCoords[i].pressure, pointerCoords[i].size,
|
|
pointerCoords[i].touchMajor, pointerCoords[i].touchMinor,
|
|
pointerCoords[i].toolMajor, pointerCoords[i].toolMinor,
|
|
pointerCoords[i].orientation);
|
|
}
|
|
#endif
|
|
if (! validateMotionEvent(action, pointerCount, pointerIds)) {
|
|
return;
|
|
}
|
|
|
|
bool needWake;
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
// Attempt batching and streaming of move events.
|
|
if (action == AMOTION_EVENT_ACTION_MOVE) {
|
|
// BATCHING CASE
|
|
//
|
|
// Try to append a move sample to the tail of the inbound queue for this device.
|
|
// Give up if we encounter a non-move motion event for this device since that
|
|
// means we cannot append any new samples until a new motion event has started.
|
|
for (EventEntry* entry = mInboundQueue.tailSentinel.prev;
|
|
entry != & mInboundQueue.headSentinel; entry = entry->prev) {
|
|
if (entry->type != EventEntry::TYPE_MOTION) {
|
|
// Keep looking for motion events.
|
|
continue;
|
|
}
|
|
|
|
MotionEntry* motionEntry = static_cast<MotionEntry*>(entry);
|
|
if (motionEntry->deviceId != deviceId) {
|
|
// Keep looking for this device.
|
|
continue;
|
|
}
|
|
|
|
if (motionEntry->action != AMOTION_EVENT_ACTION_MOVE
|
|
|| motionEntry->pointerCount != pointerCount
|
|
|| motionEntry->isInjected()) {
|
|
// Last motion event in the queue for this device is not compatible for
|
|
// appending new samples. Stop here.
|
|
goto NoBatchingOrStreaming;
|
|
}
|
|
|
|
// The last motion event is a move and is compatible for appending.
|
|
// Do the batching magic.
|
|
mAllocator.appendMotionSample(motionEntry, eventTime, pointerCoords);
|
|
#if DEBUG_BATCHING
|
|
LOGD("Appended motion sample onto batch for most recent "
|
|
"motion event for this device in the inbound queue.");
|
|
#endif
|
|
return; // done!
|
|
}
|
|
|
|
// STREAMING CASE
|
|
//
|
|
// There is no pending motion event (of any kind) for this device in the inbound queue.
|
|
// Search the outbound queue for the current foreground targets to find a dispatched
|
|
// motion event that is still in progress. If found, then, appen the new sample to
|
|
// that event and push it out to all current targets. The logic in
|
|
// prepareDispatchCycleLocked takes care of the case where some targets may
|
|
// already have consumed the motion event by starting a new dispatch cycle if needed.
|
|
if (mCurrentInputTargetsValid) {
|
|
for (size_t i = 0; i < mCurrentInputTargets.size(); i++) {
|
|
const InputTarget& inputTarget = mCurrentInputTargets[i];
|
|
if ((inputTarget.flags & InputTarget::FLAG_FOREGROUND) == 0) {
|
|
// Skip non-foreground targets. We only want to stream if there is at
|
|
// least one foreground target whose dispatch is still in progress.
|
|
continue;
|
|
}
|
|
|
|
ssize_t connectionIndex = getConnectionIndexLocked(inputTarget.inputChannel);
|
|
if (connectionIndex < 0) {
|
|
// Connection must no longer be valid.
|
|
continue;
|
|
}
|
|
|
|
sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex);
|
|
if (connection->outboundQueue.isEmpty()) {
|
|
// This foreground target has an empty outbound queue.
|
|
continue;
|
|
}
|
|
|
|
DispatchEntry* dispatchEntry = connection->outboundQueue.headSentinel.next;
|
|
if (! dispatchEntry->inProgress
|
|
|| dispatchEntry->eventEntry->type != EventEntry::TYPE_MOTION
|
|
|| dispatchEntry->isSplit()) {
|
|
// No motion event is being dispatched, or it is being split across
|
|
// windows in which case we cannot stream.
|
|
continue;
|
|
}
|
|
|
|
MotionEntry* motionEntry = static_cast<MotionEntry*>(
|
|
dispatchEntry->eventEntry);
|
|
if (motionEntry->action != AMOTION_EVENT_ACTION_MOVE
|
|
|| motionEntry->deviceId != deviceId
|
|
|| motionEntry->pointerCount != pointerCount
|
|
|| motionEntry->isInjected()) {
|
|
// The motion event is not compatible with this move.
|
|
continue;
|
|
}
|
|
|
|
// Hurray! This foreground target is currently dispatching a move event
|
|
// that we can stream onto. Append the motion sample and resume dispatch.
|
|
mAllocator.appendMotionSample(motionEntry, eventTime, pointerCoords);
|
|
#if DEBUG_BATCHING
|
|
LOGD("Appended motion sample onto batch for most recently dispatched "
|
|
"motion event for this device in the outbound queues. "
|
|
"Attempting to stream the motion sample.");
|
|
#endif
|
|
nsecs_t currentTime = now();
|
|
dispatchEventToCurrentInputTargetsLocked(currentTime, motionEntry,
|
|
true /*resumeWithAppendedMotionSample*/);
|
|
|
|
runCommandsLockedInterruptible();
|
|
return; // done!
|
|
}
|
|
}
|
|
|
|
NoBatchingOrStreaming:;
|
|
}
|
|
|
|
// Just enqueue a new motion event.
|
|
MotionEntry* newEntry = mAllocator.obtainMotionEntry(eventTime,
|
|
deviceId, source, policyFlags, action, flags, metaState, edgeFlags,
|
|
xPrecision, yPrecision, downTime,
|
|
pointerCount, pointerIds, pointerCoords);
|
|
|
|
needWake = enqueueInboundEventLocked(newEntry);
|
|
} // release lock
|
|
|
|
if (needWake) {
|
|
mLooper->wake();
|
|
}
|
|
}
|
|
|
|
int32_t InputDispatcher::injectInputEvent(const InputEvent* event,
|
|
int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis) {
|
|
#if DEBUG_INBOUND_EVENT_DETAILS
|
|
LOGD("injectInputEvent - eventType=%d, injectorPid=%d, injectorUid=%d, "
|
|
"syncMode=%d, timeoutMillis=%d",
|
|
event->getType(), injectorPid, injectorUid, syncMode, timeoutMillis);
|
|
#endif
|
|
|
|
nsecs_t endTime = now() + milliseconds_to_nanoseconds(timeoutMillis);
|
|
|
|
InjectionState* injectionState;
|
|
bool needWake;
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
EventEntry* injectedEntry = createEntryFromInjectedInputEventLocked(event);
|
|
if (! injectedEntry) {
|
|
return INPUT_EVENT_INJECTION_FAILED;
|
|
}
|
|
|
|
injectionState = mAllocator.obtainInjectionState(injectorPid, injectorUid);
|
|
if (syncMode == INPUT_EVENT_INJECTION_SYNC_NONE) {
|
|
injectionState->injectionIsAsync = true;
|
|
}
|
|
|
|
injectionState->refCount += 1;
|
|
injectedEntry->injectionState = injectionState;
|
|
|
|
needWake = enqueueInboundEventLocked(injectedEntry);
|
|
} // release lock
|
|
|
|
if (needWake) {
|
|
mLooper->wake();
|
|
}
|
|
|
|
int32_t injectionResult;
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
if (syncMode == INPUT_EVENT_INJECTION_SYNC_NONE) {
|
|
injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED;
|
|
} else {
|
|
for (;;) {
|
|
injectionResult = injectionState->injectionResult;
|
|
if (injectionResult != INPUT_EVENT_INJECTION_PENDING) {
|
|
break;
|
|
}
|
|
|
|
nsecs_t remainingTimeout = endTime - now();
|
|
if (remainingTimeout <= 0) {
|
|
#if DEBUG_INJECTION
|
|
LOGD("injectInputEvent - Timed out waiting for injection result "
|
|
"to become available.");
|
|
#endif
|
|
injectionResult = INPUT_EVENT_INJECTION_TIMED_OUT;
|
|
break;
|
|
}
|
|
|
|
mInjectionResultAvailableCondition.waitRelative(mLock, remainingTimeout);
|
|
}
|
|
|
|
if (injectionResult == INPUT_EVENT_INJECTION_SUCCEEDED
|
|
&& syncMode == INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_FINISHED) {
|
|
while (injectionState->pendingForegroundDispatches != 0) {
|
|
#if DEBUG_INJECTION
|
|
LOGD("injectInputEvent - Waiting for %d pending foreground dispatches.",
|
|
injectionState->pendingForegroundDispatches);
|
|
#endif
|
|
nsecs_t remainingTimeout = endTime - now();
|
|
if (remainingTimeout <= 0) {
|
|
#if DEBUG_INJECTION
|
|
LOGD("injectInputEvent - Timed out waiting for pending foreground "
|
|
"dispatches to finish.");
|
|
#endif
|
|
injectionResult = INPUT_EVENT_INJECTION_TIMED_OUT;
|
|
break;
|
|
}
|
|
|
|
mInjectionSyncFinishedCondition.waitRelative(mLock, remainingTimeout);
|
|
}
|
|
}
|
|
}
|
|
|
|
mAllocator.releaseInjectionState(injectionState);
|
|
} // release lock
|
|
|
|
#if DEBUG_INJECTION
|
|
LOGD("injectInputEvent - Finished with result %d. "
|
|
"injectorPid=%d, injectorUid=%d",
|
|
injectionResult, injectorPid, injectorUid);
|
|
#endif
|
|
|
|
return injectionResult;
|
|
}
|
|
|
|
void InputDispatcher::setInjectionResultLocked(EventEntry* entry, int32_t injectionResult) {
|
|
InjectionState* injectionState = entry->injectionState;
|
|
if (injectionState) {
|
|
#if DEBUG_INJECTION
|
|
LOGD("Setting input event injection result to %d. "
|
|
"injectorPid=%d, injectorUid=%d",
|
|
injectionResult, injectionState->injectorPid, injectionState->injectorUid);
|
|
#endif
|
|
|
|
if (injectionState->injectionIsAsync) {
|
|
// Log the outcome since the injector did not wait for the injection result.
|
|
switch (injectionResult) {
|
|
case INPUT_EVENT_INJECTION_SUCCEEDED:
|
|
LOGV("Asynchronous input event injection succeeded.");
|
|
break;
|
|
case INPUT_EVENT_INJECTION_FAILED:
|
|
LOGW("Asynchronous input event injection failed.");
|
|
break;
|
|
case INPUT_EVENT_INJECTION_PERMISSION_DENIED:
|
|
LOGW("Asynchronous input event injection permission denied.");
|
|
break;
|
|
case INPUT_EVENT_INJECTION_TIMED_OUT:
|
|
LOGW("Asynchronous input event injection timed out.");
|
|
break;
|
|
}
|
|
}
|
|
|
|
injectionState->injectionResult = injectionResult;
|
|
mInjectionResultAvailableCondition.broadcast();
|
|
}
|
|
}
|
|
|
|
void InputDispatcher::incrementPendingForegroundDispatchesLocked(EventEntry* entry) {
|
|
InjectionState* injectionState = entry->injectionState;
|
|
if (injectionState) {
|
|
injectionState->pendingForegroundDispatches += 1;
|
|
}
|
|
}
|
|
|
|
void InputDispatcher::decrementPendingForegroundDispatchesLocked(EventEntry* entry) {
|
|
InjectionState* injectionState = entry->injectionState;
|
|
if (injectionState) {
|
|
injectionState->pendingForegroundDispatches -= 1;
|
|
|
|
if (injectionState->pendingForegroundDispatches == 0) {
|
|
mInjectionSyncFinishedCondition.broadcast();
|
|
}
|
|
}
|
|
}
|
|
|
|
InputDispatcher::EventEntry* InputDispatcher::createEntryFromInjectedInputEventLocked(
|
|
const InputEvent* event) {
|
|
switch (event->getType()) {
|
|
case AINPUT_EVENT_TYPE_KEY: {
|
|
const KeyEvent* keyEvent = static_cast<const KeyEvent*>(event);
|
|
if (! validateKeyEvent(keyEvent->getAction())) {
|
|
return NULL;
|
|
}
|
|
|
|
uint32_t policyFlags = POLICY_FLAG_INJECTED;
|
|
|
|
KeyEntry* keyEntry = mAllocator.obtainKeyEntry(keyEvent->getEventTime(),
|
|
keyEvent->getDeviceId(), keyEvent->getSource(), policyFlags,
|
|
keyEvent->getAction(), keyEvent->getFlags(),
|
|
keyEvent->getKeyCode(), keyEvent->getScanCode(), keyEvent->getMetaState(),
|
|
keyEvent->getRepeatCount(), keyEvent->getDownTime());
|
|
return keyEntry;
|
|
}
|
|
|
|
case AINPUT_EVENT_TYPE_MOTION: {
|
|
const MotionEvent* motionEvent = static_cast<const MotionEvent*>(event);
|
|
if (! validateMotionEvent(motionEvent->getAction(),
|
|
motionEvent->getPointerCount(), motionEvent->getPointerIds())) {
|
|
return NULL;
|
|
}
|
|
|
|
uint32_t policyFlags = POLICY_FLAG_INJECTED;
|
|
|
|
const nsecs_t* sampleEventTimes = motionEvent->getSampleEventTimes();
|
|
const PointerCoords* samplePointerCoords = motionEvent->getSamplePointerCoords();
|
|
size_t pointerCount = motionEvent->getPointerCount();
|
|
|
|
MotionEntry* motionEntry = mAllocator.obtainMotionEntry(*sampleEventTimes,
|
|
motionEvent->getDeviceId(), motionEvent->getSource(), policyFlags,
|
|
motionEvent->getAction(), motionEvent->getFlags(),
|
|
motionEvent->getMetaState(), motionEvent->getEdgeFlags(),
|
|
motionEvent->getXPrecision(), motionEvent->getYPrecision(),
|
|
motionEvent->getDownTime(), uint32_t(pointerCount),
|
|
motionEvent->getPointerIds(), samplePointerCoords);
|
|
for (size_t i = motionEvent->getHistorySize(); i > 0; i--) {
|
|
sampleEventTimes += 1;
|
|
samplePointerCoords += pointerCount;
|
|
mAllocator.appendMotionSample(motionEntry, *sampleEventTimes, samplePointerCoords);
|
|
}
|
|
return motionEntry;
|
|
}
|
|
|
|
default:
|
|
assert(false);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
const InputWindow* InputDispatcher::getWindowLocked(const sp<InputChannel>& inputChannel) {
|
|
for (size_t i = 0; i < mWindows.size(); i++) {
|
|
const InputWindow* window = & mWindows[i];
|
|
if (window->inputChannel == inputChannel) {
|
|
return window;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void InputDispatcher::setInputWindows(const Vector<InputWindow>& inputWindows) {
|
|
#if DEBUG_FOCUS
|
|
LOGD("setInputWindows");
|
|
#endif
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
// Clear old window pointers.
|
|
mFocusedWindow = NULL;
|
|
mWindows.clear();
|
|
|
|
// Loop over new windows and rebuild the necessary window pointers for
|
|
// tracking focus and touch.
|
|
mWindows.appendVector(inputWindows);
|
|
|
|
size_t numWindows = mWindows.size();
|
|
for (size_t i = 0; i < numWindows; i++) {
|
|
const InputWindow* window = & mWindows.itemAt(i);
|
|
if (window->hasFocus) {
|
|
mFocusedWindow = window;
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (size_t i = 0; i < mTouchState.windows.size(); ) {
|
|
TouchedWindow& touchedWindow = mTouchState.windows.editItemAt(i);
|
|
const InputWindow* window = getWindowLocked(touchedWindow.channel);
|
|
if (window) {
|
|
touchedWindow.window = window;
|
|
i += 1;
|
|
} else {
|
|
mTouchState.windows.removeAt(i);
|
|
}
|
|
}
|
|
|
|
#if DEBUG_FOCUS
|
|
logDispatchStateLocked();
|
|
#endif
|
|
} // release lock
|
|
|
|
// Wake up poll loop since it may need to make new input dispatching choices.
|
|
mLooper->wake();
|
|
}
|
|
|
|
void InputDispatcher::setFocusedApplication(const InputApplication* inputApplication) {
|
|
#if DEBUG_FOCUS
|
|
LOGD("setFocusedApplication");
|
|
#endif
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
releaseFocusedApplicationLocked();
|
|
|
|
if (inputApplication) {
|
|
mFocusedApplicationStorage = *inputApplication;
|
|
mFocusedApplication = & mFocusedApplicationStorage;
|
|
}
|
|
|
|
#if DEBUG_FOCUS
|
|
logDispatchStateLocked();
|
|
#endif
|
|
} // release lock
|
|
|
|
// Wake up poll loop since it may need to make new input dispatching choices.
|
|
mLooper->wake();
|
|
}
|
|
|
|
void InputDispatcher::releaseFocusedApplicationLocked() {
|
|
if (mFocusedApplication) {
|
|
mFocusedApplication = NULL;
|
|
mFocusedApplicationStorage.handle.clear();
|
|
}
|
|
}
|
|
|
|
void InputDispatcher::setInputDispatchMode(bool enabled, bool frozen) {
|
|
#if DEBUG_FOCUS
|
|
LOGD("setInputDispatchMode: enabled=%d, frozen=%d", enabled, frozen);
|
|
#endif
|
|
|
|
bool changed;
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
if (mDispatchEnabled != enabled || mDispatchFrozen != frozen) {
|
|
if (mDispatchFrozen && ! frozen) {
|
|
resetANRTimeoutsLocked();
|
|
}
|
|
|
|
mDispatchEnabled = enabled;
|
|
mDispatchFrozen = frozen;
|
|
changed = true;
|
|
} else {
|
|
changed = false;
|
|
}
|
|
|
|
#if DEBUG_FOCUS
|
|
logDispatchStateLocked();
|
|
#endif
|
|
} // release lock
|
|
|
|
if (changed) {
|
|
// Wake up poll loop since it may need to make new input dispatching choices.
|
|
mLooper->wake();
|
|
}
|
|
}
|
|
|
|
void InputDispatcher::logDispatchStateLocked() {
|
|
String8 dump;
|
|
dumpDispatchStateLocked(dump);
|
|
|
|
char* text = dump.lockBuffer(dump.size());
|
|
char* start = text;
|
|
while (*start != '\0') {
|
|
char* end = strchr(start, '\n');
|
|
if (*end == '\n') {
|
|
*(end++) = '\0';
|
|
}
|
|
LOGD("%s", start);
|
|
start = end;
|
|
}
|
|
}
|
|
|
|
void InputDispatcher::dumpDispatchStateLocked(String8& dump) {
|
|
dump.appendFormat(INDENT "DispatchEnabled: %d\n", mDispatchEnabled);
|
|
dump.appendFormat(INDENT "DispatchFrozen: %d\n", mDispatchFrozen);
|
|
|
|
if (mFocusedApplication) {
|
|
dump.appendFormat(INDENT "FocusedApplication: name='%s', dispatchingTimeout=%0.3fms\n",
|
|
mFocusedApplication->name.string(),
|
|
mFocusedApplication->dispatchingTimeout / 1000000.0);
|
|
} else {
|
|
dump.append(INDENT "FocusedApplication: <null>\n");
|
|
}
|
|
dump.appendFormat(INDENT "FocusedWindow: name='%s'\n",
|
|
mFocusedWindow != NULL ? mFocusedWindow->name.string() : "<null>");
|
|
|
|
dump.appendFormat(INDENT "TouchDown: %s\n", toString(mTouchState.down));
|
|
dump.appendFormat(INDENT "TouchSplit: %s\n", toString(mTouchState.split));
|
|
if (!mTouchState.windows.isEmpty()) {
|
|
dump.append(INDENT "TouchedWindows:\n");
|
|
for (size_t i = 0; i < mTouchState.windows.size(); i++) {
|
|
const TouchedWindow& touchedWindow = mTouchState.windows[i];
|
|
dump.appendFormat(INDENT2 "%d: name='%s', pointerIds=0x%0x, targetFlags=0x%x\n",
|
|
i, touchedWindow.window->name.string(), touchedWindow.pointerIds.value,
|
|
touchedWindow.targetFlags);
|
|
}
|
|
} else {
|
|
dump.append(INDENT "TouchedWindows: <none>\n");
|
|
}
|
|
|
|
if (!mWindows.isEmpty()) {
|
|
dump.append(INDENT "Windows:\n");
|
|
for (size_t i = 0; i < mWindows.size(); i++) {
|
|
const InputWindow& window = mWindows[i];
|
|
dump.appendFormat(INDENT2 "%d: name='%s', paused=%s, hasFocus=%s, hasWallpaper=%s, "
|
|
"visible=%s, canReceiveKeys=%s, flags=0x%08x, type=0x%08x, layer=%d, "
|
|
"frame=[%d,%d][%d,%d], "
|
|
"visibleFrame=[%d,%d][%d,%d], "
|
|
"touchableArea=[%d,%d][%d,%d], "
|
|
"ownerPid=%d, ownerUid=%d, dispatchingTimeout=%0.3fms\n",
|
|
i, window.name.string(),
|
|
toString(window.paused),
|
|
toString(window.hasFocus),
|
|
toString(window.hasWallpaper),
|
|
toString(window.visible),
|
|
toString(window.canReceiveKeys),
|
|
window.layoutParamsFlags, window.layoutParamsType,
|
|
window.layer,
|
|
window.frameLeft, window.frameTop,
|
|
window.frameRight, window.frameBottom,
|
|
window.visibleFrameLeft, window.visibleFrameTop,
|
|
window.visibleFrameRight, window.visibleFrameBottom,
|
|
window.touchableAreaLeft, window.touchableAreaTop,
|
|
window.touchableAreaRight, window.touchableAreaBottom,
|
|
window.ownerPid, window.ownerUid,
|
|
window.dispatchingTimeout / 1000000.0);
|
|
}
|
|
} else {
|
|
dump.append(INDENT "Windows: <none>\n");
|
|
}
|
|
|
|
if (!mMonitoringChannels.isEmpty()) {
|
|
dump.append(INDENT "MonitoringChannels:\n");
|
|
for (size_t i = 0; i < mMonitoringChannels.size(); i++) {
|
|
const sp<InputChannel>& channel = mMonitoringChannels[i];
|
|
dump.appendFormat(INDENT2 "%d: '%s'\n", i, channel->getName().string());
|
|
}
|
|
} else {
|
|
dump.append(INDENT "MonitoringChannels: <none>\n");
|
|
}
|
|
|
|
dump.appendFormat(INDENT "InboundQueue: length=%u\n", mInboundQueue.count());
|
|
|
|
if (!mActiveConnections.isEmpty()) {
|
|
dump.append(INDENT "ActiveConnections:\n");
|
|
for (size_t i = 0; i < mActiveConnections.size(); i++) {
|
|
const Connection* connection = mActiveConnections[i];
|
|
dump.appendFormat(INDENT2 "%d: '%s', status=%s, outboundQueueLength=%u"
|
|
"inputState.isNeutral=%s, inputState.isOutOfSync=%s\n",
|
|
i, connection->getInputChannelName(), connection->getStatusLabel(),
|
|
connection->outboundQueue.count(),
|
|
toString(connection->inputState.isNeutral()),
|
|
toString(connection->inputState.isOutOfSync()));
|
|
}
|
|
} else {
|
|
dump.append(INDENT "ActiveConnections: <none>\n");
|
|
}
|
|
|
|
if (isAppSwitchPendingLocked()) {
|
|
dump.appendFormat(INDENT "AppSwitch: pending, due in %01.1fms\n",
|
|
(mAppSwitchDueTime - now()) / 1000000.0);
|
|
} else {
|
|
dump.append(INDENT "AppSwitch: not pending\n");
|
|
}
|
|
}
|
|
|
|
status_t InputDispatcher::registerInputChannel(const sp<InputChannel>& inputChannel, bool monitor) {
|
|
#if DEBUG_REGISTRATION
|
|
LOGD("channel '%s' ~ registerInputChannel - monitor=%s", inputChannel->getName().string(),
|
|
toString(monitor));
|
|
#endif
|
|
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
if (getConnectionIndexLocked(inputChannel) >= 0) {
|
|
LOGW("Attempted to register already registered input channel '%s'",
|
|
inputChannel->getName().string());
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
sp<Connection> connection = new Connection(inputChannel);
|
|
status_t status = connection->initialize();
|
|
if (status) {
|
|
LOGE("Failed to initialize input publisher for input channel '%s', status=%d",
|
|
inputChannel->getName().string(), status);
|
|
return status;
|
|
}
|
|
|
|
int32_t receiveFd = inputChannel->getReceivePipeFd();
|
|
mConnectionsByReceiveFd.add(receiveFd, connection);
|
|
|
|
if (monitor) {
|
|
mMonitoringChannels.push(inputChannel);
|
|
}
|
|
|
|
mLooper->addFd(receiveFd, 0, ALOOPER_EVENT_INPUT, handleReceiveCallback, this);
|
|
|
|
runCommandsLockedInterruptible();
|
|
} // release lock
|
|
return OK;
|
|
}
|
|
|
|
status_t InputDispatcher::unregisterInputChannel(const sp<InputChannel>& inputChannel) {
|
|
#if DEBUG_REGISTRATION
|
|
LOGD("channel '%s' ~ unregisterInputChannel", inputChannel->getName().string());
|
|
#endif
|
|
|
|
{ // acquire lock
|
|
AutoMutex _l(mLock);
|
|
|
|
ssize_t connectionIndex = getConnectionIndexLocked(inputChannel);
|
|
if (connectionIndex < 0) {
|
|
LOGW("Attempted to unregister already unregistered input channel '%s'",
|
|
inputChannel->getName().string());
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex);
|
|
mConnectionsByReceiveFd.removeItemsAt(connectionIndex);
|
|
|
|
connection->status = Connection::STATUS_ZOMBIE;
|
|
|
|
for (size_t i = 0; i < mMonitoringChannels.size(); i++) {
|
|
if (mMonitoringChannels[i] == inputChannel) {
|
|
mMonitoringChannels.removeAt(i);
|
|
break;
|
|
}
|
|
}
|
|
|
|
mLooper->removeFd(inputChannel->getReceivePipeFd());
|
|
|
|
nsecs_t currentTime = now();
|
|
abortDispatchCycleLocked(currentTime, connection, true /*broken*/);
|
|
|
|
runCommandsLockedInterruptible();
|
|
} // release lock
|
|
|
|
// Wake the poll loop because removing the connection may have changed the current
|
|
// synchronization state.
|
|
mLooper->wake();
|
|
return OK;
|
|
}
|
|
|
|
ssize_t InputDispatcher::getConnectionIndexLocked(const sp<InputChannel>& inputChannel) {
|
|
ssize_t connectionIndex = mConnectionsByReceiveFd.indexOfKey(inputChannel->getReceivePipeFd());
|
|
if (connectionIndex >= 0) {
|
|
sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex);
|
|
if (connection->inputChannel.get() == inputChannel.get()) {
|
|
return connectionIndex;
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
void InputDispatcher::activateConnectionLocked(Connection* connection) {
|
|
for (size_t i = 0; i < mActiveConnections.size(); i++) {
|
|
if (mActiveConnections.itemAt(i) == connection) {
|
|
return;
|
|
}
|
|
}
|
|
mActiveConnections.add(connection);
|
|
}
|
|
|
|
void InputDispatcher::deactivateConnectionLocked(Connection* connection) {
|
|
for (size_t i = 0; i < mActiveConnections.size(); i++) {
|
|
if (mActiveConnections.itemAt(i) == connection) {
|
|
mActiveConnections.removeAt(i);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void InputDispatcher::onDispatchCycleStartedLocked(
|
|
nsecs_t currentTime, const sp<Connection>& connection) {
|
|
}
|
|
|
|
void InputDispatcher::onDispatchCycleFinishedLocked(
|
|
nsecs_t currentTime, const sp<Connection>& connection) {
|
|
}
|
|
|
|
void InputDispatcher::onDispatchCycleBrokenLocked(
|
|
nsecs_t currentTime, const sp<Connection>& connection) {
|
|
LOGE("channel '%s' ~ Channel is unrecoverably broken and will be disposed!",
|
|
connection->getInputChannelName());
|
|
|
|
CommandEntry* commandEntry = postCommandLocked(
|
|
& InputDispatcher::doNotifyInputChannelBrokenLockedInterruptible);
|
|
commandEntry->connection = connection;
|
|
}
|
|
|
|
void InputDispatcher::onANRLocked(
|
|
nsecs_t currentTime, const InputApplication* application, const InputWindow* window,
|
|
nsecs_t eventTime, nsecs_t waitStartTime) {
|
|
LOGI("Application is not responding: %s. "
|
|
"%01.1fms since event, %01.1fms since wait started",
|
|
getApplicationWindowLabelLocked(application, window).string(),
|
|
(currentTime - eventTime) / 1000000.0,
|
|
(currentTime - waitStartTime) / 1000000.0);
|
|
|
|
CommandEntry* commandEntry = postCommandLocked(
|
|
& InputDispatcher::doNotifyANRLockedInterruptible);
|
|
if (application) {
|
|
commandEntry->inputApplicationHandle = application->handle;
|
|
}
|
|
if (window) {
|
|
commandEntry->inputChannel = window->inputChannel;
|
|
}
|
|
}
|
|
|
|
void InputDispatcher::doNotifyConfigurationChangedInterruptible(
|
|
CommandEntry* commandEntry) {
|
|
mLock.unlock();
|
|
|
|
mPolicy->notifyConfigurationChanged(commandEntry->eventTime);
|
|
|
|
mLock.lock();
|
|
}
|
|
|
|
void InputDispatcher::doNotifyInputChannelBrokenLockedInterruptible(
|
|
CommandEntry* commandEntry) {
|
|
sp<Connection> connection = commandEntry->connection;
|
|
|
|
if (connection->status != Connection::STATUS_ZOMBIE) {
|
|
mLock.unlock();
|
|
|
|
mPolicy->notifyInputChannelBroken(connection->inputChannel);
|
|
|
|
mLock.lock();
|
|
}
|
|
}
|
|
|
|
void InputDispatcher::doNotifyANRLockedInterruptible(
|
|
CommandEntry* commandEntry) {
|
|
mLock.unlock();
|
|
|
|
nsecs_t newTimeout = mPolicy->notifyANR(
|
|
commandEntry->inputApplicationHandle, commandEntry->inputChannel);
|
|
|
|
mLock.lock();
|
|
|
|
resumeAfterTargetsNotReadyTimeoutLocked(newTimeout, commandEntry->inputChannel);
|
|
}
|
|
|
|
void InputDispatcher::doInterceptKeyBeforeDispatchingLockedInterruptible(
|
|
CommandEntry* commandEntry) {
|
|
KeyEntry* entry = commandEntry->keyEntry;
|
|
mReusableKeyEvent.initialize(entry->deviceId, entry->source, entry->action, entry->flags,
|
|
entry->keyCode, entry->scanCode, entry->metaState, entry->repeatCount,
|
|
entry->downTime, entry->eventTime);
|
|
|
|
mLock.unlock();
|
|
|
|
bool consumed = mPolicy->interceptKeyBeforeDispatching(commandEntry->inputChannel,
|
|
& mReusableKeyEvent, entry->policyFlags);
|
|
|
|
mLock.lock();
|
|
|
|
entry->interceptKeyResult = consumed
|
|
? KeyEntry::INTERCEPT_KEY_RESULT_SKIP
|
|
: KeyEntry::INTERCEPT_KEY_RESULT_CONTINUE;
|
|
mAllocator.releaseKeyEntry(entry);
|
|
}
|
|
|
|
void InputDispatcher::doPokeUserActivityLockedInterruptible(CommandEntry* commandEntry) {
|
|
mLock.unlock();
|
|
|
|
mPolicy->pokeUserActivity(commandEntry->eventTime, commandEntry->userActivityEventType);
|
|
|
|
mLock.lock();
|
|
}
|
|
|
|
void InputDispatcher::updateDispatchStatisticsLocked(nsecs_t currentTime, const EventEntry* entry,
|
|
int32_t injectionResult, nsecs_t timeSpentWaitingForApplication) {
|
|
// TODO Write some statistics about how long we spend waiting.
|
|
}
|
|
|
|
void InputDispatcher::dump(String8& dump) {
|
|
dump.append("Input Dispatcher State:\n");
|
|
dumpDispatchStateLocked(dump);
|
|
}
|
|
|
|
|
|
// --- InputDispatcher::Queue ---
|
|
|
|
template <typename T>
|
|
uint32_t InputDispatcher::Queue<T>::count() const {
|
|
uint32_t result = 0;
|
|
for (const T* entry = headSentinel.next; entry != & tailSentinel; entry = entry->next) {
|
|
result += 1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
// --- InputDispatcher::Allocator ---
|
|
|
|
InputDispatcher::Allocator::Allocator() {
|
|
}
|
|
|
|
InputDispatcher::InjectionState*
|
|
InputDispatcher::Allocator::obtainInjectionState(int32_t injectorPid, int32_t injectorUid) {
|
|
InjectionState* injectionState = mInjectionStatePool.alloc();
|
|
injectionState->refCount = 1;
|
|
injectionState->injectorPid = injectorPid;
|
|
injectionState->injectorUid = injectorUid;
|
|
injectionState->injectionIsAsync = false;
|
|
injectionState->injectionResult = INPUT_EVENT_INJECTION_PENDING;
|
|
injectionState->pendingForegroundDispatches = 0;
|
|
return injectionState;
|
|
}
|
|
|
|
void InputDispatcher::Allocator::initializeEventEntry(EventEntry* entry, int32_t type,
|
|
nsecs_t eventTime) {
|
|
entry->type = type;
|
|
entry->refCount = 1;
|
|
entry->dispatchInProgress = false;
|
|
entry->eventTime = eventTime;
|
|
entry->injectionState = NULL;
|
|
}
|
|
|
|
void InputDispatcher::Allocator::releaseEventEntryInjectionState(EventEntry* entry) {
|
|
if (entry->injectionState) {
|
|
releaseInjectionState(entry->injectionState);
|
|
entry->injectionState = NULL;
|
|
}
|
|
}
|
|
|
|
InputDispatcher::ConfigurationChangedEntry*
|
|
InputDispatcher::Allocator::obtainConfigurationChangedEntry(nsecs_t eventTime) {
|
|
ConfigurationChangedEntry* entry = mConfigurationChangeEntryPool.alloc();
|
|
initializeEventEntry(entry, EventEntry::TYPE_CONFIGURATION_CHANGED, eventTime);
|
|
return entry;
|
|
}
|
|
|
|
InputDispatcher::KeyEntry* InputDispatcher::Allocator::obtainKeyEntry(nsecs_t eventTime,
|
|
int32_t deviceId, int32_t source, uint32_t policyFlags, int32_t action,
|
|
int32_t flags, int32_t keyCode, int32_t scanCode, int32_t metaState,
|
|
int32_t repeatCount, nsecs_t downTime) {
|
|
KeyEntry* entry = mKeyEntryPool.alloc();
|
|
initializeEventEntry(entry, EventEntry::TYPE_KEY, eventTime);
|
|
|
|
entry->deviceId = deviceId;
|
|
entry->source = source;
|
|
entry->policyFlags = policyFlags;
|
|
entry->action = action;
|
|
entry->flags = flags;
|
|
entry->keyCode = keyCode;
|
|
entry->scanCode = scanCode;
|
|
entry->metaState = metaState;
|
|
entry->repeatCount = repeatCount;
|
|
entry->downTime = downTime;
|
|
entry->syntheticRepeat = false;
|
|
entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN;
|
|
return entry;
|
|
}
|
|
|
|
InputDispatcher::MotionEntry* InputDispatcher::Allocator::obtainMotionEntry(nsecs_t eventTime,
|
|
int32_t deviceId, int32_t source, uint32_t policyFlags, int32_t action, int32_t flags,
|
|
int32_t metaState, int32_t edgeFlags, float xPrecision, float yPrecision,
|
|
nsecs_t downTime, uint32_t pointerCount,
|
|
const int32_t* pointerIds, const PointerCoords* pointerCoords) {
|
|
MotionEntry* entry = mMotionEntryPool.alloc();
|
|
initializeEventEntry(entry, EventEntry::TYPE_MOTION, eventTime);
|
|
|
|
entry->eventTime = eventTime;
|
|
entry->deviceId = deviceId;
|
|
entry->source = source;
|
|
entry->policyFlags = policyFlags;
|
|
entry->action = action;
|
|
entry->flags = flags;
|
|
entry->metaState = metaState;
|
|
entry->edgeFlags = edgeFlags;
|
|
entry->xPrecision = xPrecision;
|
|
entry->yPrecision = yPrecision;
|
|
entry->downTime = downTime;
|
|
entry->pointerCount = pointerCount;
|
|
entry->firstSample.eventTime = eventTime;
|
|
entry->firstSample.next = NULL;
|
|
entry->lastSample = & entry->firstSample;
|
|
for (uint32_t i = 0; i < pointerCount; i++) {
|
|
entry->pointerIds[i] = pointerIds[i];
|
|
entry->firstSample.pointerCoords[i] = pointerCoords[i];
|
|
}
|
|
return entry;
|
|
}
|
|
|
|
InputDispatcher::DispatchEntry* InputDispatcher::Allocator::obtainDispatchEntry(
|
|
EventEntry* eventEntry,
|
|
int32_t targetFlags, float xOffset, float yOffset) {
|
|
DispatchEntry* entry = mDispatchEntryPool.alloc();
|
|
entry->eventEntry = eventEntry;
|
|
eventEntry->refCount += 1;
|
|
entry->targetFlags = targetFlags;
|
|
entry->xOffset = xOffset;
|
|
entry->yOffset = yOffset;
|
|
entry->inProgress = false;
|
|
entry->headMotionSample = NULL;
|
|
entry->tailMotionSample = NULL;
|
|
return entry;
|
|
}
|
|
|
|
InputDispatcher::CommandEntry* InputDispatcher::Allocator::obtainCommandEntry(Command command) {
|
|
CommandEntry* entry = mCommandEntryPool.alloc();
|
|
entry->command = command;
|
|
return entry;
|
|
}
|
|
|
|
void InputDispatcher::Allocator::releaseInjectionState(InjectionState* injectionState) {
|
|
injectionState->refCount -= 1;
|
|
if (injectionState->refCount == 0) {
|
|
mInjectionStatePool.free(injectionState);
|
|
} else {
|
|
assert(injectionState->refCount > 0);
|
|
}
|
|
}
|
|
|
|
void InputDispatcher::Allocator::releaseEventEntry(EventEntry* entry) {
|
|
switch (entry->type) {
|
|
case EventEntry::TYPE_CONFIGURATION_CHANGED:
|
|
releaseConfigurationChangedEntry(static_cast<ConfigurationChangedEntry*>(entry));
|
|
break;
|
|
case EventEntry::TYPE_KEY:
|
|
releaseKeyEntry(static_cast<KeyEntry*>(entry));
|
|
break;
|
|
case EventEntry::TYPE_MOTION:
|
|
releaseMotionEntry(static_cast<MotionEntry*>(entry));
|
|
break;
|
|
default:
|
|
assert(false);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void InputDispatcher::Allocator::releaseConfigurationChangedEntry(
|
|
ConfigurationChangedEntry* entry) {
|
|
entry->refCount -= 1;
|
|
if (entry->refCount == 0) {
|
|
releaseEventEntryInjectionState(entry);
|
|
mConfigurationChangeEntryPool.free(entry);
|
|
} else {
|
|
assert(entry->refCount > 0);
|
|
}
|
|
}
|
|
|
|
void InputDispatcher::Allocator::releaseKeyEntry(KeyEntry* entry) {
|
|
entry->refCount -= 1;
|
|
if (entry->refCount == 0) {
|
|
releaseEventEntryInjectionState(entry);
|
|
mKeyEntryPool.free(entry);
|
|
} else {
|
|
assert(entry->refCount > 0);
|
|
}
|
|
}
|
|
|
|
void InputDispatcher::Allocator::releaseMotionEntry(MotionEntry* entry) {
|
|
entry->refCount -= 1;
|
|
if (entry->refCount == 0) {
|
|
releaseEventEntryInjectionState(entry);
|
|
for (MotionSample* sample = entry->firstSample.next; sample != NULL; ) {
|
|
MotionSample* next = sample->next;
|
|
mMotionSamplePool.free(sample);
|
|
sample = next;
|
|
}
|
|
mMotionEntryPool.free(entry);
|
|
} else {
|
|
assert(entry->refCount > 0);
|
|
}
|
|
}
|
|
|
|
void InputDispatcher::Allocator::releaseDispatchEntry(DispatchEntry* entry) {
|
|
releaseEventEntry(entry->eventEntry);
|
|
mDispatchEntryPool.free(entry);
|
|
}
|
|
|
|
void InputDispatcher::Allocator::releaseCommandEntry(CommandEntry* entry) {
|
|
mCommandEntryPool.free(entry);
|
|
}
|
|
|
|
void InputDispatcher::Allocator::appendMotionSample(MotionEntry* motionEntry,
|
|
nsecs_t eventTime, const PointerCoords* pointerCoords) {
|
|
MotionSample* sample = mMotionSamplePool.alloc();
|
|
sample->eventTime = eventTime;
|
|
uint32_t pointerCount = motionEntry->pointerCount;
|
|
for (uint32_t i = 0; i < pointerCount; i++) {
|
|
sample->pointerCoords[i] = pointerCoords[i];
|
|
}
|
|
|
|
sample->next = NULL;
|
|
motionEntry->lastSample->next = sample;
|
|
motionEntry->lastSample = sample;
|
|
}
|
|
|
|
void InputDispatcher::Allocator::recycleKeyEntry(KeyEntry* keyEntry) {
|
|
releaseEventEntryInjectionState(keyEntry);
|
|
|
|
keyEntry->dispatchInProgress = false;
|
|
keyEntry->syntheticRepeat = false;
|
|
keyEntry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN;
|
|
}
|
|
|
|
|
|
// --- InputDispatcher::MotionEntry ---
|
|
|
|
uint32_t InputDispatcher::MotionEntry::countSamples() const {
|
|
uint32_t count = 1;
|
|
for (MotionSample* sample = firstSample.next; sample != NULL; sample = sample->next) {
|
|
count += 1;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
|
|
// --- InputDispatcher::InputState ---
|
|
|
|
InputDispatcher::InputState::InputState() :
|
|
mIsOutOfSync(false) {
|
|
}
|
|
|
|
InputDispatcher::InputState::~InputState() {
|
|
}
|
|
|
|
bool InputDispatcher::InputState::isNeutral() const {
|
|
return mKeyMementos.isEmpty() && mMotionMementos.isEmpty();
|
|
}
|
|
|
|
bool InputDispatcher::InputState::isOutOfSync() const {
|
|
return mIsOutOfSync;
|
|
}
|
|
|
|
void InputDispatcher::InputState::setOutOfSync() {
|
|
if (! isNeutral()) {
|
|
mIsOutOfSync = true;
|
|
}
|
|
}
|
|
|
|
void InputDispatcher::InputState::resetOutOfSync() {
|
|
mIsOutOfSync = false;
|
|
}
|
|
|
|
InputDispatcher::InputState::Consistency InputDispatcher::InputState::trackEvent(
|
|
const EventEntry* entry) {
|
|
switch (entry->type) {
|
|
case EventEntry::TYPE_KEY:
|
|
return trackKey(static_cast<const KeyEntry*>(entry));
|
|
|
|
case EventEntry::TYPE_MOTION:
|
|
return trackMotion(static_cast<const MotionEntry*>(entry));
|
|
|
|
default:
|
|
return CONSISTENT;
|
|
}
|
|
}
|
|
|
|
InputDispatcher::InputState::Consistency InputDispatcher::InputState::trackKey(
|
|
const KeyEntry* entry) {
|
|
int32_t action = entry->action;
|
|
for (size_t i = 0; i < mKeyMementos.size(); i++) {
|
|
KeyMemento& memento = mKeyMementos.editItemAt(i);
|
|
if (memento.deviceId == entry->deviceId
|
|
&& memento.source == entry->source
|
|
&& memento.keyCode == entry->keyCode
|
|
&& memento.scanCode == entry->scanCode) {
|
|
switch (action) {
|
|
case AKEY_EVENT_ACTION_UP:
|
|
mKeyMementos.removeAt(i);
|
|
if (isNeutral()) {
|
|
mIsOutOfSync = false;
|
|
}
|
|
return CONSISTENT;
|
|
|
|
case AKEY_EVENT_ACTION_DOWN:
|
|
return TOLERABLE;
|
|
|
|
default:
|
|
return BROKEN;
|
|
}
|
|
}
|
|
}
|
|
|
|
switch (action) {
|
|
case AKEY_EVENT_ACTION_DOWN: {
|
|
mKeyMementos.push();
|
|
KeyMemento& memento = mKeyMementos.editTop();
|
|
memento.deviceId = entry->deviceId;
|
|
memento.source = entry->source;
|
|
memento.keyCode = entry->keyCode;
|
|
memento.scanCode = entry->scanCode;
|
|
memento.downTime = entry->downTime;
|
|
return CONSISTENT;
|
|
}
|
|
|
|
default:
|
|
return BROKEN;
|
|
}
|
|
}
|
|
|
|
InputDispatcher::InputState::Consistency InputDispatcher::InputState::trackMotion(
|
|
const MotionEntry* entry) {
|
|
int32_t action = entry->action & AMOTION_EVENT_ACTION_MASK;
|
|
for (size_t i = 0; i < mMotionMementos.size(); i++) {
|
|
MotionMemento& memento = mMotionMementos.editItemAt(i);
|
|
if (memento.deviceId == entry->deviceId
|
|
&& memento.source == entry->source) {
|
|
switch (action) {
|
|
case AMOTION_EVENT_ACTION_UP:
|
|
case AMOTION_EVENT_ACTION_CANCEL:
|
|
mMotionMementos.removeAt(i);
|
|
if (isNeutral()) {
|
|
mIsOutOfSync = false;
|
|
}
|
|
return CONSISTENT;
|
|
|
|
case AMOTION_EVENT_ACTION_DOWN:
|
|
return TOLERABLE;
|
|
|
|
case AMOTION_EVENT_ACTION_POINTER_DOWN:
|
|
if (entry->pointerCount == memento.pointerCount + 1) {
|
|
memento.setPointers(entry);
|
|
return CONSISTENT;
|
|
}
|
|
return BROKEN;
|
|
|
|
case AMOTION_EVENT_ACTION_POINTER_UP:
|
|
if (entry->pointerCount == memento.pointerCount - 1) {
|
|
memento.setPointers(entry);
|
|
return CONSISTENT;
|
|
}
|
|
return BROKEN;
|
|
|
|
case AMOTION_EVENT_ACTION_MOVE:
|
|
if (entry->pointerCount == memento.pointerCount) {
|
|
return CONSISTENT;
|
|
}
|
|
return BROKEN;
|
|
|
|
default:
|
|
return BROKEN;
|
|
}
|
|
}
|
|
}
|
|
|
|
switch (action) {
|
|
case AMOTION_EVENT_ACTION_DOWN: {
|
|
mMotionMementos.push();
|
|
MotionMemento& memento = mMotionMementos.editTop();
|
|
memento.deviceId = entry->deviceId;
|
|
memento.source = entry->source;
|
|
memento.xPrecision = entry->xPrecision;
|
|
memento.yPrecision = entry->yPrecision;
|
|
memento.downTime = entry->downTime;
|
|
memento.setPointers(entry);
|
|
return CONSISTENT;
|
|
}
|
|
|
|
default:
|
|
return BROKEN;
|
|
}
|
|
}
|
|
|
|
void InputDispatcher::InputState::MotionMemento::setPointers(const MotionEntry* entry) {
|
|
pointerCount = entry->pointerCount;
|
|
for (uint32_t i = 0; i < entry->pointerCount; i++) {
|
|
pointerIds[i] = entry->pointerIds[i];
|
|
pointerCoords[i] = entry->lastSample->pointerCoords[i];
|
|
}
|
|
}
|
|
|
|
void InputDispatcher::InputState::synthesizeCancelationEvents(
|
|
Allocator* allocator, Vector<EventEntry*>& outEvents) const {
|
|
for (size_t i = 0; i < mKeyMementos.size(); i++) {
|
|
const KeyMemento& memento = mKeyMementos.itemAt(i);
|
|
outEvents.push(allocator->obtainKeyEntry(now(),
|
|
memento.deviceId, memento.source, 0,
|
|
AKEY_EVENT_ACTION_UP, AKEY_EVENT_FLAG_CANCELED,
|
|
memento.keyCode, memento.scanCode, 0, 0, memento.downTime));
|
|
}
|
|
|
|
for (size_t i = 0; i < mMotionMementos.size(); i++) {
|
|
const MotionMemento& memento = mMotionMementos.itemAt(i);
|
|
outEvents.push(allocator->obtainMotionEntry(now(),
|
|
memento.deviceId, memento.source, 0,
|
|
AMOTION_EVENT_ACTION_CANCEL, 0, 0, 0,
|
|
memento.xPrecision, memento.yPrecision, memento.downTime,
|
|
memento.pointerCount, memento.pointerIds, memento.pointerCoords));
|
|
}
|
|
}
|
|
|
|
void InputDispatcher::InputState::clear() {
|
|
mKeyMementos.clear();
|
|
mMotionMementos.clear();
|
|
mIsOutOfSync = false;
|
|
}
|
|
|
|
|
|
// --- InputDispatcher::Connection ---
|
|
|
|
InputDispatcher::Connection::Connection(const sp<InputChannel>& inputChannel) :
|
|
status(STATUS_NORMAL), inputChannel(inputChannel), inputPublisher(inputChannel),
|
|
lastEventTime(LONG_LONG_MAX), lastDispatchTime(LONG_LONG_MAX) {
|
|
}
|
|
|
|
InputDispatcher::Connection::~Connection() {
|
|
}
|
|
|
|
status_t InputDispatcher::Connection::initialize() {
|
|
return inputPublisher.initialize();
|
|
}
|
|
|
|
const char* InputDispatcher::Connection::getStatusLabel() const {
|
|
switch (status) {
|
|
case STATUS_NORMAL:
|
|
return "NORMAL";
|
|
|
|
case STATUS_BROKEN:
|
|
return "BROKEN";
|
|
|
|
case STATUS_ZOMBIE:
|
|
return "ZOMBIE";
|
|
|
|
default:
|
|
return "UNKNOWN";
|
|
}
|
|
}
|
|
|
|
InputDispatcher::DispatchEntry* InputDispatcher::Connection::findQueuedDispatchEntryForEvent(
|
|
const EventEntry* eventEntry) const {
|
|
for (DispatchEntry* dispatchEntry = outboundQueue.tailSentinel.prev;
|
|
dispatchEntry != & outboundQueue.headSentinel; dispatchEntry = dispatchEntry->prev) {
|
|
if (dispatchEntry->eventEntry == eventEntry) {
|
|
return dispatchEntry;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
// --- InputDispatcher::CommandEntry ---
|
|
|
|
InputDispatcher::CommandEntry::CommandEntry() :
|
|
keyEntry(NULL) {
|
|
}
|
|
|
|
InputDispatcher::CommandEntry::~CommandEntry() {
|
|
}
|
|
|
|
|
|
// --- InputDispatcher::TouchState ---
|
|
|
|
InputDispatcher::TouchState::TouchState() :
|
|
down(false), split(false) {
|
|
}
|
|
|
|
InputDispatcher::TouchState::~TouchState() {
|
|
}
|
|
|
|
void InputDispatcher::TouchState::reset() {
|
|
down = false;
|
|
split = false;
|
|
windows.clear();
|
|
}
|
|
|
|
void InputDispatcher::TouchState::copyFrom(const TouchState& other) {
|
|
down = other.down;
|
|
split = other.split;
|
|
windows.clear();
|
|
windows.appendVector(other.windows);
|
|
}
|
|
|
|
void InputDispatcher::TouchState::addOrUpdateWindow(const InputWindow* window,
|
|
int32_t targetFlags, BitSet32 pointerIds) {
|
|
if (targetFlags & InputTarget::FLAG_SPLIT) {
|
|
split = true;
|
|
}
|
|
|
|
for (size_t i = 0; i < windows.size(); i++) {
|
|
TouchedWindow& touchedWindow = windows.editItemAt(i);
|
|
if (touchedWindow.window == window) {
|
|
touchedWindow.targetFlags |= targetFlags;
|
|
touchedWindow.pointerIds.value |= pointerIds.value;
|
|
return;
|
|
}
|
|
}
|
|
|
|
windows.push();
|
|
|
|
TouchedWindow& touchedWindow = windows.editTop();
|
|
touchedWindow.window = window;
|
|
touchedWindow.targetFlags = targetFlags;
|
|
touchedWindow.pointerIds = pointerIds;
|
|
touchedWindow.channel = window->inputChannel;
|
|
}
|
|
|
|
void InputDispatcher::TouchState::removeOutsideTouchWindows() {
|
|
for (size_t i = 0 ; i < windows.size(); ) {
|
|
if (windows[i].targetFlags & InputTarget::FLAG_OUTSIDE) {
|
|
windows.removeAt(i);
|
|
} else {
|
|
i += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
const InputWindow* InputDispatcher::TouchState::getFirstForegroundWindow() {
|
|
for (size_t i = 0; i < windows.size(); i++) {
|
|
if (windows[i].targetFlags & InputTarget::FLAG_FOREGROUND) {
|
|
return windows[i].window;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
// --- InputDispatcherThread ---
|
|
|
|
InputDispatcherThread::InputDispatcherThread(const sp<InputDispatcherInterface>& dispatcher) :
|
|
Thread(/*canCallJava*/ true), mDispatcher(dispatcher) {
|
|
}
|
|
|
|
InputDispatcherThread::~InputDispatcherThread() {
|
|
}
|
|
|
|
bool InputDispatcherThread::threadLoop() {
|
|
mDispatcher->dispatchOnce();
|
|
return true;
|
|
}
|
|
|
|
} // namespace android
|